

12 January 2024

Natural Resources Planner
Stevenson Aggregates Limited
4-10 Reliable Way
Mt Wellington
AUCKLAND 1061

Dear Jo,

UPDATED - SUTTON BLOCK EXTENSION TO DRURY QUARRY – SOIL CHARACTERISATION INVESTIGATION

1.0 Introduction

Pattle Delamore Partners Limited (PDP) has been engaged by Stevenson Aggregates Limited (SAL) to undertake a soil characterisation investigation of the surface and near surface material located within the Sutton Block, which comprises part properties located at 1189 Ponga Road and 121 MacWhinney Drive, Drury, Auckland (collectively referred henceforth as 'the site'; refer white outline of property parcels in Figure 1). It is understood that that works proposed in the Sutton Block are to extend the current Drury Quarry with similar quarry operations including stripping of 'overburden' material — which is the subject surface and near-surface material at the site (refer to Section 1.1 below for a summary of the 2023 revised Sutton Block pit extension proposal). The proposed quarry pit extension (refer to Figure 1) is expected to cover:

- The majority of grassed land located on 1189 Ponga Road and excludes areas of native bush land in the northern and eastern sections of the property, and the area of Ballards Cone (orange border) in the south of the property; and
- The eastern area of grassed land located on 121 MacWhinney Drive, excluding areas of native bush land in the western and the southern parts of the property, and Ballards Cone within this property parcel.

This investigation builds upon the Updated Preliminary Site Investigation (PSI) report completed by PDP on 9 January 2024 for the Sutton Block, which identified potential areas/activities categorised under the Hazardous Activity and Industry List (HAIL)¹ (PDP, 2024) surrounding and including some of the existing farm buildings and structures. As such, these areas are excluded from this assessment (refer Figure 1). The PSI concluded that the remaining areas of the Sutton Block are confirmed to represent non-HAIL areas and will therefore be exempt from further requirements of the NES-CS (as described in Regulation 5 (7)) and the contaminated land rules of the AUP-OP.

¹ The Hazardous Activities and Industries List (HAIL) is a compilation of activities and industries that are considered likely to cause land contamination resulting from hazardous substance use, storage or disposal. The HAIL is intended to identify most situations in New Zealand where hazardous substances could cause, and in many cases have caused, land contamination.

STEVENSON AGGREGATES LIMITED - UPDATED - SUTTON BLOCK EXTENSION TO DRURY QUARRY — SOIL CHARACTERISATION INVESTIGATION

This soil characterisation investigation has been undertaken in these non-HAIL areas of the Sutton Block to support future options for onsite reuse, and offsite disposal options for the topsoil and clay overburden material.

This investigation has been overseen and reviewed by a Suitably Qualified and Experienced Practitioner (SQEP) with respect to contaminated land and has been undertaken in general accordance with the Ministry for the Environment (MfE) Contaminated Land Management Guidelines No.1 – Reporting on Contaminated Sites in New Zealand (MfE, 2021a) and No.5 – Site Investigation and Analysis of Soils (MfE, 2021b). This letter report provides the findings of the investigation.

1.1 Project Description for the 2023 Revised Sutton Block Pit Extension

SAL Drury Quarry is located in Drury, within the Auckland Region, and has been in operation for over 80 years. Drury Quarry is a greywacke hard rock quarry supplying concrete, asphalt and roading aggregate to the Auckland market. The Drury Quarry pit is located within the wider landholdings owned by SAL, which encompasses an area of approximately 562ha. This landholding includes quarry activities, a clean fill, farmland and large swathes of native vegetation.

Based on current demand estimates, the existing pit will provide approximately 20 years of aggregate supply to Auckland. To continue to provide a local supply of aggregate resource SAL proposes to develop a new pit within the existing site, called 'the Sutton Block'. The Sutton Block pit has been designed to provide approximately 185 million tonnes of additional aggregate to supply the market.

The Sutton Block is located to the northeast of the existing pit. The development of the Sutton Block will involve the staged development of an area of approximately 87.7 ha to a maximum pit depth of approximately 60 m RL. The Sutton Block is designed to be a separate quarry pit although it will be serviced by the existing Drury Quarry ancillary site infrastructure and facilities.

Further details are provided in the *Drury Quarry, Sutton Block, Assessment of Environmental Effects* (AEE) report (Tonkin + Taylor, in preparation).

2.0 Objective and Scope of Works

2.1 Objective

The key objective of this investigation is to characterise the contaminant concentrations within the surface and near-surface topsoil and clay materials within the site (in the non-HAIL areas).

The purpose of the characterisation is to confirm the material as complying with the 'cleanfill' definition within the Auckland unitary Plan – Operative in Part (AUP-OP) to permit unrestricted reuse onsite, and sale and removal/disposal to offsite locations.

The AUP-OP definition of cleanfill is natural materials which do not contain contaminants at levels greater than background concentrations, and which have no adverse effects on the environment.

2.2 Scope of Works

In order to achieve this objective, the following scope of works (as agreed with SAL) has been undertaken:

- : Soil sampling of the topsoil and clay overburden in the non-HAIL areas across the site.
- Laboratory analysis of collected soil samples for a suite of heavy metals (arsenic, cadmium, chromium, copper, lead, nickel and zinc), organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs).
- Assessment of analytical sample results against relevant soil contaminant definitions (i.e. 'cleanfill').
- : Provision of this letter report.

STEVENSON AGGREGATES LIMITED - UPDATED - SUTTON BLOCK EXTENSION TO DRURY QUARRY — SOIL CHARACTERISATION INVESTIGATION

3.0 Site Description

The site comprises the proposed quarry pit extension comprising parts of the properties located at 1189 Ponga Road and 121 MacWhinney Drive (refer Figure 1).

Table 1: Property Information								
Site Address	Description							
1189 Ponga Road	SECT 2 SO 467566, ALLOT 37 Parish OF HUNUA, ALLOT 198 Parish OF HUNUA, ALLOT 190A Parish OF HUNUA, SPO 190 ALLT 190 PARO Hunua, ALLOT 191 Parish OF HUNUA, ALLOT 197 Parish OF HUNUA							
121 MacWhinney Drive LOT 4 DP 509893								
Note: 1. 121 MacWhinney Drive also includes Lot 5 DP 509893 and Lot 1 DP 126627; however, these are excluded from the assessment area.								

The total area (two properties combined) is approximately 258.6 hectares in size; however, the proposed quarry pit extension (which is the focus of this soil characterisation investigation) will be significantly smaller in size (as shown in Figure 1). The remainder of the properties has not been assessed as part of this investigation as they are not expected to be impacted by the proposed quarry pit extension.

4.0 Geology and Hydrogeology

PDP has also been commissioned to advance six boreholes at the site as part of a separate groundwater investigation. A review of the available geological log (refer Appendix A) during this investigation indicates that surface and near-surface soils consist of clay (0-2 m below ground level (bgl)) with clayey/sandy silt (2-6 m bgl) subsurface soils and underlain by greywacke of the Waipapa Group. No groundwater or evidence of surficial fill was encountered in this borehole.

This description is in accordance with the published local geological description, generally consisting of sandy silt, clayey silt, silty sand and sandy gravel, underlain by greywacke (Edbrooke, 2001).

5.0 Sampling Methodology

Site investigation works were undertaken on 9 and 10 February 2022 and comprised the following:

- Site walkover and visual inspection of the site surface for any evidence of contamination (visual staining or olfactory odour, etc).
- Surface soil samples were collected at 0.1 and 0.3 m bgl from a total of 20 grid locations across the site (see Figure 1 for sampling location).
 - Samples from ~0.1 m depth are to be representative of topsoil contaminant character;
 - Samples from ~0.3 m depth are to be representative of underlying natural ground.
- : All soil samples were sent to RJ Hill Laboratories Limited (Hills) and select samples were analysed for heavy metals, and selected OCPs and PAHs².

During the completion of soil sample collection, the soils were observed and logged.

² This analytical suite has been determined based on the likelihood of these contaminants potentially being present at the site based on the previous PSI investigations completed for the site. The collected soil samples have not been analysed for asbestos in soil as no fragments of asbestos containing material (ACM) were encountered.

STEVENSON AGGREGATES LIMITED - UPDATED - SUTTON BLOCK EXTENSION TO DRURY QUARRY — SOIL CHARACTERISATION INVESTIGATION

Fresh nitrile gloves were worn, and sample collection equipment was decontaminated at each sample location. Samples were immediately placed into laboratory supplied glass and plastic jars, and chilled cool storage bins for subsequent transport to the IANZ accredited laboratory (Hills) under standard chain-of-custody procedures.

6.0 Applicable Assessment Criteria

The following assessment guidelines and criteria have been selected to enable assessment of the surface and near-surface materials against: the Background Concentrations of heavy metals in the Auckland Region (from the AUP-OP) to demonstrate compliance with the AUP-OP 'cleanfill' definition; and, in addition the nearby Drury Quarry — a Managed Fill facility operated nearby, which is expected to be the preferred facility for surplus soil disposal (if required).

6.1 Regional Background Concentrations

To assess heavy metal results, Auckland Council Background Concentrations for heavy metals are taken from the Non-volcanic Range Soils of Table E30.6.1.4.2 in the AUP-OP.

6.2 Antrhopogenic Contaminants

Under the AUP-OP definitions of cleanfill, no concentration of anthropogenic contaminants such as PAHs and OCPs, above the laboratory limit of reporting (LLOR) that can be considered to be 'background'.

6.3 Waste Acceptance Criteria

As the Drury Quarry is the preferred disposal facility for any surplus soils at the site, the waste acceptance criteria as listed in the 'Decision on an application to change/cancel conditions of a resource consent under section 127 of the Resource Management Act 1991' for the Drury Quarry (DIS60083642-A) has been adopted. These values are in line with the AUP-OP Permitted Activity guideline values.

7.0 Results

Results from sampling observations and laboratory soil analyses are outlined below.

7.1 Sampling Obsevations

The following observations were made during the collection of soil samples:

- : No visual and/or olfactory evidence of contamination were encountered.
- : No fragments of asbestos have been encountered.
- : No evidence of other sources of contamination including fill material were encountered.

7.2 Analytical Results

Laboratory analytical results of the analysed soil samples are summarised in Table 2. The Chain of Custody (CoC) documentation and laboratory analytical reports are provided in Appendix B (note some samples are blanked out as they are part of the Detailed Site Investigation of the area surrounding the farm buildings – not included in this assessment). See Figure 1 for sample locations.

Laboratory analytical results of the 20 analysed soil samples indicates the following:

- The concentrations of heavy metals in all of the analysed soil samples (excepting SQ_SS31 (0.3) are all within Auckland background ranges.
- The PAHs and OCPs concentrations in all of the analysed soil samples are below the LLOR.

STEVENSON AGGREGATES LIMITED - UPDATED - SUTTON BLOCK EXTENSION TO DRURY QUARRY — SOIL CHARACTERISATION INVESTIGATION

• The concentrations of some heavy metals in sample SQ_SS31 (0.3) are above the Auckland background ranges, but within the AUP-OP Permitted Activity soil acceptance criteria.

8.0 Conclusions

A detailed soil characterisation investigation of the surface and near-surface materials (future overburden material) located at the Sutton Block (1189 Ponga Road and 121 MacWhinney Drive), Drury, Auckland confirms that these materials can comply with the AUP-OP definition of 'cleanfill' based on the soil contaminants analysed (i.e. heavy metals, polycyclic aromatic hydrocarbons and organochlorine pesticides).

The key findings of this soil characterisation investigation are as follows:

- : No fill material was encountered.
- No visual or olfactory evidence of ground contamination were observed in any of the collected soil samples.
- : Majority of sample results comply with the AUP-OP definition of cleanfill.

As a result, all surface and near-surface (i.e. overburden) materials excavated at the site may be re-used onsite, and/or removed offsite to another site or disposal facility at the discretion of the site operator (without restriction from a contamination perspective).

Based on the sample results and history review included in the referenced reports, the overburden material, excluding soil surrounding sample SQ_SS31(0.3) can be effectively classed as clean fill material (for the particular contaminants assessed).

Soil surrounding sample location SQ_SS31(0.3) cannot be considered as clean fill material but can be reused at the site. However, if removal of surface soils from this area is required, the soil in this location must be disposed as 'managed fill' to an appropriately licensed disposal facility (e.g. Drury Quarry).

It is noted that further AUP-OP rules with respect to trafficking soils have not been included in this assessment (i.e. permitted volumes, erosion and sediment controls and/or consent requirements, etc).

9.0 References

AUP:OP, 2021. Auckland Unitary Plan; Operative in Part. Updated March 2021. Auckland Council.

- Edbrooke, S.W. (compiler) 2001: Geology of the Auckland area: scale 1:250,000. Lower Hutt: Institute of Geological & Nuclear Sciences Limited. Institute of Geological & Nuclear Sciences 1:250,000 geological map 3. 74 p. + 1 folded map
- MfE, 2021a. Contaminated Land Management Guidelines No. 1. Reporting on Contaminated Sites in New Zealand. Ministry for the Environment.
- MfE, 2021b. Contaminated Land Management Guidelines No. 5. Site Investigation and Analysis of Soils. Ministry for the Environment.
- PDP, 2024. *Updated Sutton Block Extension to Drury Quarry Preliminary Site Investigation.*Pattle Delamore Partners.
- T+T, in preparation. Drury Quarry, Sutton Block, Assessment of Environmental Effects. Tonkin + Taylor.

STEVENSON AGGREGATES LIMITED - UPDATED - SUTTON BLOCK EXTENSION TO DRURY QUARRY — SOIL

CHARACTERISATION INVESTIGATION

10.0 Limitations

This document has been prepared by Pattle Delamore Partners Limited (PDP) on the basis of information provided by Stevenson Aggregates Limited. PDP has not independently verified the provided information and has relied upon it being accurate and sufficient for use by PDP in preparing the document. PDP accepts no responsibility for errors or omissions in, or the currency or sufficiency of, the provided information.

This document has been prepared based on the collection and laboratory analysis of 19 soil samples from 20 locations within the site for heavy metals, OCPs and/or PAHs. The site conditions as described in this document have been interpreted from, and are subject to, this information and its limitations and accordingly PDP does not represent that its interpretation accurately represents the full site conditions.

This assessment is limited to collection and analysis of soil samples from discrete sampling locations. Interpretations of subsurface conditions, including contaminant concentrations, are not guaranteed at distance away from the specific points of sampling.

The information contained within this document applies to soil sampling undertaken on the dates stated in this document, or if none is stated, the date of this document. With time, the site conditions and environmental standards may change. Accordingly, the reported assessments and conclusions are not guaranteed to apply at a later date.

This document has been prepared by PDP on the specific instructions of Stevenson Aggregates Limited for the limited purposes described in the document. PDP accepts no liability if the document is used for a different purpose or if it is used or relied on by any other person. Any such use or reliance will be solely at their own risk.

© 2024 Pattle Delamore Partners Limited

Yours faithfully

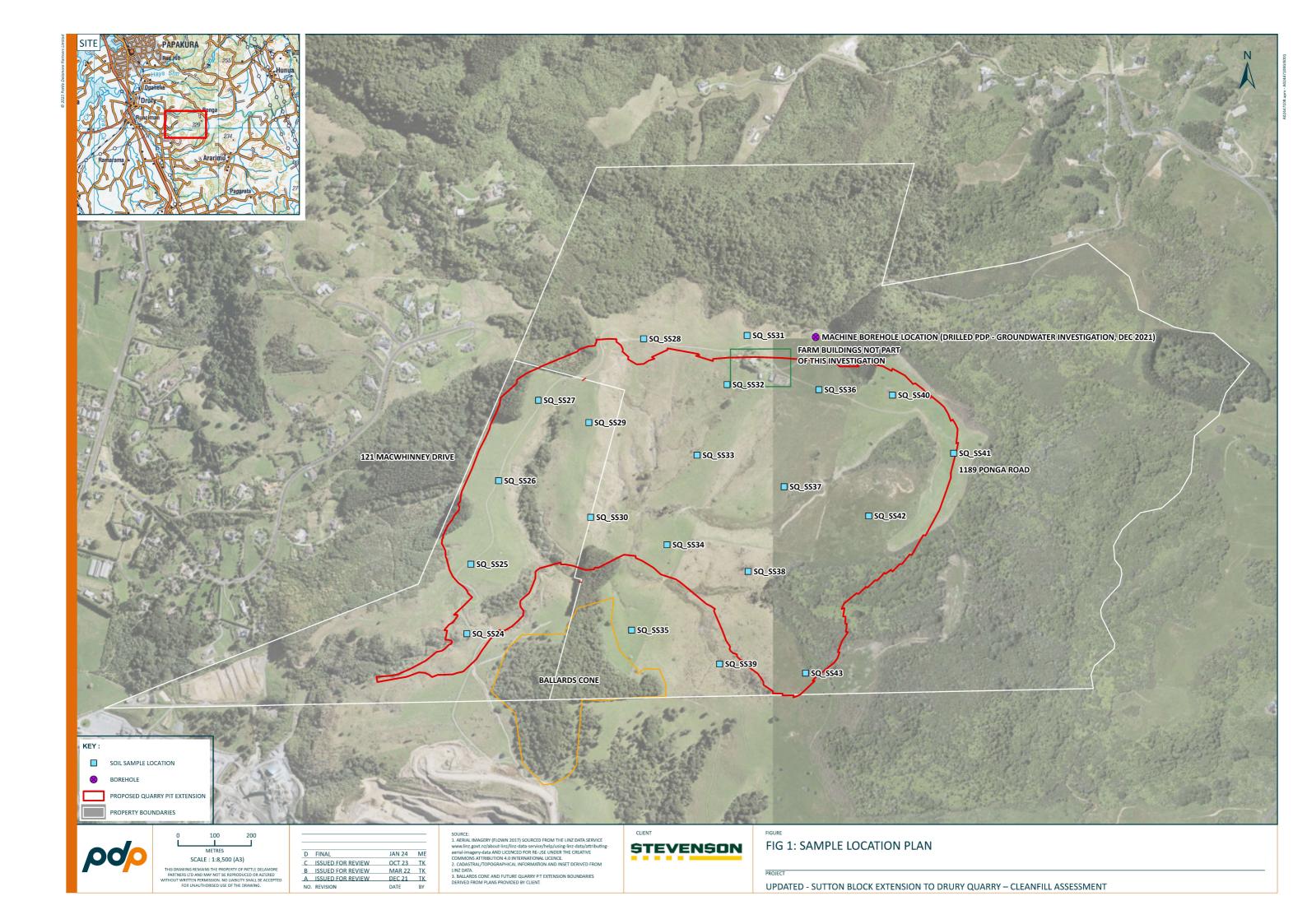
PATTLE DELAMORE PARTNERS LIMITED

Prepared by

Myra Belkot

Environmental Scientist

Reviewed by


Stefan Yap

Service Leader - Contaminated Land

Approved by

Rod Lidgard – CEnvP (SC)

Technical Director - Contaminated Land

STEVENSON AGGREGATES LIMITED - UPDATED - SUTTON BLOCK EXTENSION TO DRURY QUARRY - SOIL CHARACTERISATION INVESTIGATION

Appendix A: Geological Log

MONITORING WELL

Job No.: A02447709
Test No.: SG11D
Sheet: 1 of 5
Date: 10/12/21

PATTLE DELAMORE PARTNERS LTD

Client:
Site Address:
Date: 10/12/21
Stevenson Aggregates Ltd
Quarry Road, Runciman 2578
Project:
Coordinates:
Sutton Quarry
1777717.2mE, 5890562.6mN

Installation

Project:	son Aggregates Ltd				rdina		ı, Kı	unciman	25/8			Gre	ound Leve	l mRL:	
	Quarry						E, 5	890562.	6mN			Gro	ound		
Interpretation	Geological D Soil and Rock logged in accordance Society field description	with New Zealand Geotechnical	Graphic Log	Depth (m)	RL (m)	PID (ppm)	S	amples	Depth Remarks		I	nstallatio	n		Water
	CLAY, with some silt; orange bro Dry, moderate plasticity.	own.	× × × ×												
	Clayey SILT; brown with minor or Dry, low plasticity; inclusion of fir sample).		× × × × × × × × × × × × × × × × × × ×	-											
	SILT, with some sand, with trace Dry, non-plastic; sand, fine.	e clay; brown.	× × × × × × × × × × × × × × × × × × ×	-											
	Sandy SILT; brown. Dry; sand, fine.		**	- -10 - -											
	Completely weathered; grey; SA sandy/silt matrix [Greywacke].	ANDSTONE; contains fine	^ ¥ * ^												
	18.0m	o: colour change to grey blue		- - -20 -											tered
	24.0m: fine	sandy/silt matrix decreases	-	-											Groundwater Not Encountered
		some chips contain stained n in samples from this depth onwards		-											roundwater
	29.0m: Moisture 30.0m: fine sa	5m: Small fracture at 28.5 m in samples first recorded at 29 m ndy/silt matrix changes from b brown between 30 to 32 m		- 30 - - - -											9
	Moderately weathered; grey blue contain stained orange/oxidation	e; SANDSTONE; some chips													
	38.0m: orange/oxidati samp	some chips contain stained on and white calcite veins in oles from this depth onwards		- - -40											
	Unweathered; grey blue; SAND stained orange/oxidation and wh [Greywacke]	bm. Small fracture at 39.5 m STONE; some chips contain lite calcite veins in samples water during drilling from 42		- 40											
	m - begini	ning of fractured Greywacke		-											
	46.0m: ox	ontains fine sandy/silt matrix changes from 46 to 48 m		- - -											
	•	Remarks								Inve	stigation	Туре		Water	
Downho	air blasting (RAB) from 0 to 19 le hammer from 19.5 to ples taken at 2 m intervals	9.5									Hand Auge Test Pit Machine H		▼ Stan <		r Level
Contrac	tor:	Rig/Plant Used: Truck mounted - air h		1	Orille	r:				Logged By	/ :	Checked	By:	Hole De	pth:

MONITORING WELL

A02447709 Job No.: Test No.: SG11D Sheet: 2 of 5 Date: 10/12/21

Client: Site Address: Stevenson Aggregates Ltd Quarry Road, Runciman 2578

Stevenson Aggregates Ltd Project:		Quarı Coord			, Rι	Gro	Ground Level mRL:						
Sutton Quarry					E, 5	890562.	6mN			Gro	ound		
Geological Description Soil and Rock logged in accordance with New Zealand Geotechnical Society field description of soil and rock. 2005.	Graphic Log	Depth (m)	RL (m)	PID (ppm)	S	amples	Depth Remarks		I	nstallatio	n		Water
[CONT] Unweathered; grey blue; SANDSTONE; some chips contain stained orange/oxidation and white calcite veins in samples [Greywacke]		- - - - - - -											
		- - - - - - -70											untered
75.0m: Large fracture at 75 m 76.0m: No orange/oxidation staining in samples from 76 onwards, just white calcite veins 77.0m: Fracture zone from 77 to 81 m		- - - - - -80 - -											Groundwater Not Encountered
89.0m: Large fracture at 89 m EOH: 250.00m		- - - -90 -											
Remarks Reverse air blasting (RAB) from 0 to 19.5 Downhole hammer from 19.5 to		- - - - -						Inv	estigation			Water	r Level
Soil samples taken at 2 m intervals			riller					√ Logged I	Test Pit Machine H	Hole Checked	← In fle		-41
Contractor: Rig/Plant Used:		1 Dr	THIAT						m.1/*	Linecked	RV.		nTri)

Generated with CORE-GS by Geroc - Monitoring Well - Installation - 17/01/2022 1:24:05 pm

MONITORING WELL

Job No.: A02447709
Test No.: SG11D
Sheet: 3 of 5
Date: 10/12/21

PATTLE DELAMORE PARTNERS LTD		Sheet:	3 of 5
Client:	Site Address:	Date:	10/12/21
Stevenson Aggregates Ltd	Quarry Road, Runciman 2578		-, ,
Project:	Coordinates:	Ground Level i	mRL:
Sutton Quarry	1777717.2mE, 5890562.6mN	Ground	

Sutton					rdina 7717		1F. 5	5890562.	6mN		Gro	und		
Interpretation	Geological D Soil and Rock logged in accordance Society field description (with New Zealand Geotechnical	Graphic Log	Depth (m)	RL (m)	PID (ppm)		amples	Depth Remarks	I	nstallation			Water
				-										
				- -										
				-										
				-110 - -										
				- - -										
				- - -120										
				-										ountered
				- - -										Groundwater Not Encountered
				- - -130										Ground
				- - -										
				-										
				- - -140										
				-										
				- -										
				-										
		Remarks								Investigation	Туре		Water	
Downhol	everse air blasting (RAB) from 0 to 19.5 ownhole hammer from 19.5 to oil samples taken at 2 m intervals									Hand Auge Test Pit Machine H		▼ Stand		r Level
Contract	tor: Drillforce Ltd.	Rig/Plant Used: Truck mounted - air h	ammer		Prille	r:				Logged By:	Checked	By:	Hole Dep	
	Diffice Ltu.	Truck mounted - air n	anniner							L LG	I		250.0	ווו טכ

Generated with CORE-GS by Geroc - Monitoring Well - Installation - 17/01/2022 1:24:05 pm

MONITORING WELL

Job No.: A02447709 Test No.: SG11D

PATTLE DELAMORE PARTNERS LTD		Sheet:	4 of 5
Client:	Site Address:	Date:	10/12/21
Stevenson Aggregates Ltd	Quarry Road, Runciman 2578		
Project:	Coordinates:	Ground Level	I mRL:
Sutton Quarry	1777717.2mE, 5890562.6mN	Ground	

Sutton	Quarry				oina 7717		1E, 5	5890562.	6mN			Gro	ound		
Interpretation	Geological D Soil and Rock logged in accordance Society field description of	with New Zealand Geotechnical	Graphic Log	Depth (m)	RL (m)	PID (ppm)		Samples	Depth Remarks		I	nstallation	n		Water
				-											
				-											
				- -											
				–160 -											
				-											
				-											
				–170 -											ered
				- -											Groundwater Not Encountered
				-											Groundwat
				–180 -											
				- -											
				-											
				–190 -											
				-											
				- -											
		Remarks								Inve	estigation	Tvne		Water	
Downhol	everse air blasting (RAB) from 0 to 19.5 ownhole hammer from 19.5 to oil samples taken at 2 m intervals										Hand Aug Test Pit Machine F	er	▼ Stan ← In flo	iding Wate	r Level
Contract	t or: Drillforce Ltd.	Rig/Plant Used: Truck mounted - air h	ammer	D	rille	r:				Logged E		Checked		Hole Dep	
		•								•		•		•	

Generated with CORE-GS by Geroc - Monitoring Well - Installation - 17/01/2022 1:24:05 pm

MONITORING WELL

Job No.: A02447709
Test No.: SG11D
Sheet: 5 of 5
Date: 10/12/21

PATTLE DELAMORE PARTNERS LTDSheet:5 of 5Client:Site Address:Date:10/12/21Stevenson Aggregates LtdQuarry Road, Runciman 2578Ground Level mRL:Project:Coordinates:GroundSutton Quarry1777717.2mE, 5890562.6mNGround

Sutton	Quarry				oina 7717		Ε, 5	5890562.	6mN			Gro	und		
Interpretation	Geological D Soil and Rock logged in accordance Society field description of	with New Zealand Geotechnical	Graphic Log	Depth (m)	RL (m)	PID (ppm)		amples	Depth Remarks		I	nstallation	1		Water
				-											
				-											
				-											
				-210 -											
				- -											
				-											
				-220 -											red
				- -											Groundwater Not Encountered
				- -											Groundwater
				-230 -											
				- - -											
				- - -											
				-240 -											
				- -											
				- - -											
Reverse a	air blasting (RAB) from 0 to 19	Remarks 9.5								Inve	estigation Hand Aug		V C+	Water ding Water	r l aval
	e hammer from 19.5 to bles taken at 2 m intervals										Test Pit Machine F		✓ Stan	ow	LEVEI
Contract	tor: Drillforce Ltd.	Rig/Plant Used: Truck mounted - air h	ammer	D	rille	r:				Logged I		Checked		Hole Dep	
	Diffice Ltd.	Truck mounted - dil II	urrinter							<u> </u>				230.0	JJ 111

STEVENSON AGGREGATES LIMITED - UPDATED - SUTTON BLOCK EXTENSION TO DRURY QUARRY - SOIL CHARACTERISATION INVESTIGATION

Appendix B: Laboratory Report

Quote No

Address

Primary Contact

R J Hill Laboratories Limited Priv На

Feb-22 17:15

Duke Street, Hamilton 3204 vate Bag 3205 milton 3240, New Zealand	Joh No: 28	Date 6	Recv: 0	9-1
0000 III I I D (14 22 AND				u

0508 HILL LAB (44 555 22) Submitted By Myra Belkot +64 7 858 2000 mail@hill-labs.co.az

Pattle Delamore Partners Limited **Client Name**

Rod

Lidgard

W www.hill-laboratories.com PO BOX 9528 Newmarket

Received by: Sanaya Hansotia	_
Received by:	
3128621119	

Auckland 114	9	The state of the s	
Phone	Mobile 0223026110	Sent to Hill Laboratories	Date & Time:
Email		Tick if you require COC	Name:
Charge To	PDP	to be emailed back	Signature:
Client Reference	A02447108	Received at Hill Laboratories	Date & Time:
Order No		(Refer to Lab created Job	Name:
Results To	Reports will be emailed to Primary Contact by default. Additional Reports will be sent as specified below.	No above)	Signature:
Email Primary	/ Contact	Condition	Temp:
☑ Email Other	Myra.belkot pp.co.nz;	Room Temp	Chilled Frozen
Other	Rod lideard@ndn.co.nz		

			Red	quested Reporting	Date:
No.	Sample Name	Sample Date	Sample Time	Sample Type	Tests Required (if not as per Quote)
·	SQ_SS01	[©] 9 /0£/2022	· Company	S	Hold cold
2	SQ_SSO	O9 /02/2022		S	1
3	SQ_SS03	O9 /01/2022	**************************************	S	10 m
4	SQ_SS04	/01/2022 OP/02/27	- Company of the Control of the Cont	S	# 1
5	SQ_SS05	/01/2022	The state of the s	S	J1
6	SQ_SS06	/01/2022		S	V

Priority

Low

Urgent (ASAP, extra charge applies, please contact lab first)

✓ High

Rod.lidgard@pdp.co.nz

	CO Princes	3		
7	SQ_\$507	Q /0 <u>2</u> /2022	S	HOID Cold
8	\$0_5\$08	9 /01/2022	S	į
9	SQ_SS09 .	9 /01/2022	S	
10	SQ_SS10	/01/2022	S	
44	SQ_5S11	/01/2022	S	
12	SQ_SS12	/01/2022	S	1929
13	SQ_SS13	/01/2022	S	
14	SQ_SS14	/01/2022	s	7
15	SQ_SS15	/01/2022	S	
16	SQ_SS16	/01/2022	S	TI de la companya de
17	SQ_SS17	/01/2022	S	The second secon
18	SQ_SS18	/01/2022	S	BR B
10	SQ_SS19	/01/2022	\$	
20	SQ_SS20	/01/2022	S	
21	SQ_SS21	/01/2022	S	
22	SQ_SS22	/01/2022	S	
23	SQ_SS23	/01/2022	S	
24	sq_ss@Q((0.3)	/01/2022	S	
25	so_ss2503(0.3)	/01/2022	S	
26	50_SS880U(0.3)	/01/2022	S	
27	SO_SSRX OG (O. J)	/01/2022	S	
28	so_ss28 08 (0.3)	/01/2022	S	
29	so_ss29 10 (0 · 25)	/01/2022	s	
30	SQ_SS80 12 (0.2)	/01/2022	S	
31	so_ssar14(0.25)	/01/2022	S	
32	5Q.5S822 16 (O.3)	/01/2022	5	
33	sq.ssaa,9(0,3)	/01/2022	\$	
34	sq.ss34 22(0.3)	/01/2022	S	1
	sq_ssse 28 (0.3)	/01/2022	S	
35		W ==		

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205

Hamilton 3240 New Zealand

T 0508 HILL LAB (44 555 22) +64 7 858 2000 E mail@hill-labs.co.nz W www.hill-laboratories.com

Job Information Summary

Page 1 of 1

Client: Pattle Delamore Partners Limited

Contact: R Lidgard

C/- Pattle Delamore Partners Limited

PO Box 9528 Newmarket Auckland 1149 Lab No: 2862111

Date Registered: 10-Feb-2022 5:49 pm

Priority: High 81087 **Quote No:**

Order No:

Client Reference: A02447108

Add. Client Ref:

Submitted By: Myra Belkot

Charge To: Pattle Delamore Partners Limited **Target Date:** 14-Feb-2022 4:30 pm

Samples

No	Sample Name	Sample Type	Containers	Tests Requested
1	SQ_SS01 09-Feb-2022	Soil	cGSoil	Hold Cold
2	SQ_SS02 09-Feb-2022	Soil	GSoil300	Hold Cold
3	SQ_SS03 09-Feb-2022	Soil	GSoil300	Hold Cold
4	SQ_SS04 09-Feb-2022	Soil	GSoil300	Hold Cold
5	SQ_SS05 09-Feb-2022	Soil	GSoil300	Hold Cold
6	SQ_SS06 09-Feb-2022	Soil	GSoil300	Hold Cold
7	SQ_SS07 09-Feb-2022	Soil	GSoil300	Hold Cold
8	SQ_SS08 09-Feb-2022	Soil	GSoil300	Hold Cold
9	SQ_SS09 09-Feb-2022	Soil	GSoil300	Hold Cold
10	SQ_SS10 09-Feb-2022	Soil	GSoil300	Hold Cold
11	SQ_SS11 09-Feb-2022	Soil	GSoil300	Hold Cold
12	SQ_SS12 09-Feb-2022	Soil	GSoil300	Hold Cold
13	SQ_SS13 09-Feb-2022	Soil	GSoil300	Hold Cold
14	SQ_SS14 09-Feb-2022	Soil	GSoil300	Hold Cold
15	SQ_SS15 09-Feb-2022	Soil	cGSoil	Hold Cold
16	SQ_SS16 09-Feb-2022	Soil	GSoil300	Hold Cold
17	SQ_SS17 09-Feb-2022	Soil	GSoil300	Hold Cold
18	SQ_SS18 09-Feb-2022	Soil	GSoil300	Hold Cold
19	SQ_SS19 09-Feb-2022	Soil	GSoil300	Hold Cold
20	SQ_SS20 09-Feb-2022	Soil	GSoil300	Hold Cold
21	SQ_SS21 09-Feb-2022	Soil	cGSoil	Hold Cold
22	SQ_SS22 09-Feb-2022	Soil	GSoil300	Hold Cold
23	SQ_SS23 09-Feb-2022	Soil	cGSoil	Hold Cold
24	SQ_SS01 (0.3) 09-Feb-2022	Soil	GSoil300	Hold Cold
25	SQ_SS03 (0.3) 09-Feb-2022	Soil	GSoil300	Hold Cold
26	SQ_SS04 (0.3) 09-Feb-2022	Soil	cGSoil	Hold Cold
27	SQ_SS06 (0.2) 09-Feb-2022	Soil	cGSoil	Hold Cold
28	SQ_SS08 (0.3) 09-Feb-2022	Soil	cGSoil	Hold Cold
29	SQ_SS10 (0.25) 09-Feb-2022	Soil	cGSoil	Hold Cold
30	SQ_SS12 (0.2) 09-Feb-2022	Soil	cGSoil	Hold Cold
31	SQ_SS14 (0.25) 09-Feb-2022	Soil	cGSoil	Hold Cold
32	SQ_SS16 (0.3) 09-Feb-2022	Soil	cGSoil	Hold Cold
33	SQ_SS19 (0.3) 09-Feb-2022	Soil	cGSoil	Hold Cold
34	SQ_SS22 (0.3) 09-Feb-2022	Soil	cGSoil	Hold Cold
35	SQ_SS28 (0.3) 09-Feb-2022	Soil	cGSoil	Hold Cold
36	SQ_SS28 09-Feb-2022	Soil	cGSoil	Hold Cold

T 0508 HILL LAB (44 555 22) +64 7 858 2000 E mail@hill-labs.co.nz W www.hill-laboratories.com

Certificate of Analysis

Page 1 of 4

SPv3

Client:

Pattle Delamore Partners Limited

Contact: R Lidgard

C/- Pattle Delamore Partners Limited

PO Box 9528 Newmarket Auckland 1149 **Date Received: Date Reported:**

Lab No:

2862111 09-Feb-2022

24-Feb-2022

Quote No: Order No:

81087

Client Reference: Submitted By:

A02447108 Myra Belkot

Sample Type: Soil	
	Sample Name:
	<u>-</u>
Leab date at Tay (Lab Number:
Individual Tests	. /4.00
Dry Matter	g/100g as rcvd
Total Recoverable Lead	mg/kg dry wt
Heavy Metals, Screen Level	
Total Recoverable Arsenic	mg/kg dry wt
Total Recoverable Cadmium	3 3 7
Total Recoverable Chromium	3 3 7
Total Recoverable Copper	mg/kg dry wt
Total Recoverable Lead	mg/kg dry wt
Total Recoverable Nickel	mg/kg dry wt
Total Recoverable Zinc	mg/kg dry wt
Organochlorine Pesticides S	Screening in Soil
Aldrin	mg/kg dry wt
alpha-BHC	mg/kg dry wt
beta-BHC	mg/kg dry wt
delta-BHC	mg/kg dry wt
gamma-BHC (Lindane)	mg/kg dry wt
cis-Chlordane	mg/kg dry wt
trans-Chlordane	mg/kg dry wt
2,4'-DDD	mg/kg dry wt
4,4'-DDD	mg/kg dry wt
2,4'-DDE	mg/kg dry wt
4,4'-DDE	mg/kg dry wt
2,4'-DDT	mg/kg dry wt
4,4'-DDT	mg/kg dry wt
Total DDT Isomers	mg/kg dry wt
Dieldrin	mg/kg dry wt
Endosulfan I	mg/kg dry wt
Endosulfan II	mg/kg dry wt
Endosulfan sulphate	mg/kg dry wt
Endrin	mg/kg dry wt
Endrin aldehyde	mg/kg dry wt
Endrin ketone	mg/kg dry wt
Heptachlor	mg/kg dry wt
Heptachlor epoxide	mg/kg dry wt
Hexachlorobenzene	mg/kg dry wt
Methoxychlor	mg/kg dry wt

Sample Type: Soil	
	Sample Name:
Individual Tests	Lab Number:
Total Recoverable Lead	mg/kg dry wt
	Sample Name:
	Lab Number:
Individual Tests	
Dry Matter	g/100g as rcvd
Total Recoverable Lead	mg/kg dry wt
Heavy Metals, Screen Level	
Total Recoverable Arsenic	mg/kg dry wt
Total Recoverable Cadmium	mg/kg dry wt
Total Recoverable Chromium	mg/kg dry wt
Total Recoverable Copper	mg/kg dry wt
Total Recoverable Lead	mg/kg dry wt
Total Recoverable Nickel	mg/kg dry wt
Total Recoverable Zinc	mg/kg dry wt
Organochlorine Pesticides Sc	creening in Soil
Aldrin	mg/kg dry wt
alpha-BHC	mg/kg dry wt
beta-BHC	mg/kg dry wt
delta-BHC	mg/kg dry wt
gamma-BHC (Lindane)	mg/kg dry wt
cis-Chlordane	mg/kg dry wt
trans-Chlordane	mg/kg dry wt
2,4'-DDD	mg/kg dry wt
4,4'-DDD	mg/kg dry wt
2,4'-DDE 4,4'-DDE	mg/kg dry wt mg/kg dry wt
2,4'-DDE	mg/kg dry wt
4,4'-DDT	mg/kg dry wt
Total DDT Isomers	mg/kg dry wt
Dieldrin	mg/kg dry wt
Endosulfan I	mg/kg dry wt
Endosulfan II	mg/kg dry wt
Endosulfan sulphate	mg/kg dry wt
Endrin	mg/kg dry wt
Endrin aldehyde	mg/kg dry wt
Endrin ketone	mg/kg dry wt
Heptachlor	mg/kg dry wt
Heptachlor epoxide	mg/kg dry wt
Hexachlorobenzene	mg/kg dry wt
Methoxychlor	mg/kg dry wt
Polycyclic Aromatic Hydrocar	bons Screening in S
Total of Reported PAHs in So	il mg/kg dry wt
1-Methylnaphthalene	mg/kg dry wt
2-Methylnaphthalene	mg/kg dry wt
Acenaphthylene	mg/kg dry wt
Acenaphthene	mg/kg dry wt
Anthracene	mg/kg dry wt
Benzo[a]anthracene	mg/kg dry wt
Benzo[a]pyrene (BAP)	mg/kg dry wt
Benzo[a]pyrene Potency	mg/kg dry wt
Equivalency Factor (PEF) NE Benzo[a]pyrene Toxic	mg/kg dry wt
Equivalence (TEF)*	mg/kg dry Wt

Sample Type: Soil		
	nple Name:	
Polycyclic Aromatic Hydrocarbon	Screening in Soil*	
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	
Benzo[e]pyrene	mg/kg dry wt	
Benzo[g,h,i]perylene	mg/kg dry wt	
Benzo[k]fluoranthene	mg/kg dry wt	
Chrysene	mg/kg dry wt	
Dibenzo[a,h]anthracene	mg/kg dry wt	
luoranthene	mg/kg dry wt	
luorene	mg/kg dry wt	
ndeno(1,2,3-c,d)pyrene	mg/kg dry wt	
Naphthalene	mg/kg dry wt	
Perylene	mg/kg dry wt	
Phenanthrene	mg/kg dry wt	
Pyrene	mg/kg dry wt	

Analyst's Comments

The matrix of samples 2862111.36 has affected the System Monitoring Compounds 1-methylnaphthalene-d10, Fluoranthene-d10 and Benzo[a]pyrene-d12 in the PAH analysis, whereby the recoveries ranged from 60%-65%. Therefore the results may be underestimated.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil					
Test	Method Description	Default Detection Limit	Sample No		
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-4, 6, 8, 10, 12, 14, 16, 18-19, 21-22, 36		
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation May contain a residual moisture content of 2-5%.	-	4, 6, 8, 10, 12, 14, 16, 18-19, 21-22		
Total of Reported PAHs in Soil	Sonication extraction, GC-MS analysis. In-house based on US EPA 8270.	0.03 mg/kg dry wt	36		
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1-3, 36		
Organochlorine Pesticides Screening in Soil	Sonication extraction, GC-ECD analysis. Tested on as received sample. In-house based on US EPA 8081.	0.010 - 0.06 mg/kg dry wt	1-3, 36		
Polycyclic Aromatic Hydrocarbons Screening in Soil*	Sonication extraction, GC-MS analysis. Tested on as received sample. In-house based on US EPA 8270.	0.002 - 0.05 mg/kg dry wt	36		
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	1-3, 36		
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	-	4, 6, 8, 10, 12, 14, 16, 18-19, 21-22		
Total Recoverable Lead	Dried sample, sieved as specified (if required). Nitric/Hydrochloric acid digestion, ICP-MS, screen level. US EPA 200.2.	0.4 mg/kg dry wt	4, 6, 8, 10, 12, 14, 16, 18-19, 21-22		
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	BaP Potency Equivalence calculated from; Benzo(a)anthracene x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(j)fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Benzo(a)pyrene x 1.0 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Fluoranthene x 0.01 + Indeno(1,2,3-c,d)pyrene x 0.1. Ministry for the Environment. 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Wellington: Ministry for the Environment.	0.002 mg/kg dry wt	36		

Sample Type: Soil						
Test	Method Description	Default Detection Limit	Sample No			
Benzo[a]pyrene Toxic Equivalence (TEF)*	Benzo[a]pyrene Toxic Equivalence (TEF) calculated from; Benzo[a]pyrene x 1.0 + Benzo(a)anthracene x 0.1 + Benzo(b) fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Indeno(1,2,3-c,d)pyrene x 0.1. Guidelines for assessing and managing contaminated gasworks sites in New Zealand (GMG) (MfE, 1997).	0.002 mg/kg dry wt	36			

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 17-Feb-2022 and 24-Feb-2022. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental

ANALYSIS REQL

R J Hill Laboratories Limited 28 Duke Street, Hamilton 3204 Private Bag 3205 Hamilton 3240, New Zealand

Date Recv: 10-Feb-22 16:53

Quote No Rod **Primary Contact** Lidgard Received by: Sanaya Hansotia 0508 HILL LAB (44 555 22) Myra Belkot Submitted By +64 7 858 2000 T mail@hill-labs.co.nz Pattle Delamore Partners Limited **Client Name** W www.hill-laboratories.com PO BOX 9528 Newmarket Address CHAIN OF GUSTODY Auckland 1149 Sent to Date & Time: Mobile 0223026110 **Hill Laboratories** Phone Name: Email Tick if you require COC PDP Charge To to be emailed back Signature: Received at A02447108 Date & Time: Client Reference **Hill Laboratories** (Refer to Lab created Job Name: Order No No above) Reports will be emailed to Primary Contact by default. Signature: Results To Additional Reports will be sent as specified below. Temp: Condition ☐ Email Client ✓ Email Submitter Email Primary Contact Chilled Frozen Room Temp Myra.belkot@pdp.co.nz;

ADDITIONAL INFORMATION / KNOWN HAZARDS	Priority Low Normal High Urgent (ASAP, extra charge applies, please contact lab first)
	Requested Reporting Date:

No.	Sample Name	Sample Date	Sample Time	Sample Type	Tests Required (if not as per Quote)
1	SQ. SSO1 ₹ -53 2-55 EQ -552 24	6/01/2022		S	HC
2	SQ_5502 \$5523 5Q -8524 (0.3)	/01/2022		S	, management
3	SQ_SS 03 2.5	/01/2022		S	Walter State Control of the Control
4	SQ_SS04 25 (O.LS)	/01/2022		S	And an analysis of the same of
5	SQ_\$\$ 05 2&	/01/2022		s	and the second s
6	SQ_SS0626 (OI)	/01/2022		S	V

✓ Other

Rod.lidgard@pdp.co.nz

7	SQ_SS07 27-	(0/01/2022	S
8	SQ_SS0827 (0.3)	/ 01/202 2	S
9	sq_ss e9 24	/01/2022	S
10	sq_ss1 0 3℃	/01/2022	S
11	SQ_SS1130 (0-2)	/01/2022	S
12	SQ_SS12 31	/01/2022	S
13	so_ss#3 31 (o-9)	/01/2022	S
14	SQ_SS14 32	/01/2022	S
15	sQ_ss15 32 (6 · 3)	/01/2022	S
16	SQ_SS1 6 🚱	/01/2022	S
17	sq_ss1733 (0.3)	/01/2022	S
18	so_ss18-30	/01/2022	S
19	sq_ss19 3 4 (6.3)	/01 /2022	S
20	SQ_SS2⊕ 35	/01/2022	S
21	SQ_SS24 35 (0.3	/01/2022	S
22	SQ_SS22-36	/01/2022	S
23	SQ_SS23 36(03)	/01/2022	S
24	SQ_SS24 3 3	/01/2022	S
25	(€ ·O) ←6 5£22_D2	/01/2022	S
26	SQ_SS26 তপ্ত	/01/2022	S
27	SQ_SS27 3 8 (o 3)	/01/2022	S
28	SQ_SS28 3 9	/01/2022	S
29	SQ_SS29 39 (6.3)	/01/2022	S
30	SQ_SS36 40	/01/2022	8
31	SQ_SS31 (10 (0 3)	/01/2022	S
32	SQ_SS32 (1)	/01/2022	S
33	so_ss39-41 (0.3)	/01/2022	S
34	SQ_SS34 (+.2)	/01/2022	S
35	sq_ss9542_co.3)	/01/2022	S

36	SV 3882_Q2	(0/01/2022	S	HC
37	SQ_SS37 4 3 (0.3)	/01/2022	S	O. C.
38	SQ_SS38-0%	/01/2022	S	
39	sQ_ss3908 (O-8)	/01/2022	S	The real particular section of the s
40	SQ_SS40-O9	/ /01/2022	S	
41	SQ_5541	/01/2022	S	
42	S6_SS42	/01/2022	S	
43	SQ_SS43	/01/2022	S S	
44	SQ_SS44) SQ_SS45	/01/2022 /01/2022	S	
45	SQ_5545	/01/2022	S	
46	(SQ_SS47	/01/2022	S	
47	SQ_5948	/01/2022	S	
48	50_5549	/01/2022	S	
49 50	so_ss50	/01/2022	S	
51	SQ_\$\$51	/01/2022	S	
52	SQ_SS52	/01/2022	S	
53	SQ 5553	/01/2022	S	
54	SQ_SS54	/01/2022	S	
55	SQ_SS55	/01/2022	S	
56	SQ 5556	/01/2022	S	
57	SQ_SS57	/01/2022	S	
58		/01/2022	S	
59	SQ_SS59	/01/2022	S	
60		/01/2022	S S	
61	SQ_SS61 SQ_SS62	/01/2022	\$ \$	
62	SQ_SS63	/01/2022	S	
63	SQ_\$5634	/01/2022	S	
64	30,3037	10412022		

R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand

T 0508 HILL LAB (44 555 22) +64 7 858 2000 E mail@hill-labs.co.nz W www.hill-laboratories.com

Job Information Summary

Page 1 of 1

Client: Pattle Delamore Partners Limited

Contact: R Lidgard

C/- Pattle Delamore Partners Limited

PO Box 9528 Newmarket Auckland 1149 Lab No: 2864529

Date Registered: 11-Feb-2022 2:27 pm

Priority: High 81087 **Quote No:**

Order No:

Client Reference: A02447108 Add. Client Ref: Sampled: 10/02/22 Submitted By: Myra Belkot

Charge To: Pattle Delamore Partners Limited **Target Date:** 15-Feb-2022 4:30 pm

Samples

No	Sample Name	Sample Type	Containers	Tests Requested
1	SQ_SS24 10-Feb-2022	Soil	cGSoil	Hold Cold
2	SQ_SS24 (0.3) 10-Feb-2022	Soil	GSoil300	Hold Cold
3	SQ_SS25 10-Feb-2022	Soil	GSoil300	Hold Cold
4	SQ_SS25 (0.25) 10-Feb-2022	Soil	GSoil300	Hold Cold
5	SQ_SS26 10-Feb-2022	Soil	cGSoil	Hold Cold
6	SQ_SS26 (0.1) 10-Feb-2022	Soil	GSoil300	Hold Cold
7	SQ_SS27 10-Feb-2022	Soil	GSoil300	Hold Cold
8	SQ_SS27 (0.3) 10-Feb-2022	Soil	cGSoil	Hold Cold
9	SQ_SS29 10-Feb-2022	Soil	cGSoil	Hold Cold
10	SQ_SS30 10-Feb-2022	Soil	cGSoil	Hold Cold
11	SQ_SS30 (0.2) 10-Feb-2022	Soil	cGSoil	Hold Cold
12	SQ_SS31 10-Feb-2022	Soil	GSoil300	Hold Cold
13	SQ_SS31 (0.3) 10-Feb-2022	Soil	cGSoil	Hold Cold
14	SQ_SS32 10-Feb-2022	Soil	GSoil300	Hold Cold
15	SQ_SS32 (0.3) 10-Feb-2022	Soil	cGSoil	Hold Cold
16	SQ_SS33 10-Feb-2022	Soil	GSoil300	Hold Cold
17	SQ_SS33 (0.3) 10-Feb-2022	Soil	GSoil300	Hold Cold
18	SQ_SS34 10-Feb-2022	Soil	cGSoil	Hold Cold
19	SQ_SS34 (0.3) 10-Feb-2022	Soil	GSoil300	Hold Cold
20	SQ_SS35 10-Feb-2022	Soil	GSoil300	Hold Cold
21	SQ_SS35 (0.3) 10-Feb-2022	Soil	GSoil300	Hold Cold
22	SQ_SS36 10-Feb-2022	Soil	GSoil300	Hold Cold
23	SQ_SS36 (0.3) 10-Feb-2022	Soil	GSoil300	Hold Cold
24	SQ_SS37 10-Feb-2022	Soil	GSoil300	Hold Cold
25	SQ_SS37 (0.3) 10-Feb-2022	Soil	GSoil300	Hold Cold
26	SQ_SS38 10-Feb-2022	Soil	GSoil300	Hold Cold
27	SQ_SS38 (0.3) 10-Feb-2022	Soil	cGSoil	Hold Cold
28	SQ_SS39 10-Feb-2022	Soil	GSoil300	Hold Cold
29	SQ_SS39 (0.3) 10-Feb-2022	Soil	GSoil300	Hold Cold
30	SQ_SS40 10-Feb-2022	Soil	GSoil300	Hold Cold
31	SQ_SS40 (0.3) 10-Feb-2022	Soil	GSoil300	Hold Cold
32	SQ_SS41 10-Feb-2022	Soil	cGSoil	Hold Cold
33	SQ_SS41 (0.3) 10-Feb-2022	Soil	GSoil300	Hold Cold
34	SQ_SS42 10-Feb-2022	Soil	GSoil300	Hold Cold
35	SQ_SS42 (0.3) 10-Feb-2022	Soil	cGSoil	Hold Cold
36	SQ_SS43 10-Feb-2022	Soil	GSoil300	Hold Cold
37	SQ_SS43 (0.3) 10-Feb-2022	Soil	cGSoil	Hold Cold

Private Bag 3205

0508 HILL LAB (44 555 22) +64 7 858 2000 mail@hill-labs.co.nz www.hill-laboratories.com l w

Certificate of Analysis

Page 1 of 7

SPv1

Client:

Pattle Delamore Partners Limited

Contact: R Lidgard

C/- Pattle Delamore Partners Limited

PO Box 9528 Newmarket Auckland 1149

Order No: Client Reference: Submitted By:

Lab No:

Quote No:

Date Received:

Date Reported:

A02447108 Myra Belkot

2864529

81087

10-Feb-2022

23-Feb-2022

Sample Type: Soil Sample Name: SQ_SS24 SQ_SS25 (0.25) SQ_SS26 SQ_SS27 (0.3) SQ_SS29 10-Feb-2022 10-Feb-2022 10-Feb-2022 10-Feb-2022 10-Feb-2022 2864529.1 2864529.4 2864529.5 2864529.8 2864529.9 Lab Number: Individual Tests Dry Matter 85 73 76 g/100g as rcvd Heavy Metals, Screen Level Total Recoverable Arsenic 7 2 10 4 8 mg/kg dry wt Total Recoverable Cadmium 0.25 0.15 0.38 0.17 0.20 mg/kg dry wt Total Recoverable Chromium 7 20 mg/kg dry wt 26 13 7 3 Total Recoverable Copper mg/kg dry wt 17 8 6 14 Total Recoverable Lead mg/kg dry wt 11.7 4.7 7.3 6.2 10.6 < 2 < 2 13 Total Recoverable Nickel mg/kg dry wt 12 4 60 Total Recoverable Zinc mg/kg dry wt 71 11 28 10 Organochlorine Pesticides Screening in Soil Aldrin mg/kg dry wt < 0.014 < 0.012 < 0.013 alpha-BHC mg/kg dry wt < 0.014 < 0.012 < 0.013 beta-BHC < 0.014 < 0.013 mg/kg dry wt < 0.012 delta-BHC mg/kg dry wt < 0.014 < 0.012 < 0.013 gamma-BHC (Lindane) mg/kg dry wt < 0.014 < 0.012 < 0.013 mg/kg dry wt cis-Chlordane < 0.014 < 0.012 < 0.013 trans-Chlordane mg/kg dry wt < 0.014 < 0.012 < 0.013 2,4'-DDD < 0.014 < 0.012 < 0.013 mg/kg dry wt 4,4'-DDD mg/kg dry wt < 0.014 < 0.012 < 0.013 2,4'-DDE < 0.014 < 0.012 < 0.013 mg/kg dry wt 4,4'-DDE mg/kg dry wt < 0.014 < 0.012 < 0.013 2,4'-DDT mg/kg dry wt < 0.014 < 0.012 < 0.013 4,4'-DDT mg/kg dry wt < 0.014 < 0.012 < 0.013 Total DDT Isomers mg/kg dry wt < 0.09 < 0.07 < 0.08 Dieldrin mg/kg dry wt < 0.014 < 0.012 < 0.013 Endosulfan I < 0.014 < 0.012 < 0.013 mg/kg dry wt Endosulfan II mg/kg dry wt < 0.014 < 0.012 < 0.013 Endosulfan sulphate mg/kg dry wt < 0.014 < 0.012 < 0.013 Endrin < 0.014 < 0.012 < 0.013 mg/kg dry wt Endrin aldehyde < 0.014 < 0.012 < 0.013 mg/kg dry wt < 0.014 Endrin ketone mg/kg dry wt < 0.012 < 0.013 Heptachlor mg/kg dry wt < 0.014 < 0.012 < 0.013 Heptachlor epoxide < 0.014 < 0.012 mg/kg dry wt < 0.013 < 0.014 < 0.012 < 0.013 Hexachlorobenzene mg/kg dry wt Methoxychlor mg/kg dry wt < 0.014 < 0.012 < 0.013

Sample Type: Soil						
S	Sample Name:	SQ_SS24 10-Feb-2022	SQ_SS25 (0.25) 10-Feb-2022	SQ_SS26 10-Feb-2022	SQ_SS27 (0.3) 10-Feb-2022	SQ_SS29 10-Feb-2022
	Lab Number:	2864529.1	2864529.4	2864529.5	2864529.8	2864529.9
Polycyclic Aromatic Hydrocarbo		oil*			J	
Total of Reported PAHs in Soil	mg/kg dry wt	< 0.4	-	< 0.3	< 0.4	-
1-Methylnaphthalene	mg/kg dry wt	< 0.014	-	< 0.012	< 0.013	-
2-Methylnaphthalene	mg/kg dry wt	< 0.014	-	< 0.012	< 0.013	-
Acenaphthylene	mg/kg dry wt	< 0.014	-	< 0.012	< 0.013	-
Acenaphthene	mg/kg dry wt	< 0.014	-	< 0.012	< 0.013	-
Anthracene	mg/kg dry wt	< 0.014	-	< 0.012	< 0.013	-
Benzo[a]anthracene	mg/kg dry wt	< 0.014	-	< 0.012	< 0.013	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.014	-	< 0.012	< 0.013	-
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	mg/kg dry wt	< 0.04	-	< 0.03	< 0.04	-
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 0.04	-	< 0.03	< 0.04	-
Benzo[b]fluoranthene + Benzo[j fluoranthene	j] mg/kg dry wt	< 0.014	-	< 0.012	< 0.013	-
Benzo[e]pyrene	mg/kg dry wt	< 0.014	-	< 0.012	< 0.013	-
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.014	-	< 0.012	< 0.013	-
Benzo[k]fluoranthene	mg/kg dry wt	< 0.014	-	< 0.012	< 0.013	-
Chrysene	mg/kg dry wt	< 0.014	-	< 0.012	< 0.013	-
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.014	-	< 0.012	< 0.013	-
Fluoranthene	mg/kg dry wt	< 0.014	-	< 0.012	< 0.013	-
Fluorene	mg/kg dry wt	< 0.014	-	< 0.012	< 0.013	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.014	-	< 0.012	< 0.013	-
Naphthalene	mg/kg dry wt	< 0.07	-	< 0.06	< 0.07	-
Perylene	mg/kg dry wt	< 0.014	-	< 0.012	< 0.013	-
Phenanthrene	mg/kg dry wt	< 0.014	-	< 0.012	< 0.013	-
Pyrene	mg/kg dry wt	< 0.014	-	< 0.012	< 0.013	-
S	Sample Name:	SQ_SS30 10-Feb-2022	SQ_SS31 (0.3) 10-Feb-2022	SQ_SS32 10-Feb-2022	SQ_SS33 (0.3) 10-Feb-2022	SQ_SS34 10-Feb-2022
	Lab Number:	2864529.10	2864529.13	2864529.14	2864529.17	2864529.18
Individual Tests						
Dry Matter	a/100a oo rovd		78	-	-	-
-	g/100g as rcvd	-	70			
Heavy Metals, Screen Level	g/100g as 10vu	-	70			
	mg/kg dry wt	12	69	3	3	6
Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium	mg/kg dry wt	- 12 0.16		3 < 0.10	3 < 0.10	6 0.20
Heavy Metals, Screen Level Total Recoverable Arsenic	mg/kg dry wt		69			
Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium	mg/kg dry wt	0.16	69 0.37	< 0.10	< 0.10	0.20
Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium	mg/kg dry wt mg/kg dry wt mg/kg dry wt	0.16 17	69 0.37 38	< 0.10 5	< 0.10 7	0.20 17
Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	0.16 17 14	69 0.37 38 68	< 0.10 5 3	< 0.10 7 4	0.20 17 12
Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead	mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	0.16 17 14 10.3	69 0.37 38 68 156	< 0.10 5 3 8.1	< 0.10 7 4 6.1	0.20 17 12 21
Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel	mg/kg dry wt	0.16 17 14 10.3	69 0.37 38 68 156 9	< 0.10 5 3 8.1 < 2	< 0.10 7 4 6.1 < 2	0.20 17 12 21 9
Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Organochlorine Pesticides Screen	mg/kg dry wt eening in Soil mg/kg dry wt	0.16 17 14 10.3	69 0.37 38 68 156 9 230	< 0.10 5 3 8.1 < 2	< 0.10 7 4 6.1 < 2	0.20 17 12 21 9
Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Organochlorine Pesticides Screen	mg/kg dry wt eening in Soil mg/kg dry wt	0.16 17 14 10.3 11 55	69 0.37 38 68 156 9	< 0.10 5 3 8.1 < 2 25	< 0.10 7 4 6.1 < 2 7	0.20 17 12 21 9 20
Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Organochlorine Pesticides Screen Aldrin alpha-BHC beta-BHC	mg/kg dry wt eening in Soil mg/kg dry wt	0.16 17 14 10.3 11 55	69 0.37 38 68 156 9 230 < 0.013 < 0.013	< 0.10 5 3 8.1 < 2 25	< 0.10 7 4 6.1 < 2 7	0.20 17 12 21 9 20
Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Organochlorine Pesticides Screen Aldrin alpha-BHC	mg/kg dry wt eening in Soil mg/kg dry wt	0.16 17 14 10.3 11 55	69 0.37 38 68 156 9 230 < 0.013 < 0.013 < 0.013	< 0.10 5 3 8.1 < 2 25	< 0.10 7 4 6.1 < 2 7	0.20 17 12 21 9 20
Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Organochlorine Pesticides Screen Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane)	mg/kg dry wt eening in Soil mg/kg dry wt	0.16 17 14 10.3 11 55	69 0.37 38 68 156 9 230 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013	< 0.10 5 3 8.1 < 2 25	< 0.10 7 4 6.1 < 2 7	0.20 17 12 21 9 20
Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Organochlorine Pesticides Screen Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) cis-Chlordane	mg/kg dry wt eening in Soil mg/kg dry wt	0.16 17 14 10.3 11 55	69 0.37 38 68 156 9 230 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013	< 0.10 5 3 8.1 < 2 25	< 0.10 7 4 6.1 < 2 7	0.20 17 12 21 9 20
Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Organochlorine Pesticides Screen Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) cis-Chlordane trans-Chlordane	mg/kg dry wt eening in Soil mg/kg dry wt	0.16 17 14 10.3 11 55	69 0.37 38 68 156 9 230 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013	< 0.10 5 3 8.1 < 2 25	< 0.10 7 4 6.1 < 2 7	0.20 17 12 21 9 20
Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Organochlorine Pesticides Screen Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) cis-Chlordane trans-Chlordane 2,4'-DDD	mg/kg dry wt eening in Soil mg/kg dry wt	0.16 17 14 10.3 11 55	69 0.37 38 68 156 9 230 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013	< 0.10 5 3 8.1 < 2 25	< 0.10 7 4 6.1 < 2 7	0.20 17 12 21 9 20
Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Organochlorine Pesticides Screen Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) cis-Chlordane trans-Chlordane 2,4'-DDD 4,4'-DDD	mg/kg dry wt eening in Soil mg/kg dry wt	0.16 17 14 10.3 11 55	69 0.37 38 68 156 9 230 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013	< 0.10 5 3 8.1 < 2 25	< 0.10 7 4 6.1 < 2 7	0.20 17 12 21 9 20
Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Organochlorine Pesticides Screen Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) cis-Chlordane trans-Chlordane 2,4'-DDD 4,4'-DDD 2,4'-DDE	mg/kg dry wt eening in Soil mg/kg dry wt	0.16 17 14 10.3 11 55	69 0.37 38 68 156 9 230 < 0.013 < 0.013	< 0.10 5 3 8.1 < 2 25	< 0.10 7 4 6.1 < 2 7	0.20 17 12 21 9 20
Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Organochlorine Pesticides Screen Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) cis-Chlordane trans-Chlordane 2,4'-DDD 4,4'-DDD 2,4'-DDE 4,4'-DDE	mg/kg dry wt eening in Soil mg/kg dry wt	0.16 17 14 10.3 11 55	69 0.37 38 68 156 9 230 < 0.013 < 0.013	< 0.10 5 3 8.1 < 2 25	< 0.10 7 4 6.1 < 2 7	0.20 17 12 21 9 20
Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Organochlorine Pesticides Screen Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) cis-Chlordane trans-Chlordane 2,4'-DDD 4,4'-DDD 2,4'-DDE	mg/kg dry wt eening in Soil mg/kg dry wt	0.16 17 14 10.3 11 55	69 0.37 38 68 156 9 230 < 0.013 < 0.013	< 0.10 5 3 8.1 < 2 25	< 0.10 7 4 6.1 < 2 7	0.20 17 12 21 9 20
Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Nickel Total Recoverable Zinc Organochlorine Pesticides Screen Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) cis-Chlordane trans-Chlordane 2,4'-DDD 4,4'-DDD 2,4'-DDE 4,4'-DDE	mg/kg dry wt eening in Soil mg/kg dry wt	0.16 17 14 10.3 11 55	69 0.37 38 68 156 9 230 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013	< 0.10 5 3 8.1 < 2 25	< 0.10 7 4 6.1 < 2 7	0.20 17 12 21 9 20
Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Licad Total Recoverable Nickel Total Recoverable Zinc Organochlorine Pesticides Screen Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) cis-Chlordane trans-Chlordane trans-Chlordane 2,4'-DDD 4,4'-DDD 2,4'-DDE 4,4'-DDE 4,4'-DDT Total DDT Isomers	mg/kg dry wt eening in Soil mg/kg dry wt	0.16 17 14 10.3 11 55	69 0.37 38 68 156 9 230 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013 < 0.013	< 0.10 5 3 8.1 < 2 25	< 0.10 7 4 6.1 < 2 7	0.20 17 12 21 9 20
Heavy Metals, Screen Level Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Lickel Total Recoverable Dickel Total Recoverable Zinc Organochlorine Pesticides Screen Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) cis-Chlordane trans-Chlordane trans-Chlordane 2,4'-DDD 4,4'-DDD 2,4'-DDE 4,4'-DDE 2,4'-DDT 4,4'-DDT	mg/kg dry wt eening in Soil mg/kg dry wt	0.16 17 14 10.3 11 55	69 0.37 38 68 156 9 230 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013 <0.013	< 0.10 5 3 8.1 < 2 25	< 0.10 7 4 6.1 < 2 7	0.20 17 12 21 9 20

Sample Type: Soil						
\$	Sample Name:	SQ_SS30	SQ_SS31 (0.3)	SQ_SS32	SQ_SS33 (0.3)	SQ_SS34
	Lab Number:	10-Feb-2022 2864529.10	10-Feb-2022 2864529.13	10-Feb-2022 2864529.14	10-Feb-2022 2864529.17	10-Feb-2022 2864529.18
Organochlorine Pesticides Scre		2004329.10	2004329.13	2004329.14	2004329.17	2004329.10
Endosulfan II	mg/kg dry wt	-	< 0.013	-	_	_
		<u> </u>	< 0.013	-	_	-
Endosulfan sulphate	mg/kg dry wt	-	< 0.013	-	-	-
Endrin Endrin aldehyde	mg/kg dry wt mg/kg dry wt	-	< 0.013	-	-	-
Endrin ketone	mg/kg dry wt	<u> </u>	< 0.013	-	_	-
Heptachlor	mg/kg dry wt	-	< 0.013	-	-	-
	mg/kg dry wt	<u> </u>	< 0.013			
Heptachlor epoxide		<u> </u>	< 0.013	-	-	-
Hexachlorobenzene Methographer	mg/kg dry wt	<u> </u>	< 0.013	-	-	-
Methoxychlor	mg/kg dry wt		₹ 0.013	-	-	-
Polycyclic Aromatic Hydrocarbo				I		1
Total of Reported PAHs in Soil	mg/kg dry wt	-	< 0.4	-	-	-
1-Methylnaphthalene	mg/kg dry wt	-	< 0.013	-	-	-
2-Methylnaphthalene	mg/kg dry wt	-	< 0.013	-	-	-
Acenaphthylene	mg/kg dry wt	-	< 0.013	-	-	-
Acenaphthene	mg/kg dry wt	-	< 0.013	-	-	-
Anthracene	mg/kg dry wt	-	< 0.013	-	-	-
Benzo[a]anthracene	mg/kg dry wt	-	< 0.013	-	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	-	< 0.013	-	-	-
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES	mg/kg dry wt *	-	< 0.04	-	-	-
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	-	< 0.04	-	-	-
Benzo[b]fluoranthene + Benzo[j fluoranthene	j] mg/kg dry wt	-	< 0.013	-	-	-
Benzo[e]pyrene	mg/kg dry wt	-	< 0.013	-	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	-	< 0.013	-	-	-
Benzo[k]fluoranthene	mg/kg dry wt	-	< 0.013	-	-	-
Chrysene	mg/kg dry wt	-	< 0.013	-	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	-	< 0.013	-	-	-
Fluoranthene	mg/kg dry wt	-	< 0.013	-	-	-
Fluorene	mg/kg dry wt	-	< 0.013	-	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	-	< 0.013	-	-	-
Naphthalene	mg/kg dry wt	-	< 0.07	-	-	-
Perylene	mg/kg dry wt	-	< 0.013	-	-	-
Phenanthrene	mg/kg dry wt	-	< 0.013	-	-	-
Pyrene	mg/kg dry wt	-	< 0.013	-	-	-
5	Sample Name:	SQ_SS35 (0.3) 10-Feb-2022	SQ_SS36 10-Feb-2022	SQ_SS37 (0.3) 10-Feb-2022	SQ_SS38 10-Feb-2022	SQ_SS39 (0.3) 10-Feb-2022
	Lab Number:	2864529.21	2864529.22	2864529.25	2864529.26	2864529.29
Individual Tests						
Dry Matter	g/100g as rcvd	75	-	-	-	75
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	5	4	3	2	4
Total Recoverable Cadmium	mg/kg dry wt	0.10	0.20	< 0.10	< 0.10	< 0.10
Total Recoverable Chromium	mg/kg dry wt	32	6	7	10	10
Total Recoverable Copper	mg/kg dry wt	10	5	4	< 2	8
Total Recoverable Lead	mg/kg dry wt	16.0	13.8	13.1	7.0	12.7
Total Recoverable Nickel	mg/kg dry wt	9	3	3	3	< 2
Total Recoverable Zinc	mg/kg dry wt	23	25	13	12	16
Organochlorine Pesticides Scre			ı	1	ı	I.
Aldrin	mg/kg dry wt	< 0.013	-	-	-	< 0.014
alpha-BHC	mg/kg dry wt	< 0.013	-	-	-	< 0.014
beta-BHC	mg/kg dry wt	< 0.013	-	-	-	< 0.014
delta-BHC	mg/kg dry wt	< 0.013	-	-	-	< 0.014
gamma-BHC (Lindane)	mg/kg dry wt	< 0.013	-	-	-	< 0.014
J						

Sample Type: Soil						
	ample Name:	SQ_SS35 (0.3) 10-Feb-2022	SQ_SS36 10-Feb-2022	SQ_SS37 (0.3) 10-Feb-2022	SQ_SS38 10-Feb-2022	SQ_SS39 (0.3) 10-Feb-2022
Organochlorine Pesticides Scree	Lab Number:	2864529.21	2864529.22	2864529.25	2864529.26	2864529.29
		0.040				0.04.4
cis-Chlordane	mg/kg dry wt	< 0.013	-	-	-	< 0.014
trans-Chlordane	mg/kg dry wt	< 0.013	-	-	-	< 0.014
2,4'-DDD	mg/kg dry wt	< 0.013	-	-	-	< 0.014
4,4'-DDD	mg/kg dry wt	< 0.013	-	-	-	< 0.014
2,4'-DDE	mg/kg dry wt	< 0.013	-	-	-	< 0.014
4,4'-DDE	mg/kg dry wt	< 0.013	-	-	-	< 0.014
2,4'-DDT	mg/kg dry wt	< 0.013	-	-	-	< 0.014
4,4'-DDT	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Total DDT Isomers	mg/kg dry wt	< 0.08	-	-	-	< 0.08
Dieldrin	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Endosulfan I	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Endosulfan II	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Endosulfan sulphate	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Endrin	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Endrin aldehyde	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Endrin ketone	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Heptachlor	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Heptachlor epoxide	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Hexachlorobenzene	mg/kg dry wt	< 0.013	-	_	-	< 0.014
Methoxychlor	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Polycyclic Aromatic Hydrocarbor						1 0.011
						0.4
Total of Reported PAHs in Soil	mg/kg dry wt	< 0.4	-	-	-	< 0.4
1-Methylnaphthalene	mg/kg dry wt	< 0.013	-	-	-	< 0.014
2-Methylnaphthalene	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Acenaphthylene	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Acenaphthene	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Anthracene	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Benzo[a]anthracene	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	mg/kg dry wt	< 0.04	-	-	-	< 0.04
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 0.04	-	-	-	< 0.04
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Benzo[e]pyrene	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Benzo[k]fluoranthene	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Chrysene	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Fluoranthene	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Fluorene	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Naphthalene	mg/kg dry wt	< 0.07	-	-	-	< 0.07
Perylene	mg/kg dry wt	< 0.013	-	-	-	< 0.014
Phenanthrene	mg/kg dry wt	< 0.013	_	_	-	< 0.014
Pyrene	mg/kg dry wt	< 0.013	-	_	-	< 0.014
	ample Name:	SQ_SS40 10-Feb-2022	SQ_SS41 (0.3) 10-Feb-2022	SQ_SS42 10-Feb-2022	SQ_SS43 (0.3) 10-Feb-2022	1 0.0
I	Lab Number:	2864529.30	2864529.33	2864529.34	2864529.37	
Individual Tests						1
Dry Matter	g/100g as rcvd	79	81	78	-	-
Heavy Metals, Screen Level	g, 100g ao 10va					
*	ma or /1 1	7	0	0	0	
Total Recoverable Arsenic	mg/kg dry wt	7	2	3	3	-
Total Recoverable Cadmium	mg/kg dry wt	0.13	0.11	< 0.10	0.12	-
Total Recoverable Chromium	mg/kg dry wt	37	12	12	12	-

Sample Type: Soil						
;	Sample Name:	SQ_SS40	SQ_SS41 (0.3)	SQ_SS42	SQ_SS43 (0.3)	
	Lab Number	10-Feb-2022 2864529.30	10-Feb-2022 2864529.33	10-Feb-2022 2864529.34	10-Feb-2022 2864529.37	
Heavy Metals, Screen Level	Lab Number:	2004529.50	2004329.33	2004529.54	2004329.37	
Total Recoverable Copper	ma/ka dn. ut	10	4	5	4	
Total Recoverable Copper	mg/kg dry wt mg/kg dry wt	19.4	11.8	13.6	11.3	-
Total Recoverable Lead Total Recoverable Nickel						<u> </u>
	mg/kg dry wt	8	3	2	3	
Total Recoverable Zinc	mg/kg dry wt	24	17	18	21	-
Organochlorine Pesticides Sci						
Aldrin	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
alpha-BHC	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
beta-BHC	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
delta-BHC	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
gamma-BHC (Lindane)	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
cis-Chlordane	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
trans-Chlordane	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
2,4'-DDD	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
4,4'-DDD	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
2,4'-DDE	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
4,4'-DDE	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
2,4'-DDT	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
4,4'-DDT	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Total DDT Isomers	mg/kg dry wt	< 0.08	< 0.08	< 0.08	-	-
Dieldrin	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Endosulfan I	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Endosulfan II	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Endosulfan sulphate	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Endrin	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Endrin aldehyde	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Endrin ketone	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Heptachlor	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Heptachlor epoxide	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Hexachlorobenzene	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Methoxychlor	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Polycyclic Aromatic Hydrocarb	ons Screening in S	oil*				
Total of Reported PAHs in Soil	I mg/kg dry wt	< 0.3	< 0.3	< 0.4	-	-
1-Methylnaphthalene	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
2-Methylnaphthalene	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Acenaphthylene	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Acenaphthene	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Anthracene	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Benzo[a]anthracene	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Benzo[a]pyrene Potency	mg/kg dry wt	< 0.04	< 0.03	< 0.04	-	-
Equivalency Factor (PEF) NES						
Benzo[a]pyrene Toxic Equivalence (TEF)*	mg/kg dry wt	< 0.03	< 0.03	< 0.04	-	-
Benzo[b]fluoranthene + Benzo fluoranthene	[j] mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Benzo[e]pyrene	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Benzo[k]fluoranthene	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Chrysene	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Fluoranthene	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Fluorene	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Naphthalene	mg/kg dry wt	< 0.07	< 0.06	< 0.07	-	-
Perylene	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
Phenanthrene	mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-
	3 3 7 7					

Sample Type: Soil							
Sample Name:	SQ_SS40	SQ_SS41 (0.3)	SQ_SS42	SQ_SS43 (0.3)			
•	10-Feb-2022	10-Feb-2022	10-Feb-2022	10-Feb-2022			
Lab Number:	2864529.30	2864529.33	2864529.34	2864529.37			
Polycyclic Aromatic Hydrocarbons Screening in Soil*							
Pyrene mg/kg dry wt	< 0.013	< 0.012	< 0.013	-	-		

Analyst's Comments

It has been noted that the spike for OCP on sample 2864529.21, was run as part of our in-house QC procedure, had lower than expected recoveries for Endosulphan sulphate (62%) and Methoxychlor (62%). Therefore the results maybe underestimated.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil						
Test	Method Description	Default Detection Limit	Sample No			
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1, 4-5, 8-10, 13-14, 17-18, 21-22, 25-26, 29-30, 33-34, 37			
Total of Reported PAHs in Soil	Sonication extraction, GC-MS analysis. In-house based on US EPA 8270.	0.03 mg/kg dry wt	1, 5, 8, 13, 21, 29-30, 33-34			
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1, 4-5, 8-10, 13-14, 17-18, 21-22, 25-26, 29-30, 33-34, 37			
Organochlorine Pesticides Screening in Soil	Sonication extraction, GC-ECD analysis. Tested on as received sample. In-house based on US EPA 8081.	0.010 - 0.06 mg/kg dry wt	1, 5, 8, 13, 21, 29-30, 33-34			
Polycyclic Aromatic Hydrocarbons Screening in Soil*	Sonication extraction, GC-MS analysis. Tested on as received sample. In-house based on US EPA 8270.	0.002 - 0.05 mg/kg dry wt	1, 5, 8, 13, 21, 29-30, 33-34			
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	1, 5, 8, 13, 21, 29-30, 33-34			
Benzo[a]pyrene Potency Equivalency Factor (PEF) NES*	BaP Potency Equivalence calculated from; Benzo(a)anthracene x 0.1 + Benzo(b)fluoranthene x 0.1 + Benzo(j)fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Benzo(a)pyrene x 1.0 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Fluoranthene x 0.01 + Indeno(1,2,3-c,d)pyrene x 0.1. Ministry for the Environment. 2011. Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health. Wellington: Ministry for the Environment.	0.002 mg/kg dry wt	1, 5, 8, 13, 21, 29-30, 33-34			
Benzo[a]pyrene Toxic Equivalence (TEF)*	Benzo[a]pyrene Toxic Equivalence (TEF) calculated from; Benzo[a]pyrene x 1.0 + Benzo(a)anthracene x 0.1 + Benzo(b) fluoranthene x 0.1 + Benzo(k)fluoranthene x 0.1 + Chrysene x 0.01 + Dibenzo(a,h)anthracene x 1.0 + Indeno(1,2,3-c,d)pyrene x 0.1. Guidelines for assessing and managing contaminated gasworks sites in New Zealand (GMG) (MfE, 1997).	0.002 mg/kg dry wt	1, 5, 8, 13, 21, 29-30, 33-34			

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 17-Feb-2022 and 23-Feb-2022. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Umman

Kim Harrison MSc

Client Services Manager - Environmental