

Waihi North

Groundwater Assessment Appendices WAI-985-000-REP-LC-0012_Rev2

Oceana Gold (New Zealand) Ltd

26 February 2025

The Power of Commitment

GHD Limited [626860]

27 Napier Street, GHD Centre Level 3 Freemans Bay, Auckland 1010, New Zealand T +64 9 370 8000 | F +64 9 370 8001 | E aklmail@ghd.com | ghd.com

Printed date	26/02/2025 12:32:00 PM
Last saved date	26 February 2025
File name	\\ghdnet\ghd\NZ\Christchurch\Projects\51\12590241\Tech\FastTrack_Consent\Updated_Designs\Updated report\Groundwater Report\WAI-985-000-REP-LC-0012_Rev2_Appendices_26.02.2025.docx
Author	Zoe Pattinson, Remalia Sharplin and Anthony Kirk
Project manager	Tim Mulliner
Client name	Oceana Gold (New Zealand) Ltd
Project name	Waihi North Project
Document title	Waihi North Groundwater Assessment WAI-985-000-REP-LC-0012_Rev2
Revision version	Rev 2
Project number	12552081

Document status

Status	Revision	Author	Reviewer		Approved for issue					
Code			Name	Signature	Name	Signature	Date			
S4	Rev0	R. Wallis Z. Pattinson	A. Kirk		S. Hartwell		17/06/2022			
S4	Rev1	R. Wallis Z. Pattinson	A. Kirk		S. Hartwell		15/12/2022			
S4	Rev2	Z. Pattinson	A. Kirk	they a	A. Kirk	cheg a	26/02/2025			

© GHD 2025

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

LIMITATIONS

This document provides the appendices for the Waihi North Groundwater Assessment **WAI-985-000-REP-LC-0012**.

These appendices must be reviewed in conjunction with the disclaimers and limitations provided within Section 1 of the main report.

References are provided in Section 8 of the main report.

Table index

Table A.1	Analytical suites	11
Table B.1	Bore details for all locations included in the assessment	14
Table C.1	Gladstone Groundwater Level Data	16
Table C.2	NRS Groundwater Level Data	16
Table C.3	TSF3 Groundwater Level Data	16
Table C.4	Minimum and maximum vertical hydraulic gradients – Gladstone Shallow Groundwater System	16
Table C.5	Minimum and maximum vertical hydraulic gradients – Gladstone Deep Groundwater System	16
Table C.6	Minimum and maximum vertical hydraulic gradients – NRS Shallow Groundwater System	16
Table D.1	Gladstone Permeability Test Data	20
Table D.2	NRS Permeability Test Data	20
Table D.3	TSF3 Permeability Test Data	20
Table E.1	Summary of Gladstone sampling	22
Table E.3	TSF3 sampling	22
Table E.4	Summary of Gladstone groundwater quality	22
Table E.5	Summary of Gladstone surface water quality	22
Table E.6	Summary of NRS groundwater quality	22
Table E.7	Summary of NRS surface water quality	22
Table F.1	Summary of Gladstone Stream Flow Gauging results (Opus, 2019)	32
Table F.2	Summary of NRS Stream Flow Gauging results (Opus, 2019)	32
Table F.3	Summary of TSF3 Stream Flow Gauging Results (Opus, 2019)	32
Table F.4	Summary of historic surface water flow data used in the assessment	32
Table G.1	GOP and TSF assessment – model scenario summary	39
Table G.2	Gladstone pit perimeter section lengths for scaling flux across the pit boundary	42
Table G.3	Gladstone groundwater catchment areas	43
Table G.4	Gladstone Pit north - south model section parameters and boundary conditions	46
Table G.5	Gladstone Pit west – east model section parameters and boundary conditions	47
Table G.6	Gladstone Pit calibrated hydrogeological parameters	48
Table G.7	Gladstone Pit model calibration target groundwater levels (current conditions scenario)	49
Table G.8	Gladstone vein dewatering – model section perpendicular to vein boundary conditions	50
Table G.9	Gladstone vein dewatering – adopted hydrogeological parameters	50
Table G.10	Predicted groundwater discharge to surface water bodies during current conditions (SEEP/W)	55
Table G.11	Predicted groundwater discharge to surface water bodies during GOP excavation	55

Table G.12	Estimated inflows to GOP from shallow groundwater system during GOP excavation (SEEP/W)	56
Table G.13	Predicted shallow groundwater table drawdown at the edge of the pit and drawdown zone of influence during GOP excavation (SEEP/W)	56
Table G.14	Predicted groundwater discharge from the pit area to surface water receiving	
	environments under current conditions and after development of the TSF (SEEP/W)	59
Table G.15	Predicted change in shallow groundwater level at the edge of the pit compared	
	to current conditions, and zone of influence, after development of the TSF (SEEP/W).	59
Table G.16	Predicted groundwater discharge to surface water bodies during operational TSF scenario	60
Table G.17	Predicted groundwater discharge to surface water bodies during TSF closure scenario	60
Table G.18	Predicted groundwater discharge to surface water bodies during long-term TSF scenario	60
Table G.19	Predicted flux to the deep groundwater system and TSF drainage system during operational TSF and TSF closure scenarios (SEEP/W)	61
Table G.20	Sensitivity analysis of TSF Closure model scenario – hydraulic conductivity of the geosynthetic liner (SEEP/W)	61
Table G.21	Sensitivity analysis of TSF Closure model scenario – TSF capping laver	• .
	infiltration rate (SEEP/W)	61
Table G.22	Predicted extent of unsaturated andesite from the centre of the Gladstone vein system (modelled at distance 471 m)	63
Table G.23	Predicted change in Ohinemuri River flow compared to current conditions in Gladstone vein dewatering scenario	63
Table G.24	Results of GOP excavation and development as a TSF impact on surface water catchment areas for TB5, OH6 and OH3	63
Table G.25	Results of GOP excavation and development as a TSF impact on surface water catchment areas for TB4	63
Table G.26	Predicted receiving water quality in the long-term TSF scenario (values in mg/L)	64
Table H.1	NRS assessment – model scenario summary	68
Table H.2	NRS model set-up	71
Table H.3	NRS model adopted hydrogeological material parameters	71
Table H.4	NRS groundwater inflow rates and distance of influence of dewatering for uphill	
-	diversion drain construction	72
Table H.5	Predicted leachate capture and leachate seepage through zone A liner	72
Table H.6	Predicted groundwater and leachate captured in sub-soil drains	72
Table H.7	Predicted leachate flow to Oninemuri River within groundwater	73
Table H.8	Predicted receiving water quality in the NRS closure scenario (values in mg/L)	73
	Sensitivity analysis for NRS Closure scenario	/4 02
	TSF3 base model adented material parameters	03
	Celibrated barizontal gradient across the TSE2 site	04 01
	Calibrated from baseflow	04 95
	Calibrated stream basellow	85
	Summary of steady state model scenarios for Cross section 1 (all stages of	00
	TSF3 construction)	87
Table I.7	Summary of transient model scenarios for Cross-section 1 (construction dewatering)	88
Table I.8	Boundary conditions for TSF3 model scenarios (where different from Table I.1)	88

Table I.9	Adopted material parameters for TSF3 model scenarios (where additional to Table I.2)	89
Table I.10	Summary of steady transient model scenarios for Cross-section 2 (construction dewatering)	93
Table I.11	Cross-Section 2 model set-up	93
Table I.12	Adopted material parameters for Cross-Section 2 (where additional to Table I.2)	93
Table I.13	Theis (1935) solution inputs and outputs	94
Table I.14	Summary of modelling outputs for predicted inflows to excavation	97
Table I.15	Summary of modelling outputs for ZOI for dewatering at 75 days	97
Table I.16	Summary of modelling outputs for tailings discharge for full facility width	99
Table I.17	Summary of modelling outputs for embankment rock infiltration for full facility	
	width	99
Table I.18	Summary of combined tailings and embankment discharge to the receiving environment from TSF3 (m ³ /day)	99
Table I.19	Summary of modelling outputs for drain capture (m ³ /day) for full facility width	99
Table I.20	Summary of modelling outputs for drain capture for full facility width	99
Table I.21	Summary of modelling outputs for proportion of groundwater flow	100
Table I.22	Summary of groundwater flow volumes for water quality assessment	100
Table I.23	Water quality assessment scenarios and input sources	101
Table I.23	TSF3 sensitivity testing scenarios	101
Table I.24	Sens.1 results – liner leakage	102
Table J.1	WRS base model calibration and scenario summary (steady state)	106
Table J.2	WRS model set-up	107
Table J.3	WRS base model calibration results	107
Table J.4	WRS model calibrated hydrogeological material parameters	107
Table J.5	Groundwater recharge and discharge in calibrated base model (m ³ /day per 1 m section)	108
Table J.6	Leachate generation and discharge from WRS (m ³ /day)	109
Table J.7	Mass flux of leachate captured by shear key and rock drain (50% recharge scenario) assuming leachate quality of 95 th percentile values for TSE1A	109
Table J 8	Mataura Stream estimated water quality (values in mg/l)	110
Table J.9	Predicted mass flux to the Mataura Stream (kg/dav)	111

Figure index

Figure A.1	Three wells showing older OGNZL well pair (shallow DH05 and deeper well DH05A) and GHD intermediate well (WRS06)	9
Figure A.2	Surface water level monitoring site installed in Ohinemuri River	10
Figure C.1	Groundwater contours – Gladstone Shallow Groundwater System	16
Figure C.2	Groundwater contours – Gladstone Intermediate Groundwater System	16
Figure C.3	Groundwater contours – NRS Shallow Groundwater System	16
Figure C.4	Groundwater contours – NRS Deeper Groundwater System	16
Figure C.5	Groundwater contours – TSF3 Shallow Groundwater System	16
Figure C.6	Groundwater contours – TSF3 Deeper Groundwater System	16
Figure D.1	Plan showing distribution of Gladstone permeability results	20
Figure D.2	Plan showing distribution of NRS permeability results	20
Figure D.3	Plan showing distribution of TSF3 permeability results (GHD data)	20
Figure D.4	Plan showing distribution of TSF3 permeability results (EGL data)	20

Figure E.1	Piper Plot – Gladstone Groundwater Quality (P79-d June 2018. GLD04 well series October 2020. All other bores September 2018). (Excludes GLD01b which is recorded as dry).	22
Figure E.2	Piper Plot – Gladstone surface water quality (TB5 September 2019. All other samples September 2017)	22
Figure E.3	Piper Plot – NRS groundwater quality (November 2019)	22
Figure E.4	Piper Plot – NRS surface water quality (June 2019)	22
Figure E.5	Piper Plot – NRS surface water quality (September 2019)	22
Figure E.6	Piper plot – TSF3 water quality (April 2018)	22
Figure E.7	Piper plot – TSF3 water quality (May 2018)	22
Figure E.8	Piper plot – TSF3 water quality (shed spring vs. RU10)	22
Figure F.1	Plan showing Gladstone baseflow data (TB4 June 2017, Ohinemuri June 2019 & January 2020)	32
Figure F.2	Plan showing NRS tributary TB1 baseflow data	32
Figure G.1	Gladstone cross-section locations (N-S and W-E)	40
Figure G.2	Adopted perimeter sections for scaling flux across the pit boundary	42
Figure G.3	Annotated Gladstone Pit north-south SEEP/W model	44
Figure G.4	Annotated Gladstone Pit east-west SEEP/W model	45
Figure G.5	Gladstone vein dewatering model cross-section location	51
Figure G.6	Gladstone vein dewatering – SEEP/W model cross section perpendicular to vein (NE - SW in Figure G.5)	52
Figure G.7	Surface water catchments that intersect with the proposed Gladstone Pit	54
Figure G.8	Predicted shallow groundwater drawdown from current conditions during GOP excavation scenario (SEEP/W)	57
Figure G.9	Current and predicted groundwater water table during current conditions, GOP excavation and TSF scenarios (SEEP/W)	58
Figure G.10	Current and predicted groundwater table during current conditions and Gladstone vein dewatering (SEEP/W)	62
Figure G.11	Predicted unsaturated zone (pore water pressure less than zero kPa) within deep andesite in Gladstone vein dewatering scenario (SEEP/W)	62
Figure H.1	Annotated plan view of east-west NRS model section (modified from OGNZL Project description, 2021)	69
Figure H.2	Annotated NRS east-west SEEP/W model cross section	70
Figure H.3	Rock stack hydraulic conductivity function sensitivity analysis – Silty sand SEEP/W database (blue) with AEV increased (red) and reduced (green).	76
Figure H.4	Shallow Aquifer hydraulic conductivity function sensitivity analysis – clayey silt (red), sand (blue) and silty sand (green).	77
Figure H.5	Zone A liner hydraulic conductivity function sensitivity analysis – clayey silt (red), sandy clayey silt (blue) and silty clay (fine tailings) (green).	78
Figure H.6	NRS sensitivity analysis results	79
Figure I.1	TSF3 Cross-section 1 alignment showing relevant monitoring locations for calibration	82
Figure I.2	TSF3 Cross-section 1 SEEP/W model set-up with close up of undercut and key monitoring locations	83
Figure I.3	Goodness of fit – Cross-section 1 (SEEP/W) base model	86
Figure I.4	TSF3 Cross-section 1 SEEP/W model set-up with close up of drains beneath the embankment	87
Figure I.5	TSF3 Cross-section 1 SEEP/W model set-up with close up of undercut and key monitoring locations	88
Figure I.6	Tailings consolidation modelling results showing K_V (EGL, 2019b) for various potential tailings height	90

Figure I.7	SEEP/W Cross-section 2 location compared with the primary section (Cross-	
	section 1)	91
Figure I.8	TSF3 cross-section 2 SEEP/W model set-up	92
Figure I.9	TSF3 cross-section 2 SEEP/W model set-up	92
Figure I.10	TSF3 Theis model outputs	95
Figure I.11	Comparison of input parameters for Theis solution	96
Figure I.12	Drawdown curves for the TSF3 undercut dewatering	97
Figure I.13	Sensitivity testing outputs for changes to tailings K (Sens.2 and Sens.3)	103
Figure I.14	Sensitivity testing outputs for changes to tailings K (Sens.2 and Sens.3)	103
Figure I.15	Sensitivity testing outputs for changes to rhyolite tuff K (Sens.4 and Sens.5)	104
Figure J.1	Calibrated numerical groundwater model (base model). Dashed blue line = phreatic groundwater surface. Solid green lines = groundwater flow paths.	108
Figure J.2	Sensitivity analysis – hydraulic conductivity of residual soil / ash	112
Figure J.3	Sensitivity analysis – hydraulic conductivity of waste rock	113
Figure J.4	Sensitivity analysis – hydraulic conductivity of Extremely – Very Weak Andesite	113
Figure J.5	Sensitivity analysis – hydraulic conductivity of weak – moderately strong	
-	andesite	114
Figure J.6	Sensitivity analysis – hydraulic conductivity of low permeability andesite	114

Appendices

- Appendix A Site investigation methodology
- Appendix B Borehole data
- Appendix C Groundwater level data
- Appendix D Permeability analyses
- Appendix E Water quality
- Appendix F Surface water flow data
- Appendix G Gladstone Open Pit and Tailings Storage Facility technical assessment
- Appendix H Northern Rock Stack Technical Assessment
- Appendix I TSF3 Technical assessment
- Appendix J Wharekirauponga Willows Rock Stack Technical assessment
- Appendix K Water resource users
- Appendix L Gladstone Wetland Groundwater Assessment Summary
- Appendix M Mataura Wetland Assessment

Appendices

Appendix A Site investigation methodology

A.1 Introduction

Site investigations have been carried out to support the assessment of proposed activities for the Waihi North Project (WNP). These investigations were undertaken to:

- Refine the conceptual understanding of each area, where changes to the site have occurred since previous studies were completed (particularly in response to changes in site operations, such as dewatering).
- Provide sufficient information to assess effects on groundwater and surface water that may be associated with the proposed activities.
- The site investigations focused on assessing the geology to up to 80 m depth in the areas of new mine components. Nested monitoring wells were installed to assess groundwater levels, hydraulic gradients, hydraulic conductivities, as well as identify groundwater recharge/discharge areas and surface water/groundwater interactions.

Details of the site investigation are provided in the following appendices:

- Appendix A: Site investigation methodology.
- Appendix B: Borehole data, concluding maps of well locations, noting:
 - Bore series "DH" refers to EGL bores drilling in 1995-1996 across NRS and TSF3 sites.
 - Bore series "P" refers to OGNZL bores drilled for site monitoring at Waihi East (Favona and TSF2).
 - Bore series "GLD" refers to GHD drilled bores at Gladstone.
 - Bore series "AP" refers to GHD and EGL bores drilled at TSF3 for the current assessment.
 - Bore series "WRS" refers to the previous naming convection for NRS.
- Appendix C: Groundwater level data (monitoring data, contour maps).
- Appendix D: Permeability testing results.
- Appendix E: Water quality results
- Appendix F: Surface water flow data.

TSF3: Additional investigations that have informed the geological understanding include sterilisation drilling undertaken between TSF3 and TSF1A by OGNZL in 2017 and drilling of two new bores (AP21 and AP22) in October 2020. The EGL GFR (EGL, 2018) provides a detailed description of the local geology and origins; Figure 12 of the 2018 EGL report provides the geology for the proposed TSF3 area.

WRS: Additional investigations that have informed the geological and hydrogeological understanding including the site investigations undertaken at the WRS site are presented in the EGL geotechnical factual report (EGL, 2025c).

The wellhead elevations of the installed groundwater monitoring wells were surveyed by OGNZL and are presented in mRL to the mine datum, which is 1,000 m above sea level (asl).

A.2 Review of existing data

Groundwater monitoring wells

OGNZL have an extensive network of existing groundwater monitoring wells and drill hole data. Existing data was reviewed from the following locations:

- DH-series wells, which are detailed in an older report prepared by Engineering Geology Limited (EGL; Volume 2 of EGL,1996);
- P-series wells, which are regularly monitored for groundwater levels by OGNZL; and
- Other wells (MW, FAV series wells), regularly monitored for groundwater level and water quality.

This information was used to inform the 2017 drilling programme described below.

Surface water flow and quality

OGNZL undertake daily monitoring of flow rates at the Ohinemuri River and the Ruahorehore Stream (a tributary of the Ohinemuri), and regular monitoring at various surface water locations across the wider site. Data is provided in Appendix F.

A.3 2017 Drilling programme

Well installation

A total of 46 groundwater monitoring wells were installed between 10 May 2017 and 27 October 2017 in the vicinity of the new mine components:

- 31 wells installed by GHD.
- 15 wells installed by EGL.

Core was recovered using HQ coring method, and 32 mm PVC piezometers (with machine slotted screens) were installed in the 96 mm diameter boreholes.

The detailed lithology and well construction detailed are provided in the Appendix B bore logs.

The wells were generally installed as paired units, where deep wells are denoted by an "a" in the well ID label. In some locations where existing OGNZL wells were present, an adjacent well was installed to act as the paired (or third) well (e.g as shown in Figure A.1). Where used, the existing wells are included in the groundwater monitoring data (Appendix C).

Figure A.1 Three wells showing older OGNZL well pair (shallow DH05 and deeper well DH05A) and GHD intermediate well (WRS06)

Well survey

Each well was surveyed by OGNZL to the Old Cadastral Mt Eden Coordinates and Martha Mine elevation datum, which is presented in metres reduced level (mRL). The full list of these wells including level survey results are summarised in (Appendix B).

The locations of all wells used in the assessment are provided in figures within the report.

Well development

Following installation, and prior to monitoring and/or testing, the installed wells (and any OGNZL wells used in the programme) were developed using the most suitable purging methodology per well (i.e. total depth, water level,

diameter). The methods used included: waterra footvalve combined with additional lift from a Honda WX10 Water Pump; Monsoon Pump; or airlift pump.

A.4 Water level monitoring

Groundwater level monitoring

A series of groundwater level monitoring events were carried out, including:

- Manual groundwater level measurements: These were collected either during dedicated groundwater level monitoring events, or as part of the earlier well development work, between June 2016 and 2020. The water levels are provided in metres below ground level (m bgl) and/or metres below top of casing (m btoc) and are converted to the Martha Mine datum (mRL). Refer to the tables provided in Appendix C for a summary of all manual measurement data.
- Automated groundwater level measurements: Continuous water levels were recorded across the site using Solinst pressure transducers and a barologger to allow for atmospheric compensation. Selected locations were monitored across variable timeframes in mid-late 2017, depending on the following factors: equipment availability; site accessibility; comparison between locations; and assessment of rainfall event response. Manual measurements were used to calibrate the recorded water levels, which are presented in Appendix C.

Surface water

To support the assessment of the hydraulic connection between groundwater and the Ohinemuri River, surface water level monitoring stations were installed:

- In the Ohinemuri River (Figure A.2) between the Favona and NRS sites and at TB1a.
- Gladstone at one site (TB4).
- TSF3 at several sites (RU6, RU7, RU13, RU15;).

The locations and results are shown in Appendix F.

Monitoring of each surface water level site was carried out using a solinst pressure transducer, and the river level was surveyed by OGNZL to Martha Mine datum. The survey level was used to calibrate the recorded river levels, which are presented in Appendix F.

Figure A.2 Surface water level monitoring site installed in Ohinemuri River

A.5. Aquifer testing

Testing at selected well locations was carried out using falling and rising head methodologies to obtain the hydraulic conductivity of the screened well sections. The methodology involved the lowering and raising of solid PVC slugs below the groundwater level to displace the water. Lowering of the slug provided a falling head test; and raising the slug out of the water provided a rising head test. The groundwater level response for each test was recorded using a pressure transducer.

The resulting displacement curve for each tests was analysed using Aqtesolv (version 4.5) and AquiferWin³² aquifer test software to provide an estimate of the hydraulic conductivity (K).

The test results are provided in Appendix D.

A.6 Water quality sampling

Sample methodology

Groundwater quality sampling was carried out over December 2017 and January 2018 in selected wells across the site. Locations within each area were selected in relation to proximity of the proposed activities (upgradient, downgradient) and intended for monitoring before (baseline), during, and after completion of the proposed activities. Numerous wells and surface water locations were selected for sampling/monitoring and are listed in the tables in Appendix E.

Sampling was carried out using standard low flow purging methodology (EPA 1996a and EPA 1996b), where the formation recharge and groundwater depths allowed. Where recharge was too slow and/or the groundwater level was too deep, more suitable alternative methods were used, which included purging the well until dry and using low flow methodology to collect recharge water, or the use of HydrasleevesTM.

Sample analyses

The parameters that each sample was analysed for are listed in Table A.1 below. All sites (where possible) were analysed at least once for the comprehensive suite before changing to a reduced suite. Interpretation of water quality is provided in Appendix E.

e A.1	Analytical suites
omprehe	ensive Suite
рН	
Electric	cal Conductivity (EC)
Total S	Suspended Solids
Total A	Alkalinity
Major (Cations and Anions
Dissolv	ved metals (As, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Sb, Se, Ag, Zn)
Dissolv	ved Mercury
WAD C	Cyanide Distillation
Weak /	Acid Dissociable (WAD) Cyanide
Nutrier	nt Suite (TN, TKN, NO2-N + NO3-N, Amm-N)

A.7 Stream flow gauging

Opus carried out stream flow gauging on behalf of OGNZL between January 2019 and January 2020 at GHD's request. Stream flow gauging was carried out once every two weeks from late January until end of March to capture baseflow conditions, with subsequent monitoring carried out quarterly. The gauging reports and results summary are provided in Appendix F.

A.8 Willows Farm investigation

A site investigation was undertaken at Willows Farm by Golder in October 2020. A total of 13 boreholes were drilled and installed as groundwater monitoring wells. Groundwater level and hydraulic conductivity data collected by Golder in October 2020 has been summarised by WWLA (2025a). EGL undertook additional site investigations in 2024 – 2025. This included hand augers, test pits, drilling of boreholes, packer testing, falling head testing and installation of standpipe piezometers and vibrating wire piezometers. The results of the investigation are presented in EGL (2025c).

Appendix B Borehole data

Contents:

 Table B.1
 Bore details for all locations included in the assessment

GHD Bore logs

GT020 sterilisation borehole

Note:

- All bore locations are provided within site setting figures within the main report.
- EGL bore logs for NRS and TSF3 from 1996, 2017 and 2018 investigations can be found in Appendix A in the respective Geotechnical Factual Reports
- EGL bore logs for WRS from 2024 2025 can be found in the appendices of the WRS Geotechnical Factual Report (EGL, 2025c).

Location	ID	Date of Installation	Easting (NZTM)	Northing (NZTM)	Easting (MtEden Old Cadastral)	Northing (MtEden Old Cadastral)	Elevation (mRL)	Drilled Depth (m bgl)	Measured Depth (m btoc)	Base of bore (m RL)	Piezo Screen (m bgl)	PVC Upstand (m agl)
	AP01	25/05/2017	1855661.1	5856236.2	399490.9	640874.9	1110.50	6.0	5.0	1105.5	3-5	-0.055
	AP01a	9/05/2017	1855656.9	5856258.8	399486.3	640897.4	1110.55	40.7	40.7	1069.8	37-40	-0.03
	AP02	25/05/2017	1855848.1	5856317.3	399676.3	640959.5	1112.34	5.0	4.7	1107.6	3-5	-0.05
	AP02a	29/05/2017	1855848.8	5856316.5	399677.0	640958.6	1112.28	30.1	30.1	1082.1	27-30	-0.08
	AP03	29/05/2017	1856115.6	5856417.4	399941.8	641064.5	1120.36	5.0	4.0	1116.3	3-5	-0.04
	AP05a	31/05/2017	1855553.0	5856136.1	399341.2	640772 7	1120.28	50.5 6.0	5.8	1090.1	4-6	-0.06
	AP04a	1/06/2017	1855551.8	5856136.4	399383.6	640773.1	1109.53	30.1	29.6	1079.8	27-30	-0.05
	AP05	25/05/2017	1855683.5	5856122.2	399515.4	640761.3	1110.17	6.0	4.9	1105.1	3-5	-0.14
	AP05a	25/05/2017	1855683.8	5856121.6	399515.7	640760.7	1110.22	22.5	21.9	1088.2	19-22	-0.12
	AP06	3/06/2017	1855920.6	5856502.4	399745.3	641145.8	1113.54	5.0	4.7	1108.8	3-5	-0.04
	AP06a	7/06/2017	1855921.3	5856502.8	399746.0	641146.1	1113.54	24.0	23.6	1089.9	21-24	-0.05
	AP07	26/05/2017	1855703.2	5856555.2	399527.1	641194.4	1114.96	6.0	5.4	1109.4	2.5-5.5	-0.14
TSF3 Hydro Boreholes	AP07a	26/05/2017	1855/03.2	5856555.2	399527.1	641194.5	1114.96	27.3	26.9	1087.9	24-27	-0.12
	DH12	3/03/2017	1855979.5	5856623.3	399800.7	641203.7	1115.00	21.0	20.9	1095.4	2.5-5.5	-0.1
	AP09	1/06/2017	1856159.0	5856685.5	399980.2	641333.2	1119.46	21.0	20.1	1099.3	17-20	-0.1
	DH11	25/02/1995	1856153.4	5856685.5	399974.5	641333.1	1119.21	11.0	6.8	1112.9	5.5-6.5	0.48
	AP10	30/05/2017	1856213.8	5856566.1	400037.2	641214.9	1132.07	7.5	6.9	1125.1	4-7	-0.08
	AP10a	30/05/2017	1856214.1	5856565.7	400037.5	641214.5	1132.12	19.5	18.4	1113.6	15.5-18.5	-0.10
	AP11	6/06/2017	1855907.7	5856823.1	399726.4	641466.0	1123.83	7.5	7.0	1116.8	4-7	-0.11
	AP11a	6/06/2017	1855908.1	5856823.6	399726.8	641466.6	1123.83	21.0	20.4	1103.4	17-20	-0.02
	DH10	-	1856608.2	5856776.9	400427.4	641433.0	1166.15	- 27.7	8.3	1158.3	-	0.5
		- 28/02/1005	1956029.3	5656209 9	200994.0	641457.5	110.40	37.7	54.2	1152.0	19 2 22 2	0.55
	DH13 DH14	29/02/1995	1855661.6	5856264.6	399490.9	640903.2	110.61		10.1	1100.5	-	0.4
	DH14A	29/02/1995	1855656.4	5856261.7	399485.7	640900.2	1110.58	24.0	37.4	1073.2	23.0-24.0	0
	DH23	-	1856509.9	5856547.4	400333.5	641201.8	1158.02	-	18.5	1139.7	-	0.22
	DH23A	-	1856512.5	5856542.8	400336.1	641197.2	1157.20	29.2	29.4	1128.3	26.9-28.9	0.48
	WRS01	11/05/2017	1854208.92	5858184.96	398003.07	642795.37	1105.55	8.0	7.9	1097.6	5-8	-0.01
	WRS01a	11/05/2017	1854209.49	5858184.18	398003.65	642794.60	1105.51	19.8	19.7	1085.7	16.7-19.7	-0.05
	WRS02	22/05/2017	1854428.67	5858090.06	398224.48	642704.63	1105.28	8.0	6.7	1098.5	5-8	-0.03
	WRS03	22/05/2017	1854812.03	5858016 73	398609.01	642704.10	1105.32	19.6	5.6	1085.0	5-8	-0.035
	WRS03a	24/05/2017	1854811.01	5858016.16	398607.99	642637.92	1132.21	19.6	19.6	1112.5	16.5-19.5	-0.06
	WRS04	8/06/2017	1853969.82	5858257.34	397762.75	642863.24	1097.87	6.0	5.4	1092.4	2.5-5.5	-0.06
	WRS04a	8/06/2017	1853969.22	5858257.13	397762.15	642863.01	1097.86	21.0	19.2	1078.5	17-20	-0.1
WRS Hydro	WRS05	9/06/2017	1854227.99	5858417.34	398017.78	643027.97	1101.06	6.0	5.5	1095.5	2.5 - 5.5	-0.100
Boreholes	WRS05a	9/06/2017	1854228.53	5858417.66	398018.31	643028.30	1101.06	21.0	16.3	1084.6	13.5-16.5	-0.100
	WRS06	12/06/2017	1854280.60	5858328.62	398072.02	642940.28	1099.38	12.0	12.0	1087.3	10-12	-0.06
	DHUSA	21/02/1995	1854280.37	5858325.91	398071.84	642937.58	1099.32	21.3	20.8	1079.1	18.5-20.5	0.58
	DH04	-	1854430.68	5858389.86	398220.88	643004.30	1105.01	26.7	25.3	1095.5	24.5-25.5	0.43
	WRS07	13/06/2017	1854509.27	5858387.30	398299.48	643003.22	1108.54	7.5	5.9	1102.6	3-6	-0.06
	DH09	-	1854505.82	5858390.53	398295.96	643006.38	1108.30	19.3	19.0	1089.7	12.0-14.0	0.45
	WRS08	13/06/2017	1854550.10	5858039.30	398346.80	642656.17	1108.87	9.0	8.9	1099.9	7-9	-0.07
	DH08	24/02/1995	1854539.05	5858057.17	398355.55	642698.69	1103.88	25.9	19.5	1084.8	18.0-20.0	0.40
	GLD01	14/06/2017	1853274.29	5857687.01	397078.26	642280.20	1126.53	7.5	7.5	1119.0	5.5-7.5	-0.06
	GLD01a	14/06/2017	1853273.94	585/686.65	397077.92	642279.83	1126.55	13.7	13.7	1112.8	11.7-13.7	-0.09
	GLD010	19/06/2017	1853262.60	5857611.69	397079.49	642277.32	1120.40	9.0	29.7	1090.7	6-8	-0.09
Gladstone	GLD02a	15/06/2017	1853258.89	5857614.46	397064.22	642207.40	1119.67	30.0	24.4	1095.2	22-25	-0.07
Hydro	GLD03	20/06/2017	1853348.94	5857653.70	397153.49	642248.30	1113.38	9.0	8.0	1105.3	6-8	-0.05
Boreholes	GLD03a	20/06/2017	1853349.62	5857653.98	397154.17	642248.59	1113.37	21.0	20.0	1093.3	17-20	-0.05
	P79s	Jul-04	1852914.84	5857719.62	396718.39	642306.07	1102.88	12.0	-	#VALUE!	11-12	0.73
	P79i	Jul-04	1852916.69	5857720.39	396720.23	642306.87	1102.95	41.5	-	#VALUE!	40.5-41.5	0.73
	P79d	Jul-04	1852918.25	5857721.17	396721.77	642307.68	1102.99	55.0	-	#VALUE!	52-55	0.73
	FVN01	21/06/2017	1853785.67	5858332.69	397577.29	642935.10	1098.87	9.0	8.0	1090.8	6-8	-0.15
	EVN016	21/06/2017	1853785.54	5858332.00	397576.00	642934.41	1098.83	21.0	18.0	1080.8	15-18	-0.07
Favona Hydro	EVN02	22/06/2017	1853769.81	5858340.28	397561 29	642942 39	1098.84	9.0	8.0	1099.1	6-8	-0.095
Boreholes	FVN02a	22/06/2017	1853769.58	5858339.76	397561.07	642941.86	1098.31	21.0	18.0	1080.3	15-18	-0.08
	FVN03a	27/06/2017	1853713.80	5858351.25	397505.11	642952.30	1097.24	21.0	18.2	1079.0	15-18	-0.03
	P89	-	1853716.35	5858350.55	397527.81	642976.52	1098.03	-	8.5	1090.6	-	1.06
	P87	-	1853768.46	5858285.56	397581.11	642912.54	1098.10	-	7.3	1092.2	-	1.35

G	HD	G	GHD Limited PO Box 6543 Site Identification: AP01															
								Auckland 1141									Sheet ?	l of 1
Pi C Si Ja	roje lien ite: ob N	ect: it: No.:		F () V E	Proje Dcea Vail 51/3	ect (ana ni - 708	Quatti Gold TSF3 3	ro Coord Ltd Eleva Comr Comr	Coordinates:Refer to attached TableElevation:Refer to attached TableCommenced:25-May-17Contractor:Completed:25-May-17						Datum: Mir Total Depth Perry Geotech	ue (1000 m) n: 6.0m		
Ec Sh Bc	luipi near ore E	ment Vane Diam	: e: eter	trac	torJ n):9	D Tr 6	actor F	lig Inclination: - Comments:	90								Logged: J Processed: A Checked: J	M (S P
Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	EW WW I	S Rock Strength S S Rock Strength S S S S S S S S S S S S S S S S S S S	ES RQD (%)	20 60 Defect	200 Spacing 600 (mm) 2000	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
- - - 0.5		12		¥	TS	MH		TOPSOIL: Clayey SILT, with minor fine to medium sand, trace rootlets; dark brown. Very soft, wet, high plasticity. NO CORE (0.5-1.0m)	W	VS								ו•••
			-		nvium	СН		Silty CLAY, with trace black organics (wood fibres); grey with orange brown staining. Very soft, wet, high plasticity.										• • 1- - - -
		79			All	ML	× × × × × × × × × × × × × × ×	SILT with some clay and fine to medium pale grey sand; grey. Very soft, wet, low plasticity.										2
	HQ Coring	100	-		lite - Tuff			Grey with greenish staining, fine to medium grainer CRYSTAL TUFF, very weak. Breaks down to Silt, with some clay and fine to medium poorly graded sand. Very stiff, low plasticity, spongey.	1								NOTE: Defects not discernable in completely weathered rock at 2.82m	3
		100	-		Homunga Rhyc			From 4.28m: becomes brown. Breaks down to Clayey Silt, with minor fine sand, high plasticity. White grey, fine to medium grained CRYSTAL TUFF, Very weak. Breaks down to silt with some clay and fine to coarse sand, very stiff. from 5.02 m: bands of orange staining									Joint @ 5.48, undulating, iron oxide staining	
								Termination Depth = 6m									ion oxide staning	

Depth: 0 m to 4.17m

		CI	חר	1 11	mit	od		BOREHOLE w	/ith	Pi	ezo	b L	OG	ì	Site	e Id	enti	fication: A	P05
	ש	G				eu		PO Box 6543 Auckland 1141										Sheet	1 of 1
Pi Ci Si Ja	roje lien te: ob N	ct: t: lo.:		F C V 5	Proje Dcea Vaił 51/3	ect ana ni - 708	Quatt Gold TSF3 3	rO Coordin Ltd Elevatio Comme Comple	nates on: F enced eted:	s: Re Refer I: 24- 25-N	fer to to at May-1	o atta tach -17 7	iched ed Ta	Table ble (Cont	ract	tor:	Datum: M Total Dep Perry Geotech	ine (1000 m) th: 6.0m
Ec	luipr	nent	:	trac	tor J	D Tr	actor F	Rig Inclination: -90)									Logged:	JM
Sh Bo	iear ore D	Vane Diame	e: Exter	(mn	1): 9	6		Comments:										Processed:	AS
Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	EW N	s Rock Strength	ES RQD (%)	20 20 20 Defect	200 Spacing	2000 (mm)	TESTS & SAMPLE / ROCK MASS DEFECTS: Depth, Type, Inclinations Roughness, Texture, Aperture, Coating	, Liezometer
		91 89			Ash	СН		TOPSOIL, Clayey SILT, with minor fine to medium grained sand, trace rootlets; dark brown to black. Very soft, wet to saturated, high plasticity. Sitty CLAY, with minor fine sand; brown. Soft, wet, high plasticity. from 1.05m: becomes firm from 1.18m: becomes light brown with orange metition moderate plasticity. Inose, volcanic ASH21	<u>w-s</u> w	S VS									1-
- ^{1.5} - ⁻ 		100			Alluvium	SW		Fine to medium SAND, with minor silt, light grey with orange staining. Very loose to loose, wet.		'VL'- 'L'									2-
227 29 3 0 3 0 3 0 3 0 3 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	HQ Coring	100			. Tuff	SP	× ×	grained Fine to medium grained poorly graded SAND, with minor silt, grey brown. Very loose, wet. from 2.88m: Fine to coarse SAND, with minor gravel, white grey with greenish inclusions, dense, wet, fine sub angular to sub rounded gravel. from 2.88-3.0m: layer of grey brown material from 3.0m: becomes brown from 3.32m: becomes grey brown	, , 	'VL' D VSt		-			-			3	3-
					-Iomunga Rhyolite			SILT, with some line to cloake poonly graded said, grey with greenish inclusions. Very stiff, wet, moderate plasticity. Greenish grey, RHYOLITE, TUFF very weak, widely spread joints. Breaks down to sandy/clayey silt. from 3.75m: becomes orange brown. from 3.83m: becomes greenish grey. from 4.05m: becomes brown						88				Joint at 4.36m, very narrow to tight, very steepky inclined, smooth, stepped, trace Margarese mineralization	4-
		100			-			from 5.0m: becomes weak from 5.03m: becomes brown from 5.5m: becomes dark greenish grey with brown mottling, more welded/crystaline. breaks down to sand						100				-Joint at 5.78m, very steeply inclined, undualing, smooth, very narrow to tight, brown silt and black Manganese	
								Termination Depth = 6m											7- 8- 9-

G		GI	ЧР	l ii	mit	ed			/ith	Pi	ezo) L	.0G	ſ	Site I	denti	fication: APO	5a
								Auckland 1141									Sheet 1	of 3
Pi Ci Si Jo	roje lien te: ob N	ct: t: No.:		F C V 5	Proje Dcea Vail 51/3	ect (ana ni - 708	Quatti Gold TSF3 3	ro Coordi Ltd Elevati Comme Comple	nates on: F enced eted:	: Re Refer I: 24- 25-M	fer to to att May- lay-1	atta tach 17 7	ached ⁻ ed Tab	Table lle C	ontra	ctor:	Datum: Mine Total Depth: Perry Geotech	(1000 m) 22.5m
Ec	luipr	nent	:	trac	tor J	D Tr	actor F	Rig Inclination: -9	C								Logged: JM	
Bo	iear ore D	vane Diame	e: eter	(mm	ı): 9	6		Comments:									Checked: LP	•
Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, comenting], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	EW	MS Estimated S Rock Strength	RQD (%)	20 60 Defect	2000 (mm)	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
0.1		01				СН		TOPSOIL, Clayey SILT, with minor fine to medium grained sand, trace rootlets; dark brown to black.	W-S W	VS S								
- - - 1		91			Ash			Silty CLAY, with minor fine sand; brown. Soft, wet, high plasticity.										
È.		09						from 1.05m: becomes firm from 1.18m: becomes light brown with orange mottling, moderate plasticity [poss. volcanic ASH?]		F								
- "0 -					E	SW		Fine to medium SAND, with minor silt, light grey with orange staining. Very loose to loose, wet.		'VL'- 'L'								
2		100			Alluviu		· · · ·	from 2.35m: becomes poorly graded mostly fine										2-
- - 2.7						SP		grained Fine to medium grained poorly graded SAND, with		'VL'								
3 3 3 3 3 3 3 3 3 3 4 4 3 3 7 4 4 4 4 4		100			Rhyolite - Tuff	ML		minor silt, grey brown. Very loose, wet. from 2.88m: Fine to coarse SAND, with minor gravel, white grey with greenish inclusions, dense, wet, fine sub angular to sub rounded gravel. from 2.88-3.0m: layer of grey brown material from 3.0m: becomes brown from 3.32m: becomes grey brown SILT, with some fine to coarse poorly graded sand, grey with greenish inclusions. Very stiff, wet, moderate plasticity. Greenish grey, RHYOLITE TUFF, very weak, widely spread joints.		VSt				88			Joint at 4.36m, very narrow	- 3- - 4-
	4Q Coring	100			Homunga			from 3.75m: becomes orange brown. from 3.83m: becomes greenish grey. from 4.05m: becomes brown from 5.0m: becomes weak from 5.03m: becomes brown						100			to tight, very steeply inclined, smooth, stepped, trace Manganese mineralization	5-
	-	100						from 5.5m: becomes dark greenish grey with brown mottling, more welded/crystaline. breaks down to sand						100			 Joint at 5.78m, very steeply inclined, undulating, 	
						SW		Fine to coarse grained angular well graded SAND, with some fine to medium-grained angular gravel, trace silt, grey with white and orange brown gravel. Loose, wet.		'L'							to tight, brown silt and black Manganese	
- ^{6.6} - 1 - 7 - 1 - 1		100			- Lava			Moderately weathered to slighly weathered, dark green brown, grey, RHYOLITE FROTH FLOW, moderately strong, crumbles to sand, dark phenocrysts visible			MW- SW			100				7-
		100			inga Rhyolite			from 7.55m: becomes orange, crumbles to silt. from 7.7m: becomes brown, weak, massive.									- at 7.5m, Completely Weathered: fractures indeterminate - Note at 8m: Completely weathered so	8-
		85			Homu			Completely weathered, brown, massive RHYOLITE, weak.			CW						Tracture indeterminate	
ř - - -		100												100			-No loss of circulation at 9m	• • •
10							(vvvv) vvvv											• • ₁₀ -

	L (- F	HD	l ir	nit	ed		DO Dov 6542						Site Ident	ification: AP	U5a
2					cu		Auckland 1141							Sheet 2	2 of 3
roje lient te: ob N	ct: t: lo.:		F C V 5	Proje Dcea Vail 51/3	ect (ana ni - ⁻ 708:	Quattr Gold TSF3 3	0 Coordi Ltd Elevatio Comme Comple	nates on: F enced eted:	: Ref Refer t I: 24- 25-M	er to o atta May- ay-17	attached ⁻ ached Tab 17	Table Ie C	Contractor	Datum: Mir Total Depth Perry Geotech	ne (1000 m) n: 22.5m
uipr ear '	nent: Vane	: : :	trac	tor J	D Tra	actor R	ig Inclination: -9 Comments:)						Logged: J Processed: A	IM AS
Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	w w s s Rock Strength	E3 RQD (%)	20 Defect 200 Spacing 200 (nm)	Checked: L TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
	100					$\begin{pmatrix} & & & \\ & & & \\ & & & & \\ & & & & & \end{pmatrix}$	Grey brown, fine to medium grained, RHYOLITE FROTH FLOW, moderately strong to weak, white and black phenocrysts in grey ground mass.					100			
	100						Dark green brown, grey, RHYOLITE FROTH FLOW, moderately strong, crumbles to sand, dark phenocrysts visible from 10.18m: becomes grey with fine black phrenocrysts, moderately weathered. from 11.01-11.06m: soft layer (possibly caused by drilling) from 11.17m: becomes grey brown.					100			• • • • • • • • • • • • • • • • • • • •
ing	83			olite - Tuff			Completely weathered, brown, massive to fine grained, RHYOLITE TUFF, moderately strong to weak, Breaks down to silty fine to medium SAND, orange brown. from 12m: weak Completely weathered, light grey, fine to medium- grained, RHYOLITE, weak to very weak.					83		 -Note at 13m: Completely reachers os fractors os os fractors os indeterminate 	112- 113- 113- 114-
HQ Co	96			Homunga Rhyo								96		 - Adde at 15m Complete weathered so fracture indeterminate 	15- - 16-
	100						from 17.23m: greeenish staining. from 17.52m: becomes grey. Completely weathered to highly weathered, grey with dark and light phenocrysts and greenish staining, fine to medium-grained, RHYOLITE, weak. Breaks down to fine to coarse grey quartz sand, coarse sand, larger phenocrysts up to 3 cm.			CW- HW		100		Relic joint at 19.3 tm. Steeply bridnes, Very Narrow, Smooth	17- 18- 19-
	HQ Coring HQ Coring Drilling Method Drilling M	re Dialling Method Poly Interview In	ient: ient: ient: b No.: Partition Part	HO Corling HO Cor	Oject: Project: ient: Occat b No.: 51/3 uipment: tractor J ear Vane: tractor J rear Vane: 00 rear Vane: 00 100 00 100 00 100 00 83 00 83 00 100 00 100 00 000 00 100 00	Project: Project (Oceanal Waihi - St/3708 Impment: Strator JD Tri Factor Vane: Implement: tractor JD Tri Factor Vane: Implement: Implement: Implement:	roject: Project Quattri ient: OceanaGold I te: Waihi - TSF3 b No.: 51/37083 uipment: tractor JD Tractor R ear Vane: re Diameter (mm): 96 100 cos Rm / Record (w) (w) (w) (w) (w) (w) (w) (w) (w) (w)	oject: Project Quattro Ccordination ient: OceanaGold Ltd Elevation te: Waihi - TSF3 Comments uipment: tractor JD Tractor Rig Inclination: -90 re Diameter (mm): 96 Soll DESCRIPTION: (Soli Colu, structure Jorgin state, accounting), plasticity or grints, accounting), plasticity or grints, accounting, plasticity or grints, account, fabric, not constructive provide and black phenocrysts in grints, account, fabric, not constructive provide and black phenocrysts in grints, account, fabric, not constructive provide and black phenocrysts in grints, account, fabric, not constructive provide and black phenocrysts in grints, account, data plasticity or grints, account, fabric, not constructive provide and black phenocrysts in grints, account, data plasticity or grints, account, fabric, not constructive provide and account plant plant plant plant, account, fabric, not plant plant, account, fabric, not plant plant, account, acco	oject: Project Quattro Coordinates Elevation: Fi ient: OceanaGold Ltd Elevation: Fi te: Waihi - TSF3 Commenced Completed: uipment: tractor JD Tractor Rig Inclination: -90 ear Vance: Comments: Comments: re Diameter (mm): 96 Soli DESCRIPTION (Soli Cellor, Soli Muscul) branching primer MALOR, Color, structure (Geological Formation) Implicit Malor, Color, Soli Muscul branching primer MALOR, Color, Muscul or grain size, secondary components, structure. Implicit Malor, Color, Soli Muscul branching primer MALOR, Color, Muscul or grain size, secondary components, structure. Implicit Malor, Color, Soli Muscul Branching primer MALOR, Color, Muscul or grain size, secondary components, structure. Implicit Malor, Color, Muscul Promote Malor, Soli Cellor, Soli Muscul Branching primer MALOR, Color, Muscul Promote Malor, Soli Cellor, Soli Muscul Branching primer MALOR, Color, Muscul Promote Malor, Soli Cellor, Soli Muscul Branching primer MALOR, Color, Muscul Promote Malor, Soli Cellor, Soli Muscul Branching primer MALOR, Color, Muscul Promote Malor, Soli Cellor, Soli Muscul Branching primer MALOR, Color, Muscul Promote Malor, Malor, Branching, Branching, Branching, Branching, Branching, Branching, Branching, Branching, Branching, Branching, Branching, Branchin	oject: Project Quattro Coordinates: Ref ient: OceanaGold Ltd Elevation: Refer t te: Waihi - TSF3 Completed: 24- bNo: St/37083 Commence: 24- cer Vane: completed: 25-M re Diameter (mm): 96 Solt. DESCRIPTION: 601 Code, Solt initiation: 90 Solt. DESCRIPTION: 601 Code, Solt. So	oject: Project Quattro Coordinates: Refer to attice: ient: Waihi - TSF3 Commenced: 24-May- Complete: 25-May-12 uipment: tractor JD Tractor Rig Inclination: -90 ear Vane: commenced: 24-May- complete: 25-May-12 vipment: tractor JD Tractor Rig Inclination: -90 ear Vane: commenced: 24-May- complete: 25-May-12 vipment: tractor JD Tractor Rig Inclination: -90 interview comments: comments: Comments: vipment: tractor JD Tractor Rig Inclination: -90 interview genetic (mm): 96 SOL DESCRPTICH: (Sol Code, Sol structure. (Boolgal Formation) Interview interview genetic (mm): 96 SOL DESCRPTICH: (Sol Code, Sol structure. (Boolgal Formation) Interview interview genetic (mm): 96 SOL DESCRPTICH: (Sol Code, Sol structure. (Boolgal Formation) Interview interview genetic (mm): 96 SOL DESCRPTICH: (Sol Code, Sol structure. (Boolgal Formation) Interview interview genetic (mm): 96 SOL DESCRPTICH: (Sol Code, Sol structure. (Boolgal Formation) Interview interview genetic (mm): 96 Sol Form 1000 Interview	oject: Project Qualitro Coordinates: Refer to attached ient: OceanaGold Ltd Elevation: Refer to attached Tab te: Wahin - TSF3 Commonced: 24-May-17 upment: tractor JD Tractor Rig Inclination: -90 eer Vane: Completed: 25-May-17 upment: tractor JD Tractor Rig Inclination: -90 eer Vane: Commonced: 24-May-17 upment: tractor JD Tractor Rig Inclination: -90 eer Vane: Commonced: 24-May-17 upment: tractor JD Tractor Rig Inclination: -90 interview Commonced: 24-May-17 upment: tractor JD Tractor Rig Inclination: -90 interview Upment: Status Status interview Upment: Upment: Upment: interview Upment: Upment: Upment: interview Upment: Upment: Upment: interview Upment	oject: Project Quattro Coordinates: Refer to attached Table ient: OceanaGold Ltd Elevation: Refer to attached Table bioloc: 51/37083 Commence: 24-May-17 Complete: 25-May-17 upment: tractor JD Tractor Rig Inclination: -90 Complete: 25-May-17 Complete: 25-May-17 upment: tractor JD Tractor Rig Inclination: -90 Complete: 25-May-17 Complete: 25-May-17 upment: tractor JD Tractor Rig Inclination: -90 Complete: 25-May-17 Complete: 25-May-17 upment: tractor JD Tractor Rig Solid. DESCRIPTION: fool Code, 50-III Top 0 Top 0	opic: Innt: Project Qualition OceanaGold Lid Elevation: Refer to attached Table Elevation: Software re Diameter (mm: B) othon: 51/37083 Commence: Planteer (mm: B) Contractor Bioling Elevation: Software (Remetion Remet), Refer to attached points, attached points, attached (Remetion Remet), Refer to attached (Remetion Remetic), Refer to attached (Remetic), Refer to attached	Opject: Project Cualition Coordinates: Refer to attached Table Datum: Mir Tabl Dept bit Wahh - TSF3 Commence: Table Dept upment: tradication: Solution: Completed: 25 May - 17 upment: tradication: -0 Logged: - upment: tradication: -0 Logged: - tradication: -0 - - - - tradication: -0 - <td< td=""></td<>

			GI	HD	Liı	mit	ed		BOREHOI	LE wi	ith	Pie	ezo	L	.0	G	ſ	Site	e lo	den	tifi	cation: AP05	a
		2							Auckland 1141													Sheet 3 of	f 3
	Pr Cli Sit	oje ient te: b N	ct: t: lo.:		F C V 5	Proje Dcea Vaił 51/3	ect ana ni - 708	Quatti Gold TSF3 3	o d Ltd	Coordina Elevation Commen Complet	ates n: R nced ed:	: Ref efer : 24- 25-M	fer to to att May- ay-17	att ach 17 7	ache ed T	d Table	able e C	ont	rac	ctor	: F	Datum: Mine (Total Depth: 2 Perry Geotech	1000 m) 22.5m
	Eq	uipn	nent	:	trac	tor J	D Tr	actor F	lig Inclinat i	ion: -90												Logged: JM	
	Sh Bo	ear ` re D	Vane iame	e: eter	(mn	1): 9	6		Comme	nts:											-	Processed: AS Checked: LP	
	ueptn (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soi Name [minor MAJOR], colour, structuu [zoning, defects, cementing], plasticit or grain size, secondary components structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, ROCK NAME (Formation Name)	il re ty 5, , fabric,	Moisture Condition	Consistency/ Relative Density	Weathering	EW	MS Estimated	VS ES	RQD (%)	20	60 Detect		2000	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
	I	oring							Moderately weathered to slighly weathered, or green brown, grey, RHYOLITE, moderately st crumbles to sand, dark phenocrysts visible from 20.46m: becomes brownish grey from 20.7m: large 4cm purple grey phenocrys from 21.07m: becomes greenish grey	dark trong, sts			MW- SW										21
	2	HQC	65														65						
5.GDT 10/8/17	22.5								Termination Depth = 22.5m,														23
ATA TEMPLATE VER 1.	ŀ																						24
FT.GPJ NZ GINT D	5																						25 [.]
LP COMPLETE DRA	5																						26
r QUATTRO - TSF3	,																						27
33_NZ LIB_PROJEC	3																						28-
LOG NZ ALT 513705	,																						29
BOREHOLE I)																						30·

Depth: 15.00m to 18.00m

G	HD	GI	HD	Lir	nite	ed		BOREHOLE W	vith	Pi	ezo	b L	OG	ſ	Site	lde	entil	fication: APC)7
							.	Auckland 1141										Sheet 1	of 1
F	Proje Clier Site:	ect: nt:		F C V	Proje Dcea Vaih	ect (ana ni - ⁻	Quattr Gold TSF3	O Coordi Ltd Elevati Comme	nates on: F enced	s: Re Refer I: 26-	fer to to att Mav-	atta tache 17	ched [·] ed Tat	Table ble C	ontr	act	or:	Datum: Mine Total Depth: Perry Geotech	(1000 m) 6.0m
J	ob	No.:		5	1/37	708	3	Comple	eted:	26-M	ay-17	7							
E	quip hear	oment • Vane	:	trac	tor JI	D Tra	actor R	ig Inclination: -9	0									Logged: JM Processed: AS	
E	ore	Diamo	eter	(mm	ı): 96	6		Comments:										Checked: LP	
Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	ew w Estimated	S Rock Strength	RQD (%)	20 60 Defect	200 Spacing	2000 (mm)	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
- - - - - - - - - - - - - - - - -	1.4	93 100			Fill			FILL: SIL1, with some sand and gravel, trace clay, trace rootlets; brown. Soft, low plasticity. sand, well graded fine to coarse grained, fine to medium-grained well graded angular gravel, trace clay, trace rootlets. FILL 0.16m: Fine to coarse-grained, well-graded angular gravelly cobbles; grey, dense, wet.	w	5 'D'									1
- - - - - - - -	0	100 50			Ash	ML	× × × × × × × × × × × × × × × × × × ×	Organic SILT, with some clay; black, minor fine to medium sand, firm, wet, low plasticity. (inferred buried topsoi). SILT with minor clay and trace of fine sand; light brown, firm, wet, low plasticity. 1.5 - 1.6 appears friable		F									• 2
8/17	ring 📰	100			/ium	SP		Silty fine to medium, well graded SAND; light brown. Loose, wet.		'L'									
3DT 10	HQ Co		НΩ		Alluv	ML	× × × × × ×	SILT with some clay and minor fine sand; grey, soft, wet, moderate plasticity.		S									• = • 3-
Z GINT DATA TEMPLATE VER 1.5.C	3.4	75			inga Rhyolite - Tuff	SP		Fine to coarse-grained SAND; with some silt, light grey brown. Loose, wet. from 4.3m: minor fine to coarse grained weathered rhyolite gravel from 4.5-4.6m: dense	-	'L' 'D'									
ETE DRAFT.GPJ NZ	5.0 0	87			Homu			Fine to medium-grained, light greyish brown RHYOLITE CRYSTAL TUFF; very weak; Breaks down to fine to coarse-grained sand, trace fine to coarse-grained gravel and some silt.						14				-Joint 2 @5.68m, very steepty inclined, undulating, smooth, very narrow -Note: abundant drill breaks as material is fragile, not logged as defects	
DREHOLE LOG NZ ALT 5137083 NZ LIB PROJECT QUATTRO - TSF3 LP COMF																			7 7 8 9 9

	D	Gł	HD	Lir	mit	ed		BOREHOLE W	vith	Pi	ezo) LC	G	ſ	Site Ident	ification: AP	07a
)		<u>۱</u>	Auckland 1141								Sheet 7	1 of 3
Pr Cli Sit Jo	oje ient :e: b N	ct: t: lo.:		F C V 5	Dcea Dcea Vail 51/3	ect (ana ni - ⁻ 708	Juattr Gold TSF3 3	O Coordir Ltd Elevatio Comme Comple	nates on: F nced ted:	s: Re Refer I: 26- 26-M	fer to to att May- lay-17	attaci ached 17 7	hed ⊺ I Tab	⊺able le C	contractor:	Datum: Mir Total Depth Perry Geotech	ne (1000 m n: 27.3m
Equ She	uipn ear \	nent: Vane	:	trac	tor J	D Tra	actor R	ig Inclination: -90 Comments:)							Logged: J Processed: A	IM AS
301 	re D	iame	eter	(mn	n): 9	6		SOIL DESCRIPTION: (Soil Code), Soil	L L				_			Checked: L	.P
	Drilling Method	Core Run / Recovery (°	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	W W Ms Estimated	S Rock Strength	RQD (%)	20 60 Defect 200 Spacing 600 (mm)	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
0.2	HQ Coring	93 100	НQ		Eill			FILL: SILT, with some sand and gravel, trace clay, trace rootlets; brown. Soft, low plasticity. sand, well graded fine to coarse grained, fine to medium-grained well graded angular gravel, trace clay, trace rootlets. FILL 0.16m : Fine to coarse-grained, well-graded angular gravelly cobbles; grey, dense, wet.	W	S 'D'							
1.5	sh tube	100 50			Ash	ML		Organic SILT, with some clay; black, minor fine to medium sand, firm, wet, low plasticity. (inferred buried topsoil). SILT with minor clay and trace of fine sand; light brown, firm, wet, low plasticity. 1.5 - 1.6 appears friable		F							
2.5	ы Р	100			ш	SP	^^	Silty fine to medium, well graded SAND; light brown. Loose, wet.	ł	'Ľ'							
0					Alluvi	ML	× × × × × ×	SILT with some clay and minor fine sand; grey, soft, wet, moderate plasticity.		S							
3.4 D		75				SP		Fine to coarse-grained SAND; with some silt, light grey brown. Loose, wet. from 4.3m: minor fine to coarse grained weathered rhyolite gravel from 4.5-4.6m: dense		'L' 'D'							
i.0 D	Ð.	87			Luff			Fine to medium-grained, light greyish brown RHYOLITE CRYSTAL TUFF; very weak; Breaks down to fine to coarse-grained sand, trace fine to coarse-grained gravel and some silt.						14		─ 568-JT,80,sm,u, VN,Joint set 1 at 558m - Note:	
	HQ Cori	93	Н		Homunga Rhyolite - ⁻			rrom 6m: becomes weaκ.						27		bradki as material is fragile, no togged as defects! weakness et or drill break set along weakness from 6m 1. Very closely spaced to closely spaced, narrow, autolating, rough, light	
		107						from 8.31m: becomes very weak.						21		Manganese stairing on Joint set 1 @ 7.47m 8.31-8.49,JT, undulating, rough, Manganese, very narrow, 8.83-JT, undulating, rougi Manganese, very narrow	ο ο ο ο ο ο ο ο ο ο ο ο ο ο
9.0		93				SM		Silty fine to coarse SAND, with trace fine gravel; light grey brown. Loose.		"L"							

G		G	HD	Lii	mit	ed		BOREHOLE	with	Pi	ezc		•	Site Identif	ication: AP0	7a
								Auckland 1141							Sheet 2	of 3
P C S J	roje lier ite: ob l	ect: nt: No.:		F C V 5	Dcea Dcea Vail 51/3	ect (ana ni - 708	Quatti Gold TSF3 3	O Coord Ltd Eleva Comr Comr	linates tion: F nenceo pleted:	s: Ref Refer 1 d: 26- 26-M	fer to to atta May- lay-17	attachec ached Ta 17	Table ble (Contractor:	Datum: Mine Total Depth: Perry Geotech	e (1000 m) 27.3m
E S	quip hear	ment Vane	:):	trac	tor J	D Tr	actor F	ig Inclination: Comments:	90						Logged: JN Processed: AS	1
Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric: ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	W W MS Estimated S S Rock Strength	ES RQD (%)	20 60 Defect 200 Spacing 600 (mm)	Checked: LP TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
Ē		93				SM	×. · . × . × . ×. · ×	Silty fine to coarse SAND, with trace fine gravel; light grey brown. Loose.		'L'						
- - - - - - - - - - - - - - - - - - -		97														• • • • • • • • • • • • • • • • • • •
DATA TEMPLATE VEK 1.5.GUT 10/8/17	2	87			te - Lava			Light grey brown, fine to medium grained, RHYOLITE FROTH FLOW, weak.					15		- st 12,15m, bandingkeekness (subfordinuous (subforzontal planes at weakness)	13
	HQ Coring	100	ΑH		Homunga Rhyoli			from 15m: weak to moderately strong from 16.15m: becomes very closely spaced with 1- 2cm thick bands weathered to form defect/weaknes	s				29			115
	.5 0					SP		planes Fine SAND, with some silt; light greyish brown, soft loose, low plasticity (slightly dialatant)	s	'Ľ					-Drilling ceased for weekend @ 16.5m -16.5-17.25m: soft patch believed to be from upwell	
	3	95						Highly weathered, light grey brown, fine to medium grained, RHYOLITE, FLOW weak-very weak. Moderately -widely spaced banding. from 17.74m: become purpleish grey, moderately weathered.			HW		29		 Jointing at 17.79-18.0, subvertical, undulating- planar, rough 	- 17 - 17 - 18 - 18
		42						from 19.64m: becomes moderately weathered.	+		MW		0			20-

6	ìH	D	Gł	HD	Lir	nit	ed		PO Box 6543	LE wit	h	Pie	ezo	LOG	ſ	Site Ident	ification: A	P07	'a	
	Pro Clie	ojeo ent	ct: ::		F	Proje Dcea	ect (ana	Quattr Gold	o Ltd	Coordinate Elevation:	es: Re	Ref efer t	er to o atta	attached ached Tat	Table ble		Shee Datum: M Total Dep	t 3 of /line (oth: 2	f 3 100 27.3r	0 m) m
;	Site Jok	e: c N	o.:		V 5	Vaił 1/3	י i 708	TSF3 3		Commence Completed	ed: 1: 2	26-I 26-M	May-′ ay-17	17	C	Contractor:	Perry Geotech			
1	Equ She Sor	ipn ar \ e Di	nent: /ane	: ter	trac	tor J	D Tr	actor R	tig Inclina Comm	ition: -90 ents:							Logged: Processed:	JM AS		
Danth (m)/ relaw1		Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), S Name [minor MAJOR], colour, struct [zoning, defects, cementing], plastic or grain size, secondary componen structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colou ROCK NAME (Formation Name)	oil Contraction of the second		consistency/ Relative Density	Weathering	w Ms Estimated S S Cock Strength	E3 RQD (%)	20 60 Defect 200 Spacing 600 (mm)	TESTS & SAMPL / ROCK MASS DEFECTS: Depth Type, Inclination Roughness, Texture, Aperture Coating	ES , , s, ,	Piezometer	
			42						Highly weathered, light grey brown, medium grained, RHYOLITE FLOW, we weak. Moderately -widely spaced banding	fine to eak-very			MW		0					
<u>2</u> 1 			37						from 21m: becomes moderately weathered weathered, defects closely spaced.	to slighly			MW- SW		35		 -4121m, bands of soft material causiin recovery weakness/joint set becomes closely spat 21.0 m -vein at 21:24-21.52m smooth, narrow, white mimeralization infill -NOTE: slightly reduc circulation since 15m 	ng lower ced from n, very lating, e		21
ER 1.5.GDT 10/8/17		Coring	85 38	НQ		Rhyolite - Lava									0		 Crushed zone at 22.32-23.0m, fires 1 course gravel 23-23, 1 subvertical, smooth, unduduting, very narror Fe staining 	o I,JT, ww-tight,		23-
aFT.GPJ NZ GINT DATA TEMPLATE V		- Н	100			Homunga			from 24.36m: becomes highly weathered to completely weathered, weak to very weak.				HW- CW		65		-Joint set 2 very closely spaced to closely spaced from 24.0			24-
ПТКО - TSF3 LP COMPLETE DR/			79						from 27m: orange brown staining.						62	-				26-
	27.3								Termination Depth = 27.25m					<u><u> </u></u>						28-
E LOG NZ ALT 5137083 NZ I																				29-
BOREHOLI																				30-

Project: Project Qualtro Coordinates: Refer to attached Table Client: OceanaGold Ltd Elevation: Refer to attached Table Site: Waihi - TSF3 Commenced: 30-May-17 Contractor: Perry Job No.: 51/37083 Commenced: 30-May-17 Contractor: Perry Job No.: 51/37083 Comments: Project: Projec: Projec: Projec: Projec:	
Project: Project Quattro Coordinates: Refer to attached Table Client: OceanaGold Ltd Elevation: Refer to attached Table Site: Waihi - TSF3 Commenced: 30-May-17 Contractor: Perry Job No.: 51/37083 Commenced: 30-May-17 Contractor: Perry Equipment: tractor JD Tractor Rig Inclination: -90 Log Pro Shear Vane: Soil Description: Soil Descriptin: Soil Descriptin: Soil	Sheet 1 of 1
Completed. Jornaphing Completed. Jornaphing Equipment: tractor JD Tractor Rig Inclination: -90 Shear Vane: Comments: Bore Diameter (mm): 96 Comments: Total colspan="2">Pro Solit DESCRIPTION: (Soli Code), Soli Name (minor MAJOR), colour, structure Inclination: -90 Solit DESCRIPTION: (Soli Code), Soli Name (minor MAJOR), colour, structure Inclination: -90 Solit DESCRIPTION: (Soli Code), Soli Name (minor MAJOR), colour, structure Inclination: -90 Solit DESCRIPTION: Weathering, colour, fabric, golour, fabric, g	Datum: Mine (1000 m) Total Depth: 6.0m Geotech
Light Pint II. Bore Diameter (mm): 96 SOIL DESCRIPTION: (Soil Code), Soil Name (minor MAJOR), colour, structure [zoining, defect, components, structure. Up Ip Ip Imma Bure Diameter (mm): 96 SOIL DESCRIPTION: (Soil Code), Soil Name (minor MAJOR), colour, structure [zoining, defect, components, structure. Up Ip Ip Imma Bure Diameter (mm): 96 SOIL DESCRIPTION: (Soil Code), Soil Name (minor MAJOR), colour, structure Up Ip Ip Imma Bure Diameter (mm): 96 SOIL DESCRIPTION: (Soil Code), Soil Name (minor MAJOR), colour, structure Up Ip Ip Imma Bure Diameter (mm): 96 Ip Ip Ip Ip Ip Ip Imma Bure Diameter (mm): 96 Ip Ip Ip Ip Ip Ip Imma Bure Diameter (mm): 96 Ip Ip Ip Ip Ip Ip Imma Bure Diameter (mm): 96 Ip Ip Ip Ip Ip Ip Imma Bure Diameter (mm): 96 Ip Ip Ip Ip Ip Ip Im Ip Ip Ip Ip Ip Ip Ip Im Ip Ip Ip Ip Ip Ip Ip	ided: IM
Bore Diameter (mm): 90 Chr Image: Chr SOIL DESCRIPTION: (soil Code), Soil Name [minor MAJOR], colour, structure [zoning, idefects, comenting], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK DESCRIPTION: Weathering, colour, fabric, ROCK DESCRIPTION: Weathering, colour, fabric, ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name) Image: Chr Image: Chr Image: Chr <	cessed: AS
Image: Solution of the solution	ecked: LP
Product Product TOPSOIL: SILT, with some fine to medium grained with some fine to medium grained with some fine to medium soft, wet, with some fine to medium sand. W S Product Product Silt, T, with minor clay, trace rootlets; dark brown. Soft, wet, low plasticity. W S Product Product Silt, T, with minor clay, trace rootlets; dark brown. Soft, wet, low plasticity. Silt, T, with minor clay, trace rootlets; dark brown. Soft, wet, low plasticity. Silty CLAY, light brown with orange and white mottling. Soft, wet, high plasticity. Product Product Fine to coarse sandy SILT, with minor clay; brown with grey and orange mottling, soft, wet, medium plasticity. Fine to coarse sandy SILT, with some sand. Product Product White grey RHYOLITE CRYSTAL TUFF; extremely weak. K K Product V White grey RHYOLITE CRYSTAL TUFF; very weak, closely spaced bedding. 86 Product V V V RHYOLITE CRYSTAL TUFF, very weak, closely spaced bedding. Product V V V V V V V V V V V V V Product V V V V V V V V V<	S & SAMPLES
and an analysis and analysis and analysis and analysis and analysis and analysis and analysis and analysis and analysis and analysis and analysis and analysis and analysis and analysis analysis and analysis and analysis analysis analysis analysis analysis and analysis analysis analysis analysis analysis analysis analysis and analysis analysis analysis analysis analysis analysis analysis analysis analysis and analysis analysis <t< td=""><td></td></t<>	
Image: Soft wet, high plasticity. motting. Soft, wet, high plasticity. Image: Soft wet, high plasticity. from 1.05m: with some fine sand Image: Soft wet, high plasticity. from 1.05m: with some fine sand Image: Soft wet, high plasticity. from 1.05m: with some sand. Image: Soft wet, high plasticity. from 1.65m: with some sand. Image: Soft wet, high plasticity. from 1.65m: with some sand. Image: Soft wet, high plasticity. from 1.65m: with some sand. Image: Soft wet, wet, wet, wet, high plasticity. from 1.65m: with some sand. Image: Soft wet, wet, wet, wet, wet, wet, wet, wet	
Image: Second	1-
2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4	
weak. Light grey with orange staining, fine to medium, RHYOLITE CRYSTAL TUFF, very weak, closely spaced bedding.	ush tube at
3 	
from 3 m: extremely weak to very weak, breaks down fine to coarse Sand with some silt, Firm-hard,	ness set from 2.95m led zone, subhorizontal,
	ating, smooth Joint, very steeply inclined, ating, rough, very narrow
	4-
	5-
	6
Termination Depth = 6m	0
	7-
	8-
	9-
	10-

G	HD	GI	HD	Lir	nit	ed		BOREHOLE V	vith	Pi	ezo	LOG		Site Identif	ication: AP0	9
		Í						Auckland 1141							Sheet 1 c	of 3
P C S J	roje lien ite: ob N	ct: t: No.:		F C V 5	Proje Dcea Vaił 51/3	ect (ana ni - ⁻ 708:	Quattr Gold TSF3 3	O Coordi Ltd Elevati Comm Compl	nates on: F enced eted:	: Ref Refer I: 01- 01-Ju	fer to to atta Jun-1 un-17	attached Tab ached Table	ole Co	ontractor:	Datum: Mine (Total Depth: 2 Perry Geotech	(1000 m) 21.0m
E0 SI	quipr near	nent Vane	:	trac	tor J	D Tra	actor R	ig Inclination: -9 Comments:	0						Logged: JM Processed: AS	
Depth (m)/ [Elev.] _ g	Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/	Weathering	W W S S S S S S S S S S S S S S S S S S	אמה (%)	20 60 Defect 200 Spacing 200 (mm)	Checked: LP TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
- 0:	2					OL ML	× ×	TOPSOIL: Organic SILT, trace sand and rootlets; black, soft to very soft, wet, non plastic, sand, fine to medium grapped	Л	s-vs s						
	Coring	107			Ash		* * * * * * * * * * * *	SILT, with some clay and trace fine to medium grained sand; brown, soft, wet, high plasticity. from 0.6m: minor fine to coarse sand								
	НQ					SM	· × · × • • × • • • × • ×	Silty fine to coarse poorly graded SAND, with trace gravel; light brown, loose, wet, fine to medium	1	Έ'						
	е	80			ivium		× × × × × × × × × × × × × × × × × × ×	grained poorly graded gravel. from 1.3m: with some silt, orange brown with grey mottling. from 1.5m: Very loose, saturated.	S	'VL'					-Push tube at 2 m (low	2
-	ut Tut	0			Allu		× · · × · ×· ×. · · ×								recovery)	
EK 1.5.GDI 10/8/1/	μ	120						from 2.5m: with some silt, minor fine to coarse poorly graded angular gravel. Loose. from 2.65m: becomes dark brown, medium dense, minor silt. from 3.0m: light brown, trace silt. Loose		'L' 'MD' 'L'						
		95					· + + + + + + + + + + + + + + + + + + +	from 3.7m: becomes medium dense. Silty fine to coarse poorly graded SAND, with trace gravel; purplish grey. Medium dense, wet, fine to coarse grained poorly graded completely weathered rhyolite gravel. Completely weathered, fine to medium, purpleish grey RHYOLITE FLOW; weak; very closely spaced- closely spaced horizontal deflects/weakeness derived bedding; breaks down with pressure fine to	W	'MD'	CW				 Joint set 1, sub horizontal, undulating, smooth, narrow, closed (weakness likely caused by drilling) 	4
PLEIE UKAFI.GPJ NZ (1 ØL I I I I I I I I Ø 	ring	78			ха		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Coarse-grained sand with some gravel and sitt Fine to coarse poorly-graded subrounded GRAVEL, orange to grey. Loose, wet. Completely weathered, fine to medium, purpleish grey RHYOLITE FLOW; weak; very closely spaced-closely spaced horizontal deflects/ weakeness derived bedding; breaks down with pressure fine to coarse-grained sand with some gravel and silt	/	"L"			20			5
	HQ Co	78			munga Rhyolite - La		+ + + + + + + + + + + + + + + + + + +	from 6.22m: becomes white. from 6.5m: becomes grey, highly weathered.			HW		12			
		107			Hor		+ + + + + + + + + + + + + + + + + + +	from 7.92m: grey with orange staining, completely weathered			cw		77		 Joint set 1 ends at 7.74m Joint at 8.03m, steeply inclined, moderately weathered (closed), undulating, smooth, very strong iron staining Joint at 8.19m, very strong iron staining 	8
.06 NZ AL		67					+ + + + + + + + + + + + + + + + + + +	from 9.0m: becomes highly weathered			HW					9-
		97					, , + + + + + + + + + + + + + + + + + +	from 9.65m: becomes completely weathered			CW		51		_	10-

								BOREHOLE	with	Pi	ezo	b LOG	ſ	Site Identif	ication: APO	9
G	HL	G	ΗD	LII	nit	ed		PO Box 6543 Auckland 1141						-	Sheet 2 of	of 3
P C S J	Proj Clie Site: Ob	ect: nt: : No.:		F C V 5	Proje Dcea Vaił 51/3	ect (ana ni - ⁻ 708:	Quattr Gold TSF3 3	O Coord Ltd Eleva Comn Comp	inates ion: F ienceo leted:	s: Rei Refer d: 01- 01-Ji	fer to to ati Jun- un-17	attached 1 tached Tab 17	le C	Contractor:	Datum: Mine Total Depth: Perry Geotech	(1000 m) 21.0m
E	quip	oment	:	trac	tor J	D Tra	actor R	ig Inclination: -	90						Logged: JM	
S B	hea ore	r Vano Diam	e: eter	(mn	ı): 90	6		Comments:							Processed: AS Checked: LP	
Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	EW VW S S Rock Strength	RQD (%)	20 60 Defect 200 Spacing 600 (mm)	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
Ē		97					+ + + + + + + + + + + + + + + + + + +						51		-Crushed zone at 9.78-10.4m (possibly caused by drilling weak rock)	•••
- - - - - - - - - - - -		91					+++++++++++++++++++++++++++++++++++++++	from 10.42m: becomes grey, moderately to slightly weathered, moderately strong to weak			MW		75		From 10.42m Joint set 1 continues closely spaced, steeply inclined to moderately inclined, undlating, rough to along planes of weakness) of their fractures to 10.5m were drill breaks -11.5m set 1 becomes closely spaced widely spaced	• • • • • • • • • • • • • • • • • • •
MPLATE VER 1.5.GDT 10/8/17		107			3		+ + + + + + + + + + + + + + + + + + +	from 13.3m: moderately to slightly weathered, , orange white staining. NOTE: significant water loss from about 13.5m, low recovery, inferred fines from completely weathered rhyolite washed out					81		-Joint set 1 becomes gently inclined -13.2m, Joint Set 1 becomes very closely spaced to closely spaced closely 1 1000 closely -0.000 closely 13.5-15.0m	12 13 13 14
PLETE DRAFT.GPJ NZ GINT DATA TE	HQ Coring	77			Homunga Rhyolite - Lav		· + + + + + + + + + + + + + + + + + + +						21			15_ 15_
OJECT QUATTRO - TSF3 LP COM		103	-				+ + + + + + + + + + + + + + + + + + +	from 16.5m: no staining, moderately to slightly weathered					77		 Joint set 1 from 16.4m becomes steeply inclined -16.75m Joint set 1 become dosely spaced- moderately widely spaced 	• 17
06 NZ ALT 5137083 NZ LIB PR(100					· + + + + + + + + + + + + + + + + + + +	from 18.25m: becomes grey with orange staining					95		-,Note: Conjugate fractures visible at 18.25m -,18.25- 18.35m: Very steeply inclined, very narrow, unduating to stepped, rough, white mineralization white mineralization	• • • 18
BOREHOLE L		80					+ +						8		 -9.5m break up by drilling at start of run 	20-

			GI	ЧЬ	l iı	mit	ha			B	ORE	IOLE v	vith	Pi	ezo	5 I	_0	G	ſ	Site	e Id	lenti	fication:	AP0	9
		2					cu		Auc	Box 6543 kland 1141													She	eet 3 o	f 3
	Pr	oje	ct:		F	Proje	ect (Quatti Gold	O Ltd			Coordi	nates	: Re	fer to	att	ach	ed T	able				Datum:	Mine ((1000 m)
	Cii Sit	en :e:	[:		v	Vail	ana 1i - ⁻	TSF3	Liu			Elevati	on: ト		to att	(acr 17	ned	I abi	e r	ont	rac	tor	Total De	epth: 2	21.0m
	Jo	b N	lo.:		5	51/3	708	3				Comple	eted:	01-Ju	un-17	7				on	rac	lor.	Ferry Geolec	1	
	Equ	uipn	nent	:	trac	tor J	D Tr	actor F	lig		Inc	lination: -9	0										Logged:	JM	
	She Boi	ear ` re D	Vane iame	e: eter	(mm	ı): 9	6				Co	mments:											Processed:	AS	
T,	-		(%)		` 	,			SO	L DESCRIPTIO	DN: (Soil Cod	e), Soil	ion				Ļ						TESTS & SAM	PLES	
ļ			overy	(m) gi		ε	5	0	[zon or g	ing, defects, c rain size, seco	ementing], p ndary comp	lasticity onents,	ondit	y/ nsity			end	2					1		eter
	È.	Nethod	n / Rec	/ Casir		ical F	ficati	ic Lo		stru (Geologica	icture. al Formation) /		Ire C	stenc /e De	ering		imato	5		1	ect	, E	ROCK MASS DEFECTS: Dep	th,	szome
44	eptu	illing A	ore Rui	pport	ater	eolog	lassi	raphi	ROCK DI	SCRIPTION: N ROC	/ Weathering, (K NAME	colour, fabric,	oistu	onsis elativ	/eath		В		aD (%		So a	- E	Roughness, Texture, Apertu	ons, ire,	Pie
ľ	-	ā	ŏ	S	3	U	U U	5 + + + +		(Forma	tion Name)		Σ	ပမ	>	28	≥≌ı	° S S	Ř	50	50 60 50 60	<u>5 8</u>	-,Joint set 1 from		°/
Ē		oring						+ + + + + + + + + + + + + + + + + + +															19.9m becomes very closely space closely spaced	d-	00
Ē		й ОЧ	80					+ + + + + + + + + + + + + +											8						0
<u>2</u> 1	21.0							+ + + + <u>+ + + +</u>	Terminatio	Depth = 21m	n														21
Ē									Terminute																-
Ē																									-
22																									22-
E																									-
Ē																									-
10/8/1																									23-
GDT																									-
ER 1.5																									-
∧ =14 124																									
LEMPL																									24
																									-
GINT																									
																									25-
AFT.GF																									-
TE DR																									-
																									26-
LP CC																									-
TSF3																									-
																									27
L QUA																									-
OJEC																									-
Н <u>2</u> 8 81																									28-
3 NZ I																									-
513708																									-
																									29
OG NZ																									-
I I I																									-
BOREH.																									30-

Depth: 3.15 m to 5.70 m

Depth: 19.40 m to 21.00m

G	HD	GI	HD	Lir	nit	ed		PO Box 6543 Auckland 1141	<i>ith</i>	Pi	ezc) L	.00	6	Sit	te lo	denti	ification: A	P1()
P	roje	ct:		F	Proje	ect (Quatti Gold	Coordir Coordir	ates	: Rei	fer to	atta	iched	Table				Shee Datum: M	t 1 of	1 1000 m)
Si	ite: bb N	ו. וס.:		V 5	Vaił 1/3	ni - 708	TSF3 3	Comme	nced ted:	l: 30- 30-N	-May- 1ay-17	17 7			Con	trac	tor:	Total Dep Perry Geotech	oth: 7	'.5m
Ec Sł	quipr near	nent Vane	:	JD -	Tract	tor R	ig	Inclination: -90 Comments:)									Logged: Processed:	JM AS	
B. [.ve	ore D	iame (%) کړ	eter E	(mm	1): 90			SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure	dition	t I			ngth		Γ			Checked: TESTS & SAMPL	HB ES	_
Depth (m)/ [El	Drilling Method	Core Run / Recove	Support / Casing (r	Water	Geological Fm	Classification	Graphic Log	or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Cond	Consistency/ Relative Densi	Weathering	EW VW	MS Estimated S Rock Strer	ES RQD (%)	20	60 Defect	⁶⁰⁰ (mm)	/ ROCK MASS DEFECTS: Depth Type, Inclination: Roughness, Texture, Aperture Coating	, S, 2,	Piezomete
F					Fill	ML	× × × × ×	FILL: SILT with some clay and fine to medium- grained sand, angular gravel and trace rootlets; dark	W	VS S										
- 0.3 - 0.4 - 1 - 1	S]]	35				SM	<u>x. •. ×</u>	brown,very soft, wet, low plasticity Fine sandy SILT; brown soft, wet, no plasticity Silty fine to medium-grained SAND; brown, wet, loose.		<u>'L'</u>										
<u>1</u> - - -								Coreloss (Approx. 0.9 m) In contact with highly weathered rhyolite (appears crumbled, light brown) [poss. volcanic ASH?]					88					-Joint set (1), Closely s	paced, clined,	1-
- - - - - -		70						Moderately weathered, fine to medium- grained, purplish grey RHYOLITE FLOW; moderately strong; with very closely spaced dark banding and widely spaced, white banding			MW			42				 - narrow - moderately na Iron staining and white mineralisation - Joint at 1.58-1.87 Sub vertical, undulating, rou Manganese and Iron st + white mineralisation -No push tube at 2m (to 	igh, aining xo hard)	2-
0/8/17 6								from 2.38m: becomes highly weathered, white, weak to very weak			HW						<u></u>	-NOTE: crushed rock at 2.4 m broken in situ -2.42-2 washed off soft materi crushed zone	.43 ial or	
ER 1.5.GDT 1	ring				lite - Lava			Approx. 0.5 m coreless above 3.0 m						108				 Host circulation at 3m 		3- - - -
TEMPLATE V	HQ Co	88			unga Rhyo			from 4.15m: becomes highly weathered-completely			HW-									4-
BPJ NZ GINT DATA⊺		95			Homu			weathered, whitish grey, weak to very weak NOTE: drilling after 4.5 m very slow			CW MW- SW			87				- Joint set (1) from 4.5 staining more pronou with some defects - Joint set (1) defect from surrounding rocks, str iron staining	iron nced om 5.5 rong	5-
ETE DRAFT.(91 1 1 1 1								from 4.6m: becomes moderately weathered-slightly												
F3 HB COMPL								weathered, purplish grey, moderately strong						73						
		105												100						● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
]					\vdash		Termination Depth = 7.5m,	-	\vdash				+	+	- 53				<u>ece</u> l <u>-</u>
PRO.																				- 8-
NZ LIB																				
137083																				-
ALT 5																				9-
LOG NZ																				-
EHOLE																				-
BOF																				10-

G	HD	GI	HD	Lir	nit	ed		BOREHOLE W PO Box 6543	vith	Pi	ezc	b LOG	i	Site Identi	fication: AP10	a
P	roje	ect:		F	Proje	ect	Quatti	¹ Auckland 1141 O Coordin	nates	s: Re	fer to	attached	Table	•	Sheet 1 o	f 2
C S	lien ite:	t:		C V	Oce Vail	ana ni -	Gold TSF3	Ltd Elevati Comme	on: nced	Refer I: 30-	to at May-	tached Ta 17	ible C	Contractor:	Total Depth: 7	19.5m
J	ob N	No.:		5	51/3	708	3	Comple	ted:	30-N	lay-17	7			Longody INA	
S	hear bre E	Vane Diam	: e: eter	(mm	nac 1): 9	6	ay	Comments:)						Processed: AS Checked: HB	
, Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	⊲Water	Geological Fm	Classification	× Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	EW W S S S S S S S S S S S S S S S S S S	ES RQD (%)	20 60 Defect 200 Spacing 600 (mm)	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
_ 0. _ 0.	1 0 3 0				Fill	ML	\hat{x} \hat{x} \hat{x} \hat{x}	SILT with some clay and fine to medium-grained sand, angular gravel and trace rootlets; dark brown,very soft, wet, low plasticity	W	V3 S						
- 0. - 1 	4 D	35						Fine sandy SILT; brown soft, wet, no plasticity Silty fine to medium-grained SAND; brown, wet, loose Coreloss (Approx. 0.9 m) In contact with highly weathered rhyolite (appears crumbled, light brown) [poss. volcanic ASH?]							-Joint set (1), Closely spaced,	
883. NZ LIB_PROJECT QUATTRO - TSF3 HB COMPLETE DRAFT.GPJ_NZ GINT DATA TEMPLATE VER 1.5.GDT_10/8/17 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	HQ Coring	70 88 95 105 98			Homunga Rhyolite - Lava		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Moderately weathered, fine to medium- grained, purplish grey RHYOLITE FLOW; moderately strong; with very closely spaced dark banding and widely spaced, white banding from 2.38m: becomes highly weathered, white, weak to very weak Note: logging finished at 3m from 3.6m: becomes moderately weathered, purplish grey, moderately strong to weak from 4.15m: becomes whitish grey, weak to very weak NOTE: drilling after 4.5 m very slow. Brecciated 4.5 - 5.5 m. Weathered, purplish grey, moderately strong			MW MW MW MW		0 58 84 87 73 100		 Joint at (1), Closely spaced subhorozanti agenty included; undualing-stepped; rough ery narrow- moderately narrow, inon staining and white mineralisation Joint at 1.58-1.87 Sub vertical; undualing; rough, a vertical; undualing; rough, a vertical; undualing; rough, a vertical; undualing; rough, a vertical; undualing; a vertical; undualing; a vertical; undualing; a vertical; undualing; a vertical; undualing; a vertical; undualing; a vertical; a vertical; undualing; a vertical; a ve	
BOREHOLE LOG NZ ALT 51: 51 1 1 1 1 1 1 ∞ 1 1		98											63		-Vein at 8.85- 9.0 m, Very steepy inclined, unddating to planar, smooth, very narrow -Joint set (1) becontely indined, unddating-planar, smooth to rough, very narrow to narrow	• • 9 • • 9

G	HD	G	HD	Liı	nit	ed		PO Box 6543	vith	Pi	ezo) L	.OG	ì	Site Ider	ntif	fication: AP10	a	
P C S J	roje lien ite: ob N	ect: t: No.:		F C V 5	Proje Dcea Vail	ect (ana ni - ⁻ 708	Quattr Gold TSF3 3	Auckland 1141 COCoordin Ltd Elevati Commo Commo	nates on: F encec eted:	: Ref Refer 1: 30- 30-N	fer to to att -May- 1ay-17	atta ach 17 7	ched ⁻ ed Tal	Table ble C	Contracto	r:	Sheet 2 of Datum: Mine (Total Depth: 1 Perry Geotech	2 1000 9.51	0 m) m
Ec Si Bo	quipr near ore D	ment Vane Diamo	: e:	JD [.]	Tract	tor R	ig	۔ Inclination: -9 Comments:	0								Logged: JM Processed: AS Checked: HB		
Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	EW VW I	W Estimated S Rock Strength VS	es RQD (%)	20 60 Defect 200 Spacing 600 (mm)	2000	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer	
	HQ Coring	98 100 99 90 103 100			Homunga Rhyolite - Lava			10.4 m: possible tuff layer 100 mm thick from 10.5m: slightly weathered, moderately strong-strong, closely spaced to moderately widely spaced from 11.38m: becomes brownish grey			SW			93 91 62 84 70 80			 -Vein at 10.31 in 5 cm wide white (weathered) phenocrysts, moderately narrow, weak, rough Vein/Joint at 11.20-12.11, Very steeply inclined, narrow- moderately narrow, undulating, smooth, between the state of the state velocity of the state of the state of the state velocity of the state of the state velocity of the state of the state velocity of the state of the state of the state velocity of the state of the state of the state velocity of the state of the state of the state velocity of the state of the state of the state velocity of the state of		11- 12- 13- 14- 15- 16- 17- 18- 18-
								Termination Depth = 19.5m,											20-

D	Gł	HD	Lir	nit	ed		BOREHOLE W	/ith	Pi	ezo	b LOG		Site Identi	fication: AP1	1
ojec ent: e: o No	ct: : 0.:		F C V 5	Proje Dcea Vail 51/3	ect (ana ni - ⁻ 708: tor R	Quattr Gold TSF3 3	Auckland 1141 C Coordin Ltd Elevatio Comme Comple	nates on: F enced eted:	:: Re Refer I: 06- 06-Ji	fer to to att Jun-17	attached ached Tat	Table ble C	Contractor:	Sheet 1 of Datum: Mine (Total Depth: 7 Perry Geotech	f 1 1000 m) 7.5m
ar V e Di	/ane	: eter	(mm	n): 90	6	9	Comments:	,						Processed: AS	
Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	EW W MS Estimated S S S Rock Strength	ES RQD (%)	20 Defect 20 Spacing 200 (mm)	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
HQ Coring	81 100 95 93			Homunga Rhyolite - Lava Ash TS		* * * * 555555555555555555555555555555	TOPSOIL: SILT with minor fine to coarse sand, trace clay and rootlets; dark brown to black, very soft, wet, poorly- graded, low plasticity to no plasticity 0.28: VOLCANIC ASH. Silt with minor fine to medium grained poorly graded sand, trace clay; brown, soft, wet, low plasticity Completely weathered, fine to medium grained, brownish grey RHYOLTE; extremely weathered; breaks down with pressure to fine to coarse SAND with some fine to coarse, poorly graded angular gravel with minor silt, firm in cohesive dominant areas and loose granular zones, wet from 0.9m: becomes weak to very weak from 1.79m: becomes extremely weak to very weak, breaks down to fine to coarse GRAVEL, minor fine to coarse sand, trace silt, loose to medium dense from 2.02m: breaks down to fine to coarse gravelly SAND with some silt; loose from 2.31m: becomes highly weathered to completely weathered, weak to moderately strong 3.09m: becomes moderately strong 4.67m: moderately strong, grey, weak to moderately strong 4.67m: moderately strong, grey, moderately weathered from 5.8m: trace brownish lron Staining	w		C ≥ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		33 64 50 55		 -Joint/Break from 0.7-2.88, sub hotizontal, very narrow, undulating, smooth, very along waknesses or bedding) Joint at 1.5 m, steeply inclined, undulating, smooth, very narrow, Iron Staining -Too hard for push tube @ 2.0 m -Joint at 2.42 m, moderately inclined, undulating, rough, narrow, very manual to stepped, smooth to rough, very narrow, gev, wakening penetrated in mort of cases and statistical or stepped, smooth to rough, very narrow, gev, wakening penetrated in mort of cases and statistical or stepped, smooth to rough, very narrow, gev, wakening penetrated in mort undulating smooth, very doesely spaced sub hortcontal, undulating to stepped, smooth to rough, very closely spaced to cases gravel + cobbles -Joint at 4.75, gently inclined, undulating, smooth, Iron Staining -Joint @ 6.54-6.58; Very steeply inclined, undulating, smooth, very narrow, rev y exp narrow, rev y spaced -Joint @ 6.54-6.58; Very steeply inclined, undulating, smooth, very narrow, Iron Staining -Ende at 7.5, a 4 cm vein with white mineralizatin, sub vertical, very narrow, undulating, smooth 	
	jec ant pound minung methods and pound methods a	GF ject: ipment: ar Vane Diamon 100 95 93 95 93	GHD ject: in running method point for the second	GHD Lin iject: F ininiug method F ininiug method F ipment: JD ar Vane: F ar Vane: F ar Vane: F 100 81 100 95 95 93 93 93	GHD Limit iject: Project: image: Strain of the strain of	OHD Limited ject: Project iz Oceana iz Stin No.: S1/3708 ipment: JD Tractor R arVane: Stin arvan: Scoolada (w) Bibort (Casing (w) Multide 100 Antinual Mettrod 100 Antinual Mettrod	GHD Limited iject: Project Quattrest intert: OceanaGold ivers: Statistics No.: 51/37083 ipment: JD Tractor Rig ar Vane: Biameter (mm): 96 Image: Statistics Multer 1000 Multer 995 Multer 995 Multer 993 Multer 993 Multer 993 Multer 993 Multer 993 Multer	GHD Limited Index 843 Auckland 1141 Ject: Project Quattro Coordination Jusci: OceanaGold Ltd Elevation Structure Coordination Comments No.: 51/37083 Comments Diametric (mm): S8 Comments Comments Image: Structure (mm): S8 SOL DESCRIPTION: (Soll Code), Soll Management Soll DESCRIPTION: (Soll Code), Soll Management Image: Structure (mm): S8 Soll DESCRIPTION: (Soll Code), Soll Management Soll DESCRIPTION: (Soll Code), Soll Management Image: Structure (mm): S8 Soll DESCRIPTION: (Soll Code), Soll Management Soll DESCRIPTION: (Soll Code), Soll Management Image: Structure (mm): S8 Soll DESCRIPTION: (Soll Code), Soll Management Soll DESCRIPTION: (Soll Code), Soll Management Image: Structure (mm): S8 Soll DESCRIPTION: (Soll Code), Soll Management Soll DESCRIPTION: (Soll Code), Soll Management Image: Structure (mm): S8 Soll DESCRIPTION: (Soll Code), Soll Management Soll DESCRIPTION: (Soll Code), Soll Management Image: Structure (mm): S8 Soll DESCRIPTION: (Soll Code), Soll Management Soll DESCRIPTION: (Soll Code), Soll Management Image: Structure (mm): S1 Image: Soll DESCRIPTION: (Soll Code), Soll Management Soll DESCRIPTION: (Soll Code), Soll Management	GHD Limited PO Box 6543 Auckland 1141 incr. Project Quatro Coordinates Elevation: E incr. OceanaGold Ltd Elevation: E incr. OceanaGold Ltd Elevation: E incr. Statustics Commence Completed: incr. Statustics Increator incr. Statustics Commence Completed: incr. Statustics Comments increst Statustics Comments </td <td>GHD Limited Project Quattro Conditionation Pict: Project Quattro Conditionation Conditionation Pict: Vision Conditionation Conditionation Conditionation Pict: Standard Conditionation Conditionation Conditionation Pict: Standard Conditionation Conditionation Conditionation Pict: Standard Conditionation Conditionation Conditionation Conditionation Pict: Standard Conditionation Conditionation Conditionation Conditionation Conditionation Pict: Standard Conditionation Cond</td> <td>FOR Limited Project Quattro Approximation Project Quattro Approximation Project Quattro Approximation Constrained and the experiment of the constraint of the consthele (the constr</td> <td>PORCHARDENSING PROVIDENT P</td> <td>BOREHOLE with Piezo LON POID Limited POids 6543 Mulcikind 1111 Piece: Project Quattro: Continuence: Refer to attached Table Piece: Wathin - TSF3 Continuence: Oddata Store: S137083 Continuence: Oddata Image: Wathin - TSF3 Continuence: Oddata Image: JUL reduce Rig Inclination: Piece: Piece:<</td> <td>PORCEPADE Initial Project Quality Project Quality</td> <td>BOREHOLE with Piezo Lunio Project Quality Project Quality The Project Quality Second and the Constraints Project Quality The Project Quality Second and the Constraints Project Quality The Project Quality Second and the Constraints Second and the Consecond the Const</td>	GHD Limited Project Quattro Conditionation Pict: Project Quattro Conditionation Conditionation Pict: Vision Conditionation Conditionation Conditionation Pict: Standard Conditionation Conditionation Conditionation Pict: Standard Conditionation Conditionation Conditionation Pict: Standard Conditionation Conditionation Conditionation Conditionation Pict: Standard Conditionation Conditionation Conditionation Conditionation Conditionation Pict: Standard Conditionation Cond	FOR Limited Project Quattro Approximation Project Quattro Approximation Project Quattro Approximation Constrained and the experiment of the constraint of the consthele (the constr	PORCHARDENSING PROVIDENT P	BOREHOLE with Piezo LON POID Limited POids 6543 Mulcikind 1111 Piece: Project Quattro: Continuence: Refer to attached Table Piece: Wathin - TSF3 Continuence: Oddata Store: S137083 Continuence: Oddata Image: Wathin - TSF3 Continuence: Oddata Image: JUL reduce Rig Inclination: Piece: Piece:<	PORCEPADE Initial Project Quality Project Quality	BOREHOLE with Piezo Lunio Project Quality Project Quality The Project Quality Second and the Constraints Project Quality The Project Quality Second and the Constraints Project Quality The Project Quality Second and the Constraints Second and the Consecond the Const

G	HD	GI	HD	Lir	nite	ed		BOREHOLE PO Box 6543	E wit	h	Pie	ezc) L	.OG	Ì	Site I	dentif	ication: AP1	1a
		1		_				Auckland 1141										Sheet 1 o	of 3
	roje	ct:		F	Proje Dcea	ect (ana	Quatti Gold	TO Coo Ltd Ele	ordinate vation:	es: Re	Ref efer t	er to o att	atta ach	ached ed Ta	Table ble			Datum: Mine	(1000 m)
Si	te:	ι.		v	Vair	ni - 1	TSF3	Cor	mmence	۰h،	06-	lun_	17		 (Contra	-tor	Total Depth: Perry Geotech	21.0m
Jo	b N	lo.:		5	1/3	708	3	Cor	mpleted	l: ()6-Ju	in-17	,			Jonna			
Ec	luipr	nent	:	JD .	Tract	or R	ig	Inclination	: -90									Logged: JM	
Sh	iear '	Vane): otor	(mm	N. 04	3		Comments	:									Processed: AS	
Ē		2 R			ŋ. 50			SOIL DESCRIPTION: (Soil Code), Soil	5	ξT								Checked: HB	
Elev.]		very ('	(m)		_	E		Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity	nditik		/ sity			d engtŀ				TESTS & SAMPLES	ter
۳ <u>)</u>	thod	Reco	asing		al Fr	catio	Log	or grain size, secondary components, structure. (Geological Formation)			ency Den	ing.		nate Stro		t l	ĥ	ROCK MASS	omet
th (r	ng Me	Run /	ort / C	er	logic	ssific	phic	/ ROCK DESCRIPTION: Weathering, colour, fab	ric,		nsist(ative	ather		Estir Rock	(%)	Defe	(Lum)	Type, Inclinations, Roughness,	Piez
Dep	Drill	Core	Supt	Wat	Gec	Cla	Gra	ROCK NAME (Formation Name)	Ň		Col Rel	We	NN NN	~Ss SS SS SS	RQI	20 60	600 2000	Texture, Aperture, Coating	
E					TS	ML	× × × ×	TOPSOIL: SILT with minor fine to coarse sand, trace and rootlets; dark brown to black, very soft, wet, poo araded low plasticity to po plasticity	e clay V vrly-	V	VS								
Ē					Ash		× × ×	0.28: VOLCANIC ASH. Silt with minor fine to mediu grained poorly graded sand, trace clay; brown, soft,	m wet,		3								
- 0.7 - 0		81					$(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Completely weathered, fine to medium grained,	with	┥								 -Joint/Break from 0.7-2.88m, sub horizontal, very narrow, updulative, emergina very 	
Ē								pressure to fine to coarse SAND with some fine coarse, poorly graded angular gravel with minor	to r silt,			CW						closely spaced (likely breaks along weaknesses or bedding)	
Ē								firm in cohesive dominant areas and loose gran zones, wet from 0.9m: becomes weak to very weak	iular									-Joint at 1.5 m, steeply	
Ē																		very narrow, Iron Staining	
2								from 1.79m: becomes extremely weak to very w breaksdown to fine to coarse GRAVEL, minor fil coarse sand trace silt loose to medium dense to	veak, ne to from									- 100 hard for push tube @ 2.0 m	2
Ē		100						2.02m: breaks down to fine to coarse gravelly S with some silt; loose	SAND		ŀ	HW-			33			-Joint at 2.42 m, moderately	
-								from 2.31m: becomes highly weathered to completely weathered, weak to moderately stro	ng			CW						narrow, weathered, white material, Iron Staining -DB at 2.52 -Joint at 2.62 steeply inclined	
10/8/1 I∞ ¹ -																		undulating, smooth, very narrow to narrow, weathered, white mineral + Iron -3.0, 3.25, 3.5, 4.07, 4.5m.	• • 3-
GDT							$\langle \vee \vee \vee \rangle$	from 3.09m: becomes moderately weathered, g very weak	rey,		Ì	MW						subhorizontal to gently inclined, undulating to stepped, smooth to rough, very parrow, grey, weakening	
ER 1.5								from 3.30m: becomes brownish grey, weak to moderately strong										penetrated into rock	
		95						inouriday storig							64			-Breakset from 3.85m, very closely spaced, sub	
																		horizontal, undulating to stepped, smooth to rough	4-
ATA T					/a			4 67m ⁻ moderately strong grey slightly weather	ed									-Crushed zone from 4.5: becomes coarse	
	ing				- La						ľ	MW						 sand,medium to coarse gravel and cobbles Joint at 4.75, gently inclined.undulating.smooth. 	
SZN _	Q Co				yolite			from 5.8m: trace brownish Iron Staining										Joint at 5.15: becomes gently	5
T.GP	Т	95			a Rh										50			inclined, very closely spaced to closely spaced	
DRA					bunu														
PLETE					Hor														6
COM							$\langle \vee \rangle \vee \rangle$												
- 12 - 12 - 12																		-Joint @ 6.54-6.58: Very steeply inclined, undulating, smooth, very narrow, Iron	
- 15 - 12		93													55			Staining	
CT QL								from 7.6m: moderately to slightly weathered, are	eas			MW						-Ends at 7.5; 4 cm vein with white mineralization, sub vertical, narrow, undulating, smooth -Joint set from 7.68, 7.76.	
ROJE								with light grey staining										7.78,8.27, very closely spaced to moderately widely spaced -7.8-7.95 Vein with white	
≗ - -		100																mineral, very steeply inclined, undulating, rough, very narrow (closed) -8.22-8.8 Thin vein, white	8-
83 NZ		100													01			mineral, sub vertical, undulating, rough, very narrow (closed)	
51370																			
Z ALT																			9
N 90																			
		93													10				
BORE																			

			CI	חר	l ir	nit	od		BOREHOLE w	/ith	Pi	ezo	LOG	ſ	Site Identi	fication: AP1	1a
		2	G				cu		PO Box 6543 Auckland 1141							Sheet 2	of 3
	Pr	oje	ct:		F	Proje	ect (ana	Quattr Gold	O Coordi	nates on:	s: Re Refer	fer to to at	attached	Table ble	•	Datum: Mine	(1000 m)
	Sit	te:			V	Vair	ni - ⁻	TSF3	Comme	encec	I: 06-	Jun-	17	c	Contractor:	Total Depth: Perry Geotech	21.0m
	Jo	b N	lo.:		5	1/3	708	3	Comple	eted:	06-Jı	un-17					
	Equ She	uipr ear `	nent Vane	:	JD -	Tract	tor R	ig	Inclination: -90)						Logged: JM Processed: AS	
	Boi	re D	iame	eter	(mm	n): 96	6		Comments:	1 -						Checked: HE	3
	Bueptn (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	EW WW MS S Cock Strength	E8 RQD (%)	20 60 Defect 200 Spacing 2000 (mm)	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
Ē	0		93									MW		76			
Ē									from 10.5m: Moderately strong to weak								
	I		97						from 11.6m: becomes brownish grey with light grey,					53		-11.04-11.39 Break set, very closely spaced, sub horizonta stepped, rough, very narrow t tight -Joint at 11.38, sub horizonta stepped, rough, very narrow, regethered minerals) -Joint at 11.55 as above but Steeply Inclined -Crushed zone at 11.68-12.	11-
- 12 -	2								NOTE: from 12m, no circulation							fine to coarse grained gravel and minor cobbles -from 12 m break set, closely spaced, smooth, very narrow to narrow, stepped, smooth,	12
Ē									from 12m: weathered veins with white phenocrysts							light grey staining -Joint at 12.11, 12.6, gently inclined, very narrow, undualting to stepped, rough, Iron staining, and traces of cla	v
ER 1.5.GDT 10/8/17	3		96						from 13.15m: becomes brownish grey					51		-Crushed zone between 12.86-13 m: fine to coarse poorly-graded gravel, light gre -NOTE: Preeks from 13.15-14.53 =DB	, 13 <u>-</u>
int data template v I I I I I I I I I I I I I I I I I I I	1	ing	74			yolite - Lava								69			14 -
3 COMPLETE DRAFT.GPJ NZ G	5	HQ Cor	107			Homunga Rh			DRILLERS NOTE: Additional core at 17 m likely due to shorter runs at 14 m which weren't all drilled at the 16 m run					109		-Break/Weakness: 15.29: Sub horizontal. Undulating to Stepped. Rough 15.39: Very Narrow to Tight -DB at 15.87 -Joint at 16.0, gently inclined, undulating, rough, very narrow tros Tstaining, grey att -DB at 15.2 -Joint at 16.5 - 5.4 e. Very	15
83_NZ LIB_PROJECT QUATTRO - TSF3 HI	3		114						from 18.15 m: light grey banding					57		 steeply inclined, very narrow, undiating, smooth, associate DBs. Light torown, sill/clay inthe Joint at 16 56-17.57: Subb undiatinery Narrow, undiatinery Narrow, sill/clay into the second second sill/clay into the second se	17-
BOREHOLE LOG NZ ALT 51370)		95											86		 vertical, very narrow, to tight, unduilating, smooth, light brown sit/ticlay infill John at 18,87:19.4 as above very narrow John at 18,87:19.4 as above very narrow John at 19,07: Steeply incline to very steeply inclined, very 19.15 Unduilating, smooth, trac light brown, sit/clay and fron -Hairline from 19.5:20.25 and 70.4:20.6 with sit clay infil -Weakness break 19.7, 20.17, 20.4 Gently Inclined, very narror to tight 	• • • • • • • • • • • • • • • • • • •

2			GI	ЧЬ	l iı	mit	ed		BOREHO	OLE wit	h I	Pie	ezc) L	0.	G	ſ	Sit	e l	deı	ntif	ication: AP	11a	1
		2					cu		Auckland 1141													Sheet	3 of 3	3
	Pr Cli Sit	oje ien te:	ct: t:		F C V	Proje Dce Vail	ect ana ni -	Quatt Gold TSF3	ro Ltd 3	Coordinate Elevation: Commence	es: R∉ ed:	Ref efer 06-、	fer to to at Jun-1	att tach	ach ned	ed 1 Tab	Table lle C	on	tra	cto	r:	Datum: Mi Total Dept Perry Geotech	ne (10 h: 21	000 m) .0m
	Jo	b N	lo.:		5	51/3	708	3		Completed	: 0	6-Ju	ın-17									,		
	Eq	uipr	nent	:	JD .	Trac	tor F	Rig	Inclin	ation: -90												Logged:	JM	
	Bo	re D)iame	eter	(mm	ı): 9	6		Comr	nents:												Checked:	HB	
	Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	<	SOIL DESCRIPTION: (Soil Code), Name [minor MAJOR], colour, stru [zoning, defects, cementing], plast or grain size, secondary compone structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colo ROCK NAME (Formation Name)	Soil Contractions of the second secon	Consistency/	Consistency/ Relative Density	Weathering	EW	MS Estimated	VS ES	RQD (%)	20	60 Defect	600 (mm)	2000	TESTS & SAMPLE / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	S	Piezometer
	1	HQ Coring	102										MVV				102						0	
Z ALT 5137083_NZ LIB_PROJECT QUATTRO - TSF3 HB COMPLETE DRAFT.GPJ NZ GINT DATA TEMPLATE VER 1.5.GDT 10/8/17	- ⁴ 210 2 3 4 5 6 7 8 9								Termination Depth = 21m,															22 23 24 24 25 26 26 27 28 28
BOREHOLE LOC	0																							30-

G	HD	GI	HD	Liı	mit	ed		BOREHOLE W PO Box 6543 Auckland 1141	/ith	Pi	ezo	b L(CG		Site	Identi	fication: WR	S04
Pi Ci Si Jo	roje lien te: ob N	ect: t: No.:		F C V 5	Proje Dcea Vaił 51/3	ect (ana(ni 708	Quattr Gold I 3	To td Comme Comple	enced eted:	l: 08- 08-Ji	Jun- un-17	17			Contra	ictor:	Sheet Datum: Total Depti Perry Geotech	ı of 1 n: 6.0m
Ec Sh Bc	uipr ear ore D	nent Vane Diame	: e: eter	JD (mn	Tract	tor R 6	ig	Inclination: -90 Comments:)								Logged: . Processed: / Checked: /	IM/HB AS HB
Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	w w Estimated	S Rock Strength	ES RQD (%)	20 60 Defect	200 Spacing 600 (mm) 2000	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
- - - - 1 - - - - - - - - - - - - - - -	ush tube HQ Coring	106			Alluvium	ML	× × × × × × × × × × × × × × × × × × ×	TOPSOIL: SILT with minor clay and trace rootlets; dark brown, soft, wet, low plasticity SILT with minor fine sand; brown, iron staining, firm to stiff, moist, no plasticity from 0.56m: becomes fine, some fine to medium poorly graded sand with minor clay from 0.96m: becomes some clay with trace fine sand, soft Silty fine to medium SAND; brown, loose, wet	W M W	S F-St F S							Push tube	1-
ETE DRAFT REV 1 FINAL.GPJ NZ GINT DATA TEMPLATE VER 1.3.GDT 30/4/19 51 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	HQ Coring	83 84 76			Coromandel Volcanics	ML	××	(benaves conesively), poony graded SILT with some fine sand and trace clay; light grey, soft, moist, no plasticity-low plasticity, (Ash?) Moderately weathered, fine to medium fabric, dark grey DACITE; strong; closely spaced fractures Completely weathered to residual soil, fine to medium fabric with mottling, reddish brown DACITE; very weak-extremely weak; breaks down with pressure to fine to coarse well-graded sand with some silt and minor fine angular gravel from 3.09m: becomes completely weathered, light brown, weak-very weak from 3.46m: becomes completely weathered - residual soil, brown, very weak-extremely weak from 4.5m: becomes completely weathered, extremely coarse to very coarse SAND, banding that form 4.96m: banding ceased	М	S	MW CW- RS CW CW- RS CW			54 43 26			-Crushed zone at 1.94-2: fine to coarse angular present angular present angular present strong ion annoot, strong ion coarse angular provide the strong ion coarse angular provide the strong ion coarse angular coarse angular	
OREHOLE LOG NZ ALT 5137083 NZ LIB PROJECT QUATTRO - WRS HB COMPLE 3g' + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +							· · · · ·	Termination Depth = 6m,										

BOREHOLE with Piezo LOG

G	HD	GI	HD	Lir	mit	ed		BOREHOLE W PO Box 6543	vith	Pi	ezo	b L	OG		Site lo	dentif	ication: WRS	604 a	a
								Auckland 1141									Sheet 1	of 3	
Pi C Si Jo	roje lien ite: ob N	ect: t: No.:		F C V 5	Proje Dcea Vail 51/3	ect (ana(ni 708	Quatti Gold I 3	ro _td Comme Comple	enced eted:	l: 08- 08-JI	-Jun- un-17	17		C	Contrac	tor:	Datum: Total Depth Perry Geotech	: 21.0)m
Ec	quipr	nent	:	JD .	Tract	tor R	ig	Inclination: -90	0								Logged: J	M/HB	
Sh	near	Vane): htor	(mm	<u>م</u> .	6		Comments:									Processed: A	S	
			ster	(11111	ŋ. 9			SOIL DESCRIPTION: (Soil Code) Soil	۲					<u> </u>			Checked: ⊢	IB	
Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%	Support / Casing (m)	Water	Geological Fm	Classification	<pre> Graphic Log </pre>	Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Conditio	Consistency/ Relative Density	Weathering	EW VW Fetimated	MS Rock Strength	ES RQD (%)	20 60 Defect 200 Snacing	600 (mm)	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer	
- - - - - - - -	ube HQ Coring	106			Alluvium	ML	^ × × × × × × × × × × ×	TOPSOIL: SILT with minor clay and trace rootlets; dark brown, soft, wet, low plasticity SILT with minor fine sand; brown, iron staining, firm to stiff, moist, no plasticity from 0.56m: becomes fine, some fine to medium poorly graded sand with minor clay from 0.96m: becomes some clay with trace fine sand,	M	F-St F S	-								· · · · · · · · · · · · · · · · · · ·
- 1.3 [ush tu					SM	<u>×</u> ×	soft Silty fine to medium SAND; brown, loose, wet	W	'L'								•	•
= 1.5 = 0	Ā					ML	ו • × × × ×	(behaves cohesively), poorly graded SILT with some fine sand and trace clay, light grey,	М	s									
- 1.8 2							× × × × × × × × × × × × × × × × × × ×	soft, moist, no plasticity-low plasticity, (Ash?) Moderately weathered, fine to medium fabric, dark	\vdash		MW						-Crushed zone	1	• -
		83						Completely weathered to residual soil, fine to medium fabric with mottling, reddish brown DACITE; very weak-extremely weak; breaks down with pressure to fine to coarse well-graded sand with some silt and minor fine angular gravel from 3.09m: becomes completely weathered, light brown, weak-very weak from 3.46m: becomes completely weathered - residual soil, brown, very weak-extremely weak			CW- RS CW- RS			43			gravet, gerby impact, is thorg iron smooth, is thorg iron smooth, is thorg iron -Push tube at 2.00m to o hard -Joint at 2.07 of there is 2.17 of there is		3
	HQ Coring	76			nandel Volcanics			from 4.5m: becomes completely weathered, extremely coarse to very coarse SAND, banding that forms planes of weakness, light brown, weak to very weak from 4.96m: banding ceased						26			 A - 496: Externey closely spaced to du- vision of the spaced to du- science of the spaced to du- gently inclined, undulating, rough, vels, storog Manganese Joint at 5.41: Subhorizontal, undulating, rough, very rarrow, storog Manganese 	•	5
		80			Coror			from 6.21m: becomes completely weathered- residual soil, brown with occasional black staining, extremely weak, breaks down to soil as above (@21m) from 6.97m: becomes compeletely weathered, weak- very weak, light brown with mottling			CW- RS CW			21			 Joint at 6:13: orderburgtowerkooth, orderburgtowerkooth, wery narrow, Manganese -Joint at 6:19: Genty inclined; Brough, very narrow, Manganese -8, 20-10.5: Too weathered to discern joints 		
		82						from 8.43m: completely weathered-residual soil, extremely weak-very weak, brown from 8.73m: completely weathered, weak-very weak, light brown			CW- RS CW CW			51				•••••	8 9 9
		83						from 9.68m: becomes residual soil , extremely weak, breaks down as above			RS			41				•	• 10-

6	iH		GΗ	D	Lir	nit	ed		PO Box 6543 Auskland 1111	/ith	Pi	ezo) LOG		Site Identi	fication: WF	RS04a
	Pro Clie Site Job	ject ent: ent:	:		F C V 5	Proje Ocea Vaih 1/3	ect (ana) ni 708	Quattr Gold I 3	-Auckiand 1141 O _td Comme Comple	enced	l: 08- 08-Ji	Jun-1	17		contractor:	Shee Datum: Total Dep Perry Geotech	t 2 of 3 oth: 21.0m
	Eau	pme	nt:		JD -	Tract	or R	ia	Inclination: -90)						Logged:	JM/HB
	She	ar Va	ne:		02			.9	Comments:	-						Processed:	AS
	Bore	Dia	met	er ((mm	ı): 96	6 I							-		Checked:	HB
Denth (m)/ [Eloy]				Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Conditior	Consistency/ Relative Density	Weathering	MS Rock Strength	RQD (%)	20 60 Defect 200 Spacing 2000 (mm)	TESTS & SAMPL / ROCK MASS DEFECTS: Depth Type, Inclination Roughness, Texture, Aperture Coating	Bandaria (1997) Bezometer
Ē	0	8	3					$\langle \rangle \rangle \rangle$				RS		41			
30/4/19		8	0						from 10.5m: becomes completely weathered, very weak from 10.6m: becomes residual soil, extremely weak from 10.69m: becomes completely weathered, very weak			G₩ RS CW		55		Extremely Weathered (EW) material rot courted RCD0 -Only (7016) observed (Nor) et in breaks) -Crusted zone gat -Crusted zone gat Subhorizontal, stepped, rough Cause by official Subhorizontal, stepped, rough Subhorizontal, stepped, rough status (1.35-11.35) Subhorizontal, stepped, rough status)	• •
Z GINT DATA TEMPLATE VER 1.3.GDT 1 _동 i 1 ₆ i		8	5			(0			from 12.66m: becomes completely weathered- residual soil, extremely weak from 13.1m: becomes completely weathered, weak-very weak from 13.5m: becomes highly weathered			CW- RS CW HW		67		either crushed zone -NOTE: DB had not been included in RQD	13
0MPLETE DRAFT_REV 1 FINAL.GPJ N - 1 등 1 - 1 - 1 - 1 - 1 등 1 - 1 - 1 - 1			05			Coromandel Volcanic			from 15.7m: becomes weak			HW		92		-DB at 14.5- 14.56 -Joint at 15.03: Steeply inclined, narrow, unidating, nough, Manganese staining	15- 16-
		8	0											70		 -Crushed zone at 17 2-17 32: Subhorizontal, stepped, rough, medium to coarse gravet, no stairing present -Joint at 18.08: Steeply inclined to very steeply inclined stairing -Joint at 18.38: Steeply inclined to very steeply inclined wery steeply inclined -Joint at 18.38: Steeply inclined to very steeply inclined rough, no stairing present 	• 117 • 117 • 118 • 118
30REHOLE L		9	9						from 19.5m: becomes highly weathered-moderately weathered, weak-moderately strong			HW- MW		87			• • • •

BOREHOLE with Piezo LOG

G	HD	G	HD	Liı	mit	ed		BOREHOLE W	vith	Pi	ezo		-0	G	ſ	Sit	e l	dent	ification: WR	S04a
	roject: Project Quattro																Sheet	3 of 3		
Pi C Si Jo	roje lien ite: ob N	ect: t: No.:		F C V 5	Proje Dce Vail 51/3	ect (ana hi 708	Quatti Gold 3	ro Ltd Comme Comple	nced	I: 08- 08-Ji	Jun- Jun-17	17			c	Cont	trad	tor:	Datum: Total Dept Perry Geotech	h: 21.0m
Ec	quip	nent	:	JD	Trac	tor F	Rig	Inclination: -90)										Logged:	JM/HB
Sh	near Dre F	Vane): eter	(mn	n) . 0	6		Comments:											Processed:	AS
Depth (m)/ [Elev.]	Depth (m)/ [Elev.] Drilling Method Core Run / Recovery (%) Support / Casing (m) Water Geological Fm							SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	EW VW	Ms Estimated		RQD (%)	20	200 Detect	²⁰⁰⁰ (mm)	TESTS & SAMPLE / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
- - - - - 21	HQ Coring	99						from 20.3m: becomes moderately weathered			HW- MW MW				87					
								Termination Depth = 21m,												21 22 23 24 25 25 26
																				27 · 28 ·
																				29·
30																				30

GI		G	HD	Liı	nit	ed		BOREHOLE W	ith	Pi	ez	o L	.00	3		Site	Ident	ification: WF	RS05
	2							Auckland 1141										Sheet	1 of 1
Pr Cl	oje ien	ct: t·		F	Proje Dcea	ect (ana	Quatt Gold	tro Ltd										Datum:	the C.O
Si	te:	••		۷	Vaił	ni - '	Wast	e Rock Stack Comme	nced	: 09-	Jun	-17			Co	ontra	ctor:	Perry Geotech	in: 6.0m
Jo	b N	lo.:		5	51/3	708	3	Comple	ted:	09-J	un-1	7						.	
Eq Sh	uip ear	nent Vane	:):	JD	Tract	or R	ig	Inclination: -90										Logged: Processed:	HB AS
Bo	ore C	Diam	eter	(mn	n): 96	3 I			Ē		-	-			_			Checked:	НВ
Jepth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%	Support / Casing (m)	Nater	3eological Fm	Classification	Graphic Log	Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Exercise News)	Moisture Conditio	Consistency/ Relative Density	Neathering	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<pre>/ Estimated // Estimated Rock Strength</pre>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3QD (%)	Defect	00 Spacing 00 (mm)	TESTS & SAMPLI / ROCK MASS DEFECTS: Depth, Type, Inclinations Roughness, Texture, Aperture Coating	Piezometer
- 0.1	1	0		_	0		. X . X	TOPSOIL: SILT, minor fine sand; brown, very soft,	S	vs	-	ш>	≤≥0:	> 0				Joanna	88
- - 0.5	Casinç						× ^ × × ×	SILT, some fine to coarse sand, poorly-graded, trace clay; brown, very soft, saturated, minor rootlets	M										
· · · · · · · · · ·	ush tube HW	91			Alluvium			SILT, some clay, minor fine sand; brown, moist, high plasticity	IVI									-NOTE: Push Tube in 2nd BH (WRS05)	1-
- 1.5 - 0 -						ML	× × × × × ×	SILT, some fine sand and clay; brown, very soft, saturated	S	VS									
- 1.8 0 - 12 		55			S		(++++++++++++++++++++++++++++++++++++	from 1.7m: soft, wet Completely weathered-residual soil, fine to medium grained, reddish grey DACITE; very weak to extremely weak; closely spaced joints (joints not easily distinguished) in CW-RS Soil Silty fine to coarse SAND, poorly-graded, wet, soft to very soft from 3.0m: becomes completely weathered, very weak	• W	S	CW RS				0			-1.8-1.9m NOTE: Encountered rock	2-
	HW Casing	82			Coromandel Volcani		+ + + + + + + + + + + + + + + + + + +				CW RS	-			55			ranganese staining at: 3.15m 3.67m 3.67m 3.63m 3.58m 4.12m 4.15m 4.27m 4.67m 4.67m 5.62m 5.79m	4
- 15 - 1 - 1 - 1 - 1		101					+ + + + + + + + + + + + + + + + + + +	from 4.83m: becomes completely weathered, very weak to extremely weak from 5.09m: becomes very weak from 5.6m: becomes highly weathered, color changed to grey with distinct shade of white			CW				68			-	
6 -							+ + + +	phenocrysts (weathered), slight reddish colour, weak Termination Depth = 6m,						+	+	+			6-
																			7- 8- 9- 10-

6		a G	H	וכ	Lir	nite	ed			π		ezo	DLUG		Site Identi	fication: WRS	05a
	<u> </u>			- 1			- 4		Auckland 1141							Sheet 1	of 3
	Proj Clia	ject: nt·			P	Proje Dce:	ect ana	Quatt Gold	tro Ltd							Datum:	01.0
	Site	:			V	Vaih	ni - '	Wast	e Rock Stack Comme	nced	I: 09-	Jun-	17	c	Contractor:	Perry Geotech	: 21.0m
Ŀ	Job	No.	:		5	1/3	708	33	Comple	eted:	09-Jı	un-17	7				
	Equi	pmer r Vai	nt:	J	I D I	Fract	or R	lig	Inclination: -90)						Logged: H	B
Ľ	Bore	Diar	nete	r (ı	mm): 96	6		Comments:		_					Checked: H	B
Donth /m// [Eloy]	Drilling Method	Core Run / Recovery (%)	Sumort / Casing (m)	() G	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	EW WW BStimated S Rock Strength	RQD (%)	20 60 Defect 200 Spacing 200 (mm)	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
ŧ	0.1 0 	'n					ML	× ×	TOPSOIL: SILT, minor fine sand; brown, very soft, saturated, rootlets present	s	VS						
	Push tube HW Cas	91				Alluvium	MH		SILT, some rine to coarse sand, poony-graded, trace clay; brown, very soft, saturated, minor rootlets present SILT, some clay, minor fine sand; brown, moist, high plasticity	м	F					NOTE: Push Tube in 2nd BH (WRS05)	
ŧ	1.8						ML	× × × × + + + + +	SILT, some fine sand and clay; brown, very soft, saturated from 1.7m; soft, wet	S	VS	0.44	200.000			-1.8-1.9m NOTE:	
10/0/1/ 10/0/1/	U	55	5					+ + + + + + + + + + + + + + + + + + +	Completely weathered-residual soil, fine to medium grained, reddish grey DACITE; very weak to extremely weak; closely spaced joints (joints not easily distinguished) in CW-RS Soil Silty fine to coarse SAND, poorly-graded, wet, soft to very soft			RS		0			• • 2
		82	2					+ + + + + + + + + + + + + + + + + + +	from 3.0m: becomes completely weathered, very weak from 3.53m: becomes completely weathered to highly weathered, weak			CW- RS		55			• • • •
		10	1			canics		+ + + + + + + + + + + + + + + + + + +	from 4.83m: becomes completely weathered, very weak to extremely weak from 5.09m: becomes very weak			CW		68		5.35m 5.62m 5.79m	• • • 5
	HW Casi					promandel Volo		+ + + + + + + + + + + + + + + + + + +	from 5.6m: becomes highly weathered, color changed to grey with distinct shade of white phenocrysts (weathered), slight reddish colour, weak			HW				-Joint at 6.11-6.18m: Gently inclined, fine to coarse angular gravel, fron staining	6
		85	5			Ō		+ + + + + + + + + + + + + + + + + + +	from 6.5m: becomes moderately strong to strong					83			7-
		104	4					+ + + + + + + + + + + + + + + + + + +	from 7.5m: completely weathered to highly weathered, increased red color, weak			CW- HW		91		- Joint at 8.12m: Very steeply inclined, undualing, rough, narow - Joint at 8.26m: Subhorizontagh, undualing, rough - Joint at 8.28m: Gently Indiend, undualing, rough - Joint at 8.28m: Gently Indiend, undualing, rough - Undualing, rough - Undualing to stepped, smooth to rough, Marganese and minor foro, subhorizontal, very narrow 1.2m	81
		99)					+ + + + + + + + + + + + + + + + + + +	from 9.1m: residual soil, SILT, some fine to medium sand, poorly graded, moist, soft to very soft, extremely weak from 9.18m: completely weathered to highly weathered, very weak to weak, grey with shade red staining, weathered grains			RS CW- HW HW		89		 ubhotizoridal (gently inclined, uchdaing, rough, ton staining Joint at 9 Min General Status, and General Status, and modifying, rough, tron and Manganese staining, very nanow Joint at 10.0m, minor (non staining, very narrow 	10-

BOREHOLE with Piezo LOG

						_		BOREHOLE w	vith	Pi	ezc	LOG	ſ	Site Identif	ication: WRS	S05a
G	HD	G	HD	Lir	nit	ed		PO Box 6543 Auckland 1141							Sheet	2 of 3
F C S J	Proje Clier Site: Iob	ect: nt: No.:		F C V 5	Proje Dcea Vaih 51/3	ect (ana(ni 708:	Quattr Gold I 3	o _td Comme Comple	nced ted:	l: 09- 09-Ju	Jun-1 un-17	7	c	Contractor:	Datum: Total Deptl Perry Geotech	n: 21.0m
E	quip	ment	:	JD .	Tract	or R	ig	Inclination: -90)						Logged:	НВ
S	hear Iore	Vane Diam	eter	(mm	n): 90	6		Comments:							Processed: /	AS HB
m)/ [Elev.]	ethod	/ Recovery (%)	Casing (m)		cal Fm	cation	: Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation)	e Condition	tency/ e Density	ring	mated k Strength		ect cing	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth.	zometer
Depth (Drilling M	Core Run	Support /	Water	Geologi	Classifi	Graphi	/ ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moistur	Consist Relative	Weathe	SS ^{SS} SS BSti Roc	RQD (%)	20 20 2000 Defe 5000 (mm	Type, Inclinations, Roughness, Texture, Aperture, Coating	Pie:
E		99					+ + + + + + + + + + + + + + + + + + +	from 9.5m: highly weathered, weak to moderately strong			HW		89		-Joint at 10.2m, Genty inclined,	
Ē	sing	<u> </u>					+ + + + + + + + + + + + + + + +	grained, reddish grey DACITE; very weak to extremely weak; closely spaced joints (joints not easily distinguished) in CIV DO Col							Joint at 10.4m, Subhorizontal, undulating, rough,	
- - 11	HV Ca						+ + + + + + + + + + + + + + + + + + +	distinguished) in CW-RS Soil Silty fine to coarse SAND, poorly-graded, wet, soft to very soft							minor Iron staining, tight -Joint at 11.25m: Subhorizontal, undualting smooth	- - 11_
ŧ		95					+ + + + + + + + + + + + + + + + + + +						91		Joint at 11.5m: Subhorizontal,	
Ē	-	1					+ + + + + + + + + + + + + + + +								undualting, smooth to rough, tight, minor Iron (DB?) -Joint at 11.9m: Gently inclined to	
- 12							+ + + + + + + + + + + +								moderately inclined, undulating to stepped, rough, minor Iron and	12-
Ē							+ + + + + + + + + + + + +								Manganese, tight to very narrow -Joint at 12.5m: Very steeply inclined, undulating,	-
		07					+ + + + + + + + + + + + + + + + + + +	from 12.6m: becomes moderately weathered, color			MW				rough, very narrow to narrow, minor Iron staining -Joint at 12.8m:	
10/8/1		97					+ + + + + + + + + + + + + + + + + + +	change from reddish grey + mottled to light grey, strong					/9		 Genity inclined, undulating to stepped, rough, Manganese and Iron staining 	13-
5.GDT							+ + + + + + + + + + + +	from 13.0m: becomes highly weathered, colour grey- mottling (orange Fe weathering), reddish, weak			HW				-Joint at 13m: Moderately inclined to steeply inclined, planar, smooth to	
/ER 1.							+ + + + + + + + + + + + + + + + + + +								- rough, harrow, iron and Manganese staining -Joint at 13.45m: Sub borizontal	
, ETTE							+ + + + + + + + + + + +								Joint at 13.92m:	14 -
A TEMP		91			ş		+ + + + + + + + + + + + + + + + + + +						91		undulating, rough, tight, Iron staining -Joint at 14.62m: Sub horizontal,	
T DATA					lcanic		+ + + + + + + + + + + + + + + + + +								undulating, smooth, tight, Iron staining, minor Manganese -Joint at 15.3m:	
NIU 15					lel Vo		+ + + + + + + + + + + +								Sub nonzontal, undulating, smooth to rough, tight, Iron staining -Crushed zone	• • • •
GPJ					manc		+ + + + + + + + + + + + + + + + + + +	from 15 2m; modorately weathered light grov, strong			N/NA/				at 16.00-16.04m: Sub horizontal, fine to coarse sand, minor gravel, sub angular	
DRAFT	oring	100			Coro		+ + + + + + + + + + + +	nom 15.5m. moderately weathered, light grey, strong			10100				Iron staining -Joint at 16m: Steeply inclined to very steeply inclined, planar to stepped	
1 – 16 1 – 16	НQ С	108					+ + + + + + + + + + + + + + + + + + +	from 15.9m: highly weathered, dark grey, slight			HW		62		smooth, very narrow, Iron and Manganese staining -Joint at 16.4m:	16-
COMP							+ + + + + + + + + + + +	red,mottled, weak to moderately strong							Sub vertical, stepped, very narrow, Iron and Manganese staining	
RS HB	1	⊢	1				+ + + + + + + + + + + + + + + + + + +	from 16.5m: moderately weathered, grey, strong			MW					
∧- 0217							+ + + + + + + + + + + +									00 - 00-17-
		86					+ + + + + + + + + + + + + + + + + + +						100			
JECT C							+ + + + + + + + + + + +									[20,30]
							+ + + + + + + + + + + +									- 18-
NZ LIE							+ + + + + + + + + + + + + + + + + + +									
37083		407					+ + + + + + + + + + + +						100			
ALT 51		107					+ + + + + + + + + + + + + + + + + + +						100			- 19
DG NZ /							+ + + + + + + + + + + +									
		105					+++++++++++++++++++++++++++++++++++++++						100			
BOREH(105					++++ ++++						100			20-

					!4	ام م		BOREHOLE v	/ith	Pi	ezo) L	.0	G	ſ	Sit	e lo	der	ntif	ication: WRSO	5a
G		G	HD	LII	mιτ	ea		PO Box 6543 Auckland 1141												Sheet 3 of	3
Pi C Si Ja	roje lien ite: ob l	ect: nt: No.:			Proj Oce Wai 51/3	ect ana hi - 3708	Quat aGold Wast 83	tro I Ltd te Rock Stack Comme Comple	enced	l: 09- 09-Ji	Jun- un-17	17			С	on	trac	cto	r:	Datum: Total Depth: 2 Perry Geotech	1.0m
Ec	luip	ment	:	JD	Trac	tor F	Rig	Inclination: -9	0											Logged: HB	
Sł Bo	near Dre [Vano Diam	e: eter	(mn	n): 9	6		Comments:												Processed: AS	
		(%)		Ì	, -			SOIL DESCRIPTION: (Soil Code), Soil	ion				ę							TESTS & SAMPLES	
Depth (m)/ [Elev	Drilling Method	Core Run / Recovery	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	[zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condit	Consistency/ Relative Density	Weathering	EW VW	MS Estimated		RQD (%)	20	60 Defect		2000	/ ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
- [[] - - - 21	HQ Coring	105					+ + + + + + + + + + + + + + + + + + +				MW				100						
21 -210 -2							++++	Termination Depth = 21m													21-
23 - - - - - - - - - - - - - - - - - - -																					23-
- - - - - - - - - -																					25-
- - - 26 - - - - -																					26-
27																					27-
28 - - - - - - - - - - - - - - - - - - -																					28-
																					29-

Depth: 3.53 m to 6.53 m

					!4	I		BOREHOLE w	vith	Pi	ez	o L	OG	ſ	Site I	denti	fication: WRS	606
G	HD	G	ΗD		mιτ	ea		PO Box 6543 Auckland 1141									Sheet 1	of 2
Р	roje	ect:		F	Proje	ect	Quat	ro									Datum:	
	lien ito:	nt:		(\	Jce: Naił	ana ni - '	Gold Wast	Ltd e Rock Stack									Total Depth:	12.0m
J	b N	No.:		5	51/3	 708	3	Comple	nced ted:	12- 12-Ji	Jun-1	-17 7		C	ontra	ctor:	Perry Geotech	
E	quip	ment	:	JD	Trac	tor R	lig	Inclination: -90)								Logged: HE	3
SI Bo	near ore E	Vano Diam	e: eter	(mn	1): 9	6		Comments:									Processed: AS	;
		(%)			-			SOIL DESCRIPTION: (Soil Code), Soil Name Iminor MAJORI, colour, structure	tion				ŧ				TESTS & SAMPLES	
[Elev	Ţ	covery	ing (m)		E	ion	b	[zoning, defects, cementing], plasticity or grain size, secondary components,	ondi	cy/ ensity	5		treng			5	1	neter
(m) (Metho	un / Re	t/Cas		gical	ificat	hic Lo	(Geological Formation)	ture C	isten ive D	herin	;	stima ock S	(%)	efect	oacing	ROCK MASS DEFECTS: Depth, Type, Inclinations,	iezon
Dept	Drilling	Core R	Suppor	Water	Geolo	Class	Grapl	ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moist	Cons Relat	Weat	I ≥≶≣	ະ≲ຶ∾≳! ກູ ເ	RQD (ີ ດ ສຸຂຸຍີ	ا ا ا ا ا ا	Roughness, Texture, Aperture, Coating	
F	5					ML	× × × ×	TOPSOIL: ORGANIC SILT, minor fine sand; black, wet, firm, low plasticity	W	F								
Ē	Corin	131					× × × ×	SILT, minor fine to medium sand, trace of clay; brown, firm, moist, low plasticity	М									
	HQ					мн	× × × × ×	SILT, some clay, some fine to coarse sand; brown,	r W									
Ē	Tube	60				SP		Wet, firm, high plasticity Fine to coarse SAND, minor silt; grey to light brown,	W-S									
	Pusl					SP	, , , , , , , , , , , , , , , , , , ,	Medium to coarse SAND; light brown, soft, wet-		S								
- 1: - 1 2					/ium	ML	× × × × × ×	saturated, poorly graded gravel-small gravel @1.5- 1.55m (bgl)	W									
- 1	Coring	73			Alluv	SP		Wet, soft, low plasticy Fine to coarse SAND, minor silt; black (organic),	W-S									
Ē	Ŗ							poorly graded, soft, wet- saturated										
1 1/9/01	a																	
	sh Tub																	
	Bus																	
		110																4
]							Silty fine to medium SAND; greenish grey, poorly- graded, soft to firm, wet- saturated, [weathered IGNIMBRITE]		S-F								
								from 4.5m: becomes soft to very soft		S-							-N-B, NO RQD, Completely weathered- residual	
- 15										1 13							weathered to detect any rock defects	5-
		77																
								from 6.0m; becomes firm, saturated	9	F							-NOTE: Saturated soil @ 6.0m	6
					s				0								(water table)	
	Coring	52			Icanic													
	НQ				del Vo													7-
					roma													
					ပိ			from 7.5m: becomes soft		S	1							
2 2 2 2 -																		8-
		117																
				1			$\langle \cdot \rangle^{\vee}$											
		<u> </u>	-					from 9m: becomes very soft		VS								9-
		Q7																
		0/						from 9.5m: becomes soft to firm		S-F								
							$\langle \rangle \rangle$											₁₀ -

		G	חח		mit	od		BOREHOLE v	vith	Pi	ezo	b L	OG	ì	Sit	te lo	dent	ification: WRS	06
5			שח	LII	mu	eu		PO Box 6543 Auckland 1141										Sheet 2	of 2
F	roj	ect:		F	Proje	ect	Quatt	ro										Datum:	
	ite:	nt:		V	Vaił	ana ni - '	Wast	e Rock Stack		1. 12	lun	17			Con	troc	tor	Total Depth:	12.0m
J	ob	No.:		5	51/3	708	33	Comple	eted:	12-Ji	un-17	7			COII	liac	lor.	Perry Geolech	
E	quip	ment	:	JD	Tract	tor R	lig	Inclination: -9	0									Logged: HB	
S B	hear ore	· Vano Diam	e: eter	(mn	ı): 9	6		Comments:										Processed: AS Checked: HB	
		(%)						SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure	tion				ţ					TESTS & SAMPLES	
, IEle	- <u> </u>	covery	ing (m		E	ion	бo	[zoning, defects, cementing], plasticity or grain size, secondary components, structure.	Condi	cy/ ensit	g		itrenç			5	ת	1	neter
(m)	Metho	un / Re	rt / Cas		gical	sificat	hic L	(Geological Formation) /	ture (isten ive D	herin			(%)		efect		ROCK MASS DEFECTS: Depth, Type, Inclinations,	iezon
Dept	Drilling	Core R	Suppo	Water	Geolo	Class	Grap	ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Mois	Cons Relat	Weat	u ≈≷≞	رچ مې	ROD	20	ن ک 2008		Roughness, Texture, Aperture, Coating	
Ē	0	87																	
Ē					anics			Completely weathered, fine to medium grained, greenish grey IGNIMBRITE; weak; breaks down with pressure and water			CW								
-	oring				Volca			from 10.5m: becomes weak-very weak											
Ē	НОС	87			nadel														
Ē					Coror													-Joint at 11.8m: Moderately inclined,	
12																		- Manganese Staining	
	0							Termination Depth = 12m,											
Ē																			-
- 13																			13-
Ē																			
Ē																			-
- 14																			14 -
Ē																			-
Ē																			-
- 15																			
Ē																			
Ē																			-
- <u>1</u> 6																			- 16
Ē																			
E																			-
- <u>1</u> 7																			- 17
Ē																			
Ē																			-
- <u>1</u> 8																			- 18-
Ē																			-
ŧ																			-
- <u>1</u> 9																			- 19-
Ē																			-
Ē																			-
<u>2</u> 0																			20-

Pro Clie Site	ojec ent e: o N	ct: : o.:		F C V 5	Proje)cea Vaih 1/37	ect (ana(ni 708:	Quattr Gold L 3	o _td Comm Compl	enced eted:	l: 13- 13-J	Jun-′ un-17	7		С	ontra	ctor:	Datum: Total Depth: Perry Geotech	7.5m
iqu She Sore	ipm ar V e Di	ent: /ane ame	: eter	JD ⁻ (mm	Fract	or R	g	Inclination: -9 Comments:	0								Logged: HE Processed: AS Checked: HE	3 S 3
	Urilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	EW W. Estimated	S Rock Strength	RQD (%)	20 60 Defect	²⁰⁰ Spacing ⁶⁰⁰ (mm)	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
0.2						ML MH	× × × × ×	SILT, minor fine sand; black, very soft, wet, low plasticity, rootlets	/	VS S	CW							•7X
0.7		07				ML	× × × ×	Sich, some clay, trace the sand; brown, sont, wet, moderate plasticity Fine to coarse SAND, minor silt; brown, dense,	/ м	'D'								
0		97				SM	× · · × · × · · × · · × · × · × · × · × · ×	moist, poorly graded Silty medium to coarse SAND, trace clay, wet, soft, low plasticity	/ w	S								
0				Ā	vium	SP		Medium to coarse SAND, some silt, minor clay; brown, soft, wet										
		87			Allu			from 2.0m: very soft, saturated	S W-S	VS								
2.6						ML	× × × ×	Fine to coarse sandy SILT, minor clay; brown, soft to	W	S-F								
2.8	bu					МH		from 3.5m; becomes brown										
(.0	HQ COL	105					$\stackrel{\times}{} \stackrel{\times}{} \stackrel{\times}{ } \stackrel{\times}{} \stackrel{\times}$ } \stackrel{\times} } \stackrel{\times} }	Completly weathered, greenish/greyish brown DACITE BRECCIA: extremely weak: breaks down									-at 4.0m: ROCK Note: Completely weathered hard to	
		107			el Volcanics			into a medium to very coarse SAND from 4.4m: becomes residual soil, extremely weak, SILT, some clay and fine sand; low plasticity from 4.5m: becomes fine to coarse SAND, some silt; poorly graded from 4.7m: becomes highly weathered, fine to coarse grained, reddish brown DACITE BRECCIA; weak			RS HW						detect defects	
					Coromande												-Joint at 6.0: Subhorizontal, undulating, rough, tight, iron and Manganese staining	
		115						from 6.5m: becomes highly weather to moderately weathered, very coarse grey [GRAVEL]; moderately strong; Iron and Manganese staining from 6.8m: becomes residual soil, extremely weak, SILT, some fine to coarse sand; very soft to soft, low plasticity from 6.9m: becomes highly weathered, moderately strong, joints present			RS HW			75			-Joint at 6.9: Gently inclined of the sense starting -Joint at 6.9- 7.1: Steeply inclined-very	
0								rrom 7.0m: joints present (Iron and Manganese staining) Termination Depth = 7.5m,									undulating, stepped, very narrow, kon and Manganese staining	

G	ID	GI	HD	Lir	mit	ed		BOREHOLE W	vith	Pi	ezo) L	.OG	ſ	Site	lden	tification: WRS	08
	-	Í						Auckland 1141									Sheet 1	of 1
Pr Cl Si Jo	roje lien te: ob N	ct: t: No.:		F C V 5	Proje Dcea Vaił 51/3	ect (ana(ni 708:	Quattr Gold I 3	o _td Comme Comple	nced ted:	l: 13- 13-JI	Jun- un-17	17		c	ontra	actor	Datum: Total Depth: Perry Geotech	9.0m
Ea	uipr	nent		JD	Trac	tor R	ia	Inclination: -90)								Logged: HB	
Sh	ear	Vane	:	02			.9	Comments:									Processed: AS	
Во	ore D	Diamo	eter	(mn	ı): 9	6				-							Checked: HB	
Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Conditio	Consistency/ Relative Density	Weathering	EW VW I	MS Estimated S Rock Strength	EQD (%)	20 60 Defect	200 Spacing 600 (mm)	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
- 0.2						ML MH	× × × ×	TOPSOIL FILL: SILT, some fine to coarse sand, trace clay; brown, soft to firm, moist, low plasticity, rootlets,	M M-	S-F								
- - - 0.6		103				ML	× × × ; × × × × × ×	Image: Sill of the stand stress of the st	Ŵ									
1.0 - 0 -						SP	X	low plasticity Fine to coarse SAND, some to minor silt; greyish brown, soft to firm, moderately dense, wet, poorly graded		'MD'								1
30/4/15 1 1 1 12 1 1 1 1 11 1 12 1 1 1 1		105				SM		Silty fine to coarse SAND; brown, soft to firm, moderately dense, wet, well-moderately graded	•									2
					Alluvium	MH		SILT, some fine to coarse sand, some clay; greyish brown, soft to firm, wet, moderate to high plasticity										3
						СІ		CLAY, some silt, trace of fine to medium sand; grey, soft, wet, high plasticity	İ	s								
		94						from 3.5m: becomes firm		F								н
1440 101 101 107 107 107 107 107 107 107 10	oring					ML		SILT, some clay, minor fine to coarse sand; grey, firm, wet, low plasticity										4
	НQ С						× × × × ×											
		61		Ţ			× × × × × × × ×	from 5.0m: becomes some medium to coarse sand, grey, well-graded, saturated, stiff to very stiff	S	St- VSt								5
							× × + + + + + + + + + + + + + + + + + + +	Completely weathered, medium grained, light brownish grey RHYOLITE; very weak			CW						-No defects detected rock -too weathered	6
					6		+ + + + + + + + + + + + + + + + + + +	from 6.0m: becomes moderately weathered to highly weathered, moderately strong to strong			MW- HW						 Very steeply inclined, undulating, rough-smooth, tight, iron staining -Crushed zone at 6.1-6.2: Sub- angular, angular 	
		73			olcanic		+ + + + + + + + + + + + + + + + + + +							38			- Joint at 6.46: Subhorizontal-gently inclined, undualting- stepped, rough, very narrow-narrow, Iron	• • 7
					del Vo		+ + + + + + + + + + + + + + + + + + +										staining -Joint at 6.8: Subhorizontal-gently inclined, undualting-	
					man		+ + + + + + + + + + + + +										narrow-narrow, Iron staining Joint at 7.0: Very steenly	
		32			Corc		++++++++++++++++++++++++++++++++++++							0			indined-side-vertical, planar-smooth tight, minor ton -Crusted zone at 7.1-7.22. Stud- tone statistical weathered joint) -Joint at 7.22. Very steepy inclined to side-vertical, stepped, smooth, tight to service.	8
						Ц	+ + + + + + + + + + + + + + + + + + +		ļ								-Crushed zone at 7.4-8.0: Sub- rounded, sub angular cobbles-	9
								iermination Lepth = 9m,									courders -Joint at 7.8; cravel- cobbes-angular from staining -Joint at 8.5; Very stepyy inclined, undulating bight with from staining -Crushed zone at 8.6-9.0; Ve coarse cobbles, houders, sub angular-abhouvride from etain	^{ry} 10

Gł	ID	GI	HD	Lir	nit	ed		PO Box 6543	vith	Pi	ezo) L	.OG		Site	ldentif	fication: GLC	001
Pr	oje	ct:		F	Proje	ect (Quatt	' Auckland 1141									Sheet 1	of 1
CI Si ⁻ Jo	ien te: ob N	t: Io.:		C V 5	Dcea Vaił 51/3	ana ni- G 708	Gold Bladst 3	Ltd one Comme Comple	nced ted:	l: 20- 20-J	Jun- un-17	17 ,		C	Contra	ctor:	Total Depth: Perry Geotech	7.5m
Eq Sh	uipr ear	nent Vane	:	JD .	Tract	or R	ig	Inclination: -90)								Logged: H Processed: A	B
Во	re D	iam	eter	(mm	ı): 9	6		Comments:	-								Checked: H	B
Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	EW VW = :-	MS Estimated s Rock Strength VS	es RQD (%)	20 60 Defect	²⁰⁰ Spacing ⁶⁰⁰ (mm) ²⁰⁰⁰	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
0.1						GP ML	× ×	FILL: Fine to coarse GRAVEL; grey, sub-angular, dense, moist, [road aggregate fill]	М	'D'								
		103					× × × × × × × × ×	SILT, minor clay, trace fine sand; brown, soft to firm, moist to wet, low plasticity	M- W	S-F								
12						мн		Clayey SILT; brown, firm, wet, medium to high plasticity	W	F								П
2.0 0		57				ML	× × × × × × × × ×	from 1.9m: some coarse sand, fine to coarse gravel (weathered material) sub angular to angular grains present in fabric	W-S	VS- S	-							2
2.5					anics	СН	× ×	SLLT, some fine to coarse sand, trace clay; brown, very soft to soft, wet to saturated, non plastic CLAY, some silt, trace fine to medium sand; brown, stiff, moist to wet, medium to high plasticity	M- W	St							 -N.B at 2.5m uncertain depth due to core loss 	
3.0 3.4 3.5	ing				ered Volc	мн	× × × × × × × ×	SILT, minor fine sand, trace clay; reddish-orange brown, soft, wet to saturated from 3.4m: firm	W-S	F								
	HQ Cor	43	MH		Weath													2
																	-Decrease water circulation drill	
		106															 -Attempted push tube at 5.0m but soil too firm 	
6.0 []		0															-N.B large recovery (core expanding) 6.0- 7.5m -Push tube at	
		169						Silty CLAY, trace fine to medium sand, pink, wet, soft to firm, high plasticity from 7.0m: grey		S-F							6.0-6.5m	
7.5 П								Termination Depth = 7.5m										
								reaminauon Depur = 7.3m										8
<u>I</u> O																		9 10

		CI	חר	1 ii	mit	od		BOREHOLE w	vith	Pi	ezo	5 L	.00	;	Site lo	dentif	fication: GLD0	1a
	<u>_</u>	G			IIIU	eu		PO Box 6543 Auckland 1141									Sheet 1 o	f 2
Pi Ci Si Jo	roje lien te: ob N	ct: t: lo.:		F C V 5	Proje Dcea Vaił 51/3	ect (ana ni- C 708	Quatt Gold Bladst 3	ro Ltd tone Comme Comple	ncec ted:	l: 20- 20-Ji	Jun- un-17	17 7			Contrac	ctor:	Datum: Total Depth: 7 Perry Geotech	13.7m
Eq	luipr	nent	:	JD .	Tract	tor R	ig	Inclination: -90)								Logged: HB	
Bo	re D	vane Jiame	eter	(mm	ı): 96	6 an	d 114	Comments:									Checked: HB	
Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTIO: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	EW VW	W Estimated S Rock Strength	ES RQD (%)	20 60 Defect	600 (mm)	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
- 0.1 - 0						ML		FILL: Fine to coarse GRAVEL; grey, sub-angular, dense, moist, [road aggregate fill]	M	'D'								
		103					× × × × × × × × × ×	SiL 1, minor clay, trace time sand; brown, sort to firm, moist to wet, low plasticity	W- W	S-F								1-
- 'û - -						MH	× × × × × × × ×	Clayey SILT; brown, firm, wet, medium to high plasticity	w	F								
2 2.0 - 0		57				ML	× ^ × × × × × × ×	from 1.9m: some coarse sand, fine to coarse gravel (weathered material) sub angular to angular grains present in fabric	W-S	VS- S								2-
- ^{2.5}	oring		N			СН		Very soft to soft, wet to saturated, non plastic CLAY, some silt, trace fine to medium sand; brown, stiff, moist to wet, medium to high plasticity	M- W	St							 -Note: at 2.5m uncertain depth due to core loss 	
- 0 - 3.4 - 3.5	HQ C		н			MH	× × × × × × × ×	SILT, minor fine sand, trace clay; reddish-orange brown, soft, wet to saturated from 3.4m; firm	W-S	S F								
- - - - - - -		43			Volcanics												- Decrease	4-
		106			Weathered												Attempted push lube at 5.0m but soil too firm	5-
- - 6 -	Tube	0															-Note: large recovery (core expanding) at 6.0- 7.5m	6
	han							Silty CLAY, trace fine to medium sand, pink, wet, soft to firm, high plasticity		S-F							-Push tube at 6.0- 6.5m	
7 - -		169						from 7.0m: grey										7-
- - 8 8	bu					M	× ×	from 7.5m: brown	ļ									8-
- 8.5 - 0	HQ Cori	95	МH			СН	× × × × ×	Silty CLAY, trace fine to medium sand; grey, firm to		F-St								
9 9 1 1 1		14				ML		Very poor core recovery between 9.0m-10.5m: SILT, some clay, some fine to coarse sand; grey, stiff to very stiff, wet, non plastic [residual soil weathering from parent rock]		St- VSt								9-
10							×											

G		GI	нп	l ii	nit	ьч			/ith	Pi	ezo	5 L	.00	G	ſ	Site	e Ide	entif	ication: GLI	D01a
								Auckland 1141											Sheet	2 of 2
Pi Ci Si Ja	roje lien te: ob N	ct: t: lo.:		F C V 5	Proje Dcea Vaił 51/3	ect (ana) ni- G 708	Quatti Gold I Sladst 3	ro Ltd one Comme Comple	encec	l: 20- 20-Ji	Jun-	17			С	ontr	act	or:	Datum: Total Dept Perry Geotech	h: 13.7m
Ec	uipr	nent	:	JD	Tract	or R	iq	Inclination: -90)										Logged:	НВ
Sh	iear	Vane	e:	(mn	N• 04	5 000	4 1 1 /	Comments:											Processed:	AS
		ann ?		(1111)	ŋ. se			SOIL DESCRIPTION: (Soil Code), Soil	۲.										Checked:	нв
Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Conditi	Consistency/ Relative Density	Weathering	EW	<pre>MS Estimated NS Rock Strengtl</pre>	VS ES	RQD (%)	20 Ben Defect	200 Spacing	2000 (mm)	ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
		14																		
- - - - - - - - - - - - - - - - - - -	Coring	80	MH		eathered Volcanics	CH		CLAY, some silt; grey with pink streaks, very stiff, wet, high plasticity [residual soil weathering from parent rock] from 11.2m: dark grey SILT, some fine to coarse sand, some clay; grey, soft, wet, low plasticity [residual weathering from parent rock]	w	VSt S									All 11 m attempted push tube but soil too firm/ hard	
12 - 0	Å				We	СН	× ×	CLAY, some silt; dark grey, very stiff, wet, high plasticity [residual soil weathering from parent rock]	İ	VSt									 -Note: at 12.0m water pressure increase and loss of water 	12-
- - - - - - - - - - -		33																	circulation in dril- potentially artesian -at 13.5m water.compr.com	13-
- 13.5 - 0						ML	 × × ×	SILT, minor fine to coarse sand, trace clay; blackish grey, firm, wet. non plastic (residual soil weathering from parent rock)	{	F									- at 13.7m further increase of water pressure	
								increasing to minor clay content; grey, firm, wet, low plasticity (residual soil weathering) Termination Depth = 13.7m												14- 15- 16- 17- 18- 19- 20-

VER 1.5.GDT 10/8/17 ЦН Q Ē F C E C Ň t È ā Ĉ 3 2 Ċ EVN OULATTRO t ď Ν 5137083 BOREHOLE LOG NZ ALT

G		GI	HD	l ir	nit	ed		BOREHOLE w	vith	Pi	ez	o L	.OG	i	Site	Identi	fication: GLD0)1b
								Auckland 1141									Sheet 1	of 4
Pi C Si Ja	roje lien ite: ob N	ct: t: lo.:		F C V 5	Proje Dcea Vaih 51/3	ect (ana ni- C 708	Quatti Gold Bladst 3	ro Ltd one Comme Comple	ncec ted:	l: 20- 20-Ji	Jun- un-1	-17 7		(Contra	ctor:	Datum: Total Depth: Perry Geotech	33.0m
Ec	lnibi	nent		JD .	Tract	or R	lig	Inclination: -90)								Logged: HB	
Bo	near Dre D	Vane Jiame	: eter	(mm	ı): 96	3 an	d 114	Comments:									Processed: AS Checked: HB	
Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Veathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	EW	W Estimated s Rock Strength vs	ES RQD (%)	20 60 Defect	200 Spacing 600 (mm) 2000	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
- 0.1 - E						GP ML	× × ×	FILL: Fine to coarse GRAVEL; grey, sub-angular, dense, moist, [road aggregate fill]	M	'D'							-Note: GLD01b wash drill 0.0- 13.5m, start log at	
		103					× × × × × × × × × × × ×	SILT, minor clay, trace fine sand; brown, soft to firm, moist to wet, low plasticity	M- W	S-F							13.5-40m; commenced 19/6/2017 - 1.5m south of GLD01a	1-
- 1.2 - (мн	× × × × ×	Clayey SILT; brown, firm, wet, medium to high plasticity	W	F								
- - 2 2.0						M		from 1.9m; some coarse sand, fine to coarse gravel	W_9	S VS-								2-
-		57					×××	present in fabric SILT, some fine to coarse sand, trace clay; brown.		s								
5 - 24 1	5					СН	× ×	very soft to soft, wet to saturated, non plastic	M- W	St							 -Note: at 2.5m uncertain depth due to core loss 	
0-3-3.	Corin		MH			NAL I	× ×	stiff, moist to wet, medium to high plasticity										3-
	Å						× × × × × ×	brown, soft, wet to saturated	vv-c									
		13				СН		from 3.4m: firm CLAY, some silt, wet, firm, medium to high plasticity	W	F								
4		75			S													4-
					olcan													
					red V												-Decrease water circulation drill	
D. 5					eathe													5-
5-		106			We													
																	-Note: large recovery (core	6-
		0															expanding) at 6.0- 7.5m	
								Silty CLAY, trace fine to medium sand, pink, wet, soft to firm, high plasticity		S-F								
27		169						from 7.0m: arev										7
								from 7.5m: brown										
	ring					ML	× ×	SILT, some clay, minor trace fine to medium sand;		-								8
	₫ Q	95	МH				$\times \hat{\times} \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times $	brown, soft to firm, wet, low plasticity										
						СН		Silty CLAY, trace fine to medium sand; grey, firm to stiff, wet, high plasticity		F-St								
						ML	× × × × ×	Very poor core recovery between 9.0m-10.5m: SILT, some clay, some fine to coarse sand; grey, stiff to	1	St- VSt	1							9-
		14					× × ×	very stiff, wet, non plastic [residual soil weathering from parent rock]										
10							$\hat{x} \times \hat{x} \times \hat{x}$											
2									1									10-

G	HD	G	HD	Li	mit	ed		BOREHOLE W	/ith	Pi	ezo	5 L	.00	3	ſ	Site	lden	tification: GLD	01b
		Í						Auckland 1141										Sheet 2	of 4
P C S J	roje lien ite: ob l	ect: t: No.:		F C V 5	Proje Dcea Vail 51/3	ect (ana ni- C 708	Quatti Gold I Sladst 3	ro Ltd one Comme Comple	encec eted:	l: 20- 20-Ji	Jun- un-17	17			C	ontra	actor	Datum: Total Depth Perry Geotech	: 33.0m
E	quip	ment	:	JD	Tract	tor R	Rig	Inclination: -90)									Logged: H	В
S B	hear ore [Vane Diam	e: eter	(mn	ı): 9	6 an	d 114	Comments:										Processed: A Checked: H	S B
Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	EW	MS Estimated	VS ES	RQD (%)	20 60 Defect	200 Spacing 600 (mm)	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
		14				ML	× × × × × × × ×	Very poor core recovery between 9.0m-10.5m: SILT, some clay, some fine to coarse sand; grey, stiff to very stiff, wet, non plastic [residual soil weathering from parent rock]	W	St- VSt									
- - - - - - -	0	80				СН		CLAY, some silt; grey with pink streaks, very stiff, wet, high plasticity [residual soil weathering from parent rock] from 11.2m: dark grey		VSt									11-
- 11 - - 12	50					ML	× × × × × ×	SILT, some fine to coarse sand, some clay; grey, soft, wet, low plasticity [residual weathering from parent rock]		S								-Note: at	12-
	ō	33			athered Volcanics	СН		CLAY, some silt; dark grey, very stiff, wet, high plasticity [residual soil weathering from parent rock]		VSt								12.0m water pressue increase and loss of water card loss of water potentially artesian	13
	5				We	ML	× × × × × ×	SILT, minor fine to coarse sand, trace clay; blackish grey, firm wet, non plastic [residual soil weathering from parent rock from13.7m: minor clay; grey, firm, wet, low plasticity [residual soil weathering]	w	F								-at 13.5m water pressure increase -at 13.7m further increase of water pressure	
	coring	98	~			CI		Clayey SILT, some fine to coarse sand; grey, moist, stiff to very stiff, medium to high plasticity [residual soil weathering from parent rock] - slight white mottling in core [weathered phenocryst of Na plagioclase from volcanic rock]	М	St- VSt								- from 15.0	14-
	HQC	51	Т					from 15.1m: moist to wet, very stiff to hard	W	VSt- H								16.5m ibw recovery (drill encountered bands of softer silty layers during run)	10
	50					MI		Residual soil, extremely weathered, grey with white mottles, clayey SILT, minor fine to coarse sand, wet, hard, moderate to hard plasticity [VOLCANIC ROCK] SILT some fine to coarse sand brown very soft wet	W-S	H	RS								
	Ō	65 89			Coromandel Volcanics			to saturated, non plastic SILT, some clay, minor fine sand, dark greyish brown, wet, firm, low plasticity Clayey SILT, trace fine to coarse sand, grey, wet, stiff, moderate to high plasticity, mottled white [weathered phenocrysts] from 17.5m: very stiff, dark brownish grey from 17.7m: hard, greenish staining/ colouring (mainly dark brownish grey) from 18m: very stiff, dark brownish grey	W	F St VSt H VSt									17 18 18
		100																	20-

G	HD	GI	HD	Lir	nit	ed		BOREHOLE W	vith	Pi	ezo	LOG		Site Identi	fication: GLDC)1b
P C S	roje lien ite:	ect: t:		F C V	Proje Ocea Vaił	ect (ana(ni- G	Quattr Gold I Gladste	Auckland 1141	nced	I: 20-	Jun-1	17		Contractor:	Sheet 3 Datum: Total Depth: Perry Geotech	of 4 33.0m
J	ob N	lo.:		5	1/3	708	3	Comple	ted:	20-Jı	un-17					
E	quip	ment		JD .	Tract	tor R	ig	Inclination: -90)						Logged: HB	
SI	near Dre F	Vane Diame	: eter	(mm	n). 96	6 and	114	Comments:							Processed: AS	
	T	9			.,			SOIL DESCRIPTION: (Soil Code), Soil	۲							
Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	EW W Estimated S Rock Strength VS	RQD (%)	20 60 Defect 200 Spacing 2000 (mm)	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
	1	100						from 20m: encountered black organic silty material in clayey SILT fabric from 20.2m: grey	W	VSt	RS					21 -
- - - - 21: - - -	7	97						Completely weathered- highly weathered, grey [ANDESITE and/or DACITE]; moderately strong; with clayey SILT weathering, crushed zone at 22.7-21.8 from 22m: SILT file to coarse sand weathering from			CW- HW		60			22-
ATE VER 1.5.GDT 10/8/17		84						Residual soil to completely weathered, very weak - weak, very light grey- creamy white grey, medium to coarse SAND, some silt; wet to saturated, "dense", medium graded			RS- CW				-Crushed zone at 22.12.22.m, cozble, fine to coarse sand, argular, sub a voint at 22.2. 23.m, very steepty inclined, undulating- stepped, smooth, very narrow -Crushed zone, adble, fine to coarse gravel, fine to coarse sand, subangular.	23 -
T.GPJ NZ GINT DATA TEMPL	Coring	107	MH		lel Volcanics			from 24.08m: dark grey from 24.1m: completely weathered to highly weathered, very light grey- creamy whitish grey, weak			CW- HW		87		subrounded, poorly graded -hot Ack bo weathered to detect any defects between 22.5 and 24m	24 -
RO_FVN AND GLD HB COMPLETE DRAF	H	102			Coromand			from 25.5m: moderately strong from 25.8m: weak from 26m: completely weathered			cw		99		-Crushed zone at 25.3-25.37m, fine to coarse sand, silt, sub angular-subrounded, poorly graded -Crushed zone at 25.4-25.5m, fine to coarse gravel, fine to coars	26 • •
BOREHOLE LOG NZ ALT 5137083 NZ LIB PROJECT QUATT		97						from 28.5m: residual soil- completely weathered, extremely weak, SILT, some clay, some minor fine to coarse sand, creamy white grey, non plastic, wet, soft to firm from 29m: completely weathered- highly weathered, weak to moderately strong,			RS- CW CW- HW		90			28 29 29

G	HD	G	HD	Lir	nit	ed			/ith	Pi	ezo	b LC)G	ſ	Site	Ident	ification: GLC	001b
								Auckland 1141									Sheet	4 of 4
F C S	roje lien ite: ob N	ect: it: No.:		F C V 5	Proje Dcea Vaił 51/3	ect (ana ni- C 708	Quatti Gold I Sladsti 3	o _td one Comme Comple	enced	l: 20- 20-Ji	Jun- un-17	17		c	ontra	ctor:	Datum: Total Dept Perry Geotech	h: 33.0m
E	quipi	ment	:	JD .	Trac	tor R	lig	Inclination: -90)								Logged:	НВ
S	hear oro T	Vane): otor	(mn	<u>م</u> . ۱۰ ۵	6 an	4 11/	Comments:									Processed:	AS
F		হ		(. ,			SOIL DESCRIPTION: (Soil Code), Soil	E								Спескеа:	нв
Jepth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (?	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	Name [minor MAJOR], colour, structure [zoning, defects, comenting], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Conditic	Consistency/ Relative Density	Weathering	W W MS Estimated	s Rock Strength	RQD (%)	20 60 Defect	200 Spacing 600 (mm)	TESTS & SAMPLE: / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	s Piezometer
- - - - - - - - - - - - - - - - - - -	a Coring	105	MH					from 31m: grey, weak to moderately strong			CW- HW			57			-Utaned zone active similar actives similar coarse gravel, fine to coarse sand, sit, to coarse sand, sit, to coarse sand, sit, to coarse sand, sit, to sand, at 30.8-30.9m, very fine gravel, fine b sub-angular clasts, poorty graded -loint sat sub-angular clasts, poorty graded -loint sat sub-angular clasts, sub-angular clasts, poorty graded -loint very sub-angular clasts, sub-angular clasts, poorty graded -loint very sub-angular clasts, poorty graded -loint very sub-angular clasts, sub-angular clasts, poorty graded -loint very sub-angular clasts, sub-angular clasts, poorty graded -loint very	31-
5.GDT 10/8/17 8	Ĥ	102						from 32.6m: pale grey/ creamy whitish grey									narrow-tight -Joint 13-12, moderately inclined -Crusted zone af 31:3-31:45m, cobbe, fine to coarse gravel, fine, to coarse and, silt, boognese and, silt, poorly graded -Drill Break (DB) at 32.5m	32-
VZ GINT DATA TEMPLATE VER 1	0							Termination Depth = 33m										34-
IPLETE DRAFT.GPJ																		35-
																		36-
OJECT QUATTRO F																		37-
5137083 NZ LIB PR																		38-
BOREHOLE LOG NZ ALT																		39- 40-

G	HD	G	HD	Lir	mit	ed		BOREHOLE W	vith	Pi	ezo	b L	.0G		Site Identi	fication: GL	_D02
		Í						Auckland 1141								Sheet	t 1 of 1
Pi C Si	roje lien ite:	ct: t:		F C V	Proje Dcea Vaił	ect (ana(ni- G	Quatt Gold Bladst	ro Ltd one Comm	anced	ŀ 15.	. lun-	16		c	ontractor:	Datum: Total Dep	th: 9.0m
Jo	b N	lo.:		5	51/3	708	3	Comple	eted:	16-Ji	un-17	7					
Ec	luipi Dear	nent Vane	:	JD.	Tract	tor R	lig	Inclination: -9	0							Logged: Processed:	HB CDM/AS
Bo	ore C	Diam	eter	(mn	ı): 9	6		Comments:							-	Checked:	HB
Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	EW VW I	W Estimated S Rock Strength VS Estimated	RQD (%)	20 60 Defect 200 Spacing 600 (mm)	TESTS & SAMPLI / ROCK MASS DEFECTS: Depth, Type, Inclinations Roughness, Texture, Aperture Coating	Piezometer
		88				ML		TOPSOIL: SILT, minor fine to medium sand; dark brown, very stiff to stiff, wet, non plastic, spongy, rootlets 0.15m : SILT, some fine to coarse sand, minor clay; brown, wet, stiff to firm, non plastic [residual soil] 0.3m : Moderately weathered to slightly weathered, pale greyish white BOULDER (VOLCANIC); strong to very strong, moderately widely spaced defects	W	V <u>St-</u> St St-F	SW			66		-Note: 870 cm Rock material does m 1.5m diff area m 1.5m diff area m recovery -Note T taken due to rock @0.3mbgl .Joint @ 1.27m, steeply inclined, uncluating, weathering, -Joint # 1.35m, steeply 1.35m, steeply	
	HQ Coring	149				SW CI ML	\circ	Coarse SAND; brown, loose, wet to saturated, well graded CLAY, some silt, trace fine to medium sand; grey, firm, wet, medium to high plasticity.	w-s w	'L' F						inclined, undulating, rough, narrow, weathening Joint (g. 446/rate)/ prolined, undulating, rough, very narrow, Manganese and Iron Oxide Joint (g. 1007/mat), undulating to stepped, rough, very narrow to tight, Manganese and Iron Oxide Stepped, rough, very narrow to tight, Manganese and Iron Oxide Stepped, rough, very	2-
		79		Ā	thered Volcanics	ML	× × × × × × × × × × × × × × × × × × ×	SILT, some fine to coarse sand, reudish brown, stiff, wet, low plasticity. SILT, some fine to coarse sand, minor trace clay; grey with pinkish red staining and reddish streaks, stiff, wet, non plastic								undulating to stepped, smooth, very narrow to tight, Marganese and tron Oxide -Joint @ 1.7m, moderately inclined, stepped, smooth, very narrow to narrow, weathering -Joint @ 1.8m, moderately inclined, stepped, smooth, very narrow, clay w. -Joint @ 1.9m, 2.0m, very steephy	4-
	Push Tube				Wea			from 4.4m: very stiff, wet to saturated	W-S	VSt						 vertical, smooth, very narrow, clay w. -at 2.0m coarse sand potential drilling residue from drilling strong to very strong -Push tube at 4.5m-5.0m 	5-
		138						from 5.3m: very stiff, wet, [residual soil weathering from parent rock] from 5.8m: soft, [residual soil weathering from parent rock] from 6.1m: firm to stiff. [residual soil weathering from	W	S F-St							6-
	HQ Coring	100			I Volcanics			parent rock] from 6.3m: very stiff to stiff [residual soil weathering from parent rock] from 6.6m: firm to stiff [residual soil weathering]		VSt- St F-St							8-
9 85					Coromande		× × × × × × × × + + + + +	from 8.5: grey, stiff to very stiff [residual soil weathering]		St- VSt							
								residual son to completely weathered, grey with minor pink staining, mottled fabric [ANDESITE and/or DACITE]; extremely weak; SILT, some fine to coarse sand; white, black weathered phenocrysts (weathered) Termination Depth = 9m			RS- CW						9 10-

G		G	HD	Liı	mit	ed			vith	Pi	ezo	b L(OG		Site Identi	fication: GLD0	2a
								Auckland 1141								Sheet 1 o	f3
Pi Ci Si Ja	roje lien ite: ob N	ct: t: No.:		F C V 5	Proje Dcea Vail 51/3	ect (ana ni- C 708	Quatt Gold Bladst 3	ro Ltd cone Comme Comple	enced eted:	l: 15- 16-Ji	Jun- un-17	16		c	Contractor:	Datum: Total Depth: 3 Perry Geotech	30.0m
Ec	lnibr	nent	:	JD	Tract	tor R	lig	Inclination: -9	0							Logged: HB	
Bo	near Dre D	Vane Diamo	eter	(mn	ı): 9	6		Comments:								Processed: CDN Checked: HB	NAS
Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	EW W Estimated	S Rock Strength	RQD (%)	20 60 Defect 200 Spacing 600 (mm)	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
-						ML	$\begin{array}{ccc} \times & \times \\ & \times \\ \times & \times \end{array}$	TOPSOIL: SILT, minor fine to medium sand; dark brown, very stiff to stiff, wet, non plastic, spongy,	W	St VSt-						-Note: 870 cm	
		88						0.15m: SILT, some fine to coarse sand, minor clay; brown, wet, stiff to firm, non plastic [residual soil] 0.3m: Moderately weathered to slightly weathered, pale greyish white BOULDER [VOLCANIC]; strong to very strong, moderately widely spaced defects		St-F	MW- SW			66		Rock material does not account for soil in 1.5m drill run recovery 	1-
Ē							\circ	-								inclined, undulating, rough, narrow, weathering -Joint @	
-	6						\circ									1.35m, steeply inclined, undulating, rough, narrow, weathering	
2.0 2.1 - 0	Corinç	149				SW CI	· · ·	Coarse SAND; brown, loose, wet to saturated, well graded	/w-s	'L'						-Joint @ 1.4m, gently to moderately inclined, undulating, rough, very narrow,	
	Н							CLAY, some silt, trace fine to medium sand; grey, firm, wet, medium to high plasticity.	W	F						Oxide -Joint @ 1.55m, sub- horizontal, undulating to stepped, rough, very	
<u>3</u> - 0						ML	 ××	from 2.9m: reddish brown	4	St						Manganese and Iron Oxide -Joint @ 1.6m, sub-borizontal	3-
- 33 - 0 		79		Ā	nered Volcanics	ML		SILT, some fine to coarse sand, reddish brown, stiff, wet, low plasticity. SILT, some fine to coarse sand, minor trace clay; grey with pinkish red staining and reddish streaks, stiff, wet, non plastic								unduating to stepped, smoth, very narrow to tight, Manganese and ton Oxide -Joint (@ 1.7m, moderately inclined, wery narrow to narrow weathering -Joint @ 1.8m, moderately inclined, stepped, smoth, very narrow, cay weathering on	4-
- 4.4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Push Tube		-		Weath			from 4.4m: very stiff, wet to saturated	W-S	VSt						2.0m, very steeply inclined to sub- vertical planar; smooth, very narrow; clay weathering -at 2.0m coarse sand potential drilling residue from drilling strong to very strong rock encountered	5-
		138					× × × × × ×	from 5.3m: very stiff, wet, [residual soil weathering from parent rock]	W							between 0.3m and 2.0m -Push tube at 4.5m-5.0m	
		100	-					from 5.8m: soft, [residual soil weathering from parent rock] from 6.1m: firm to stiff, [residual soil weathering from parent rock] from 6.3m: very stiff to stiff [residual soil weathering from parent rock] from 6.6m: firm to stiff [residual soil weathering]		S F-St VSt- St F-St							6-
	HQ Coring																7-
		85					× × × × × × × ×	from 8.5: grey, stiff to very stiff [residual soil		St-							
- - 9 - - - - - - 10		101					× × + + + + + + + + + + + + + + + + + +	Residual soil to completely weathered, grey with minor pink staining, mottled fabric [ANDESITE and/or DACITE]; extremely weak; SILT, some fine to coarse sand; white, black weathered phenocrysts (weathered)		vst	RS- CW						9-

G	H		Gł	HD	Lir	nite	ed		BOREHOLE W	/ith	Pi	ezo	5 L	.0	G	ſ	Site	ld	entii	ication: GLI	D02	a
		7							Auckland 1141											Sheet	2 of 3	3
	Pro Clie	ojec ent	ct: :		F	Proje Dcea	ect (ana(Quattr Gold I	o _td											Datum:	th : 30	0m
1	Site	e:			V	Vaih	ni- G	ladst	one Comme	enced	l: 15-	Jun-	16			С	ontr	act	tor:	Perry Geotech		.0111
Ŀ	lob) N	o .:		5	1/3	708	3	Comple	eted:	16-Ji	un-17	7							T		
E	iqui Shea	ipm ar \	nent: /ane	:	JD -	Tract	or R	ig	Inclination: -90)										Logged: Processed:	HB CDM/A	\S
ŀ	Bore	e Di	iame	eter	(mm): 96	3		SOIL DESCRIPTION: (Soil Code) Soil	L C	-									Checked:	HB	
			very (%	(m)		_	E		Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity	nditio	sity			d Snoth	ĥ					TESTS & SAMPLE	S	er
/ [E		ethod	/ Reco	Casing		cal Fr	catio	c Log	or grain size, secondary components, structure. (Geological Formation)	e Col	ency Den	ering		mate k Stre			st	cing	-	ROCK MASS DEFECTS: Depth,		zomei
hth (M Bulli	re Run	pport /	ater	sologi	assifi	raphic	/ ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME	oistur	onsist	eathe		Esti		(%) at	Defe	Spa	(mm	Type, Inclinations Roughness, Texture, Aperture,	, ; , ;	Че
		à	ပိ	Su	3	Ğ	Ξ	5 + + + +	(Formation Name)	Σ	ŬŘ	≯ RS-	₹E	≥So	°≳≅	Ř	8 8	5 : 	5 8 8 8	Coating		-
Ē			101					+ + + + + + + + + + + + + + + + + + +				CŴ										
Ē								+ + + + + + + + + + + + + + + + + + +	from 10.6m: pink staining grey residual soil													
<u>1</u> 1 -								+ + + + + + + + + + + + + + + + + + +														11-
Ē			95					+ + + + + + + + + + + +														-
Ē								+ + + + + + + + + + + + + + + + + + +														
<u>1</u> 2		-						+ + + + + + + + + + + + + + + + + + +														12-
0/8/17								+ + + + + + + + + + + + + + + + + + +														
GDT 1			102					+ + + + + + + + + + + + +														-
ER 1.5								+ + + + + + + + + + + +														13-
-ATE V								+ + + + + + + + + + + + + + + + + + +														-
TEMPI								+ + + + + + + + + + + + + + + + + + +														
			101					+ + + + + + + + + + + + + + + + + + +														14-
IZ GIN						anics		+ + + + + + + + + + + + +														
	1	oring				l Volc		+ + + + + + + + + + + + + + + + + + +														-
DRAFT		D M M				Jande		+ + + + + + + + + + + + + + + + + + +	from 15.0m: grey													15-
LETE						Coron		+ + + + + + + + + + + + + + + + + + +														
COMF			89			Ŭ		+ + + + + + + + + + + + + + + + + + +														16
GLD HE								+ + + + + + + + + + + + + + + + + + +														
N AND (F						+ + + + + + + + + + + +														-
								+ + + + + + + + + + + + + + + + + + +														17-
			100					+ + + + + + + + + + + + + + + + + + +														-
JECT O								+ + + + + + + + + + + + + + + + + + +														
		_						+ + + + + + + + + + + + +														- 18-
NZLI								+ + + + + + + + + + + + + + + + + + +	Completely weathered, light brown with mottled			CW										
137083			111					+ + + + + + + + + + + + + + + + + + +	weathered white phenocrysts, weak, CLAY, some silt, trace fine sand; high plasticity.													
4LT 5								+ + + + + + + + + + + + + + + + + + +														19
OG NZ	9.1							+ + + + + + + + + + + + + + + + + + +	Completely weathered, dark grey with mottled white weathered phenocrysts, very weak to weak, no													
		ľ	95					+ + + + + + + + + + + + +	uerects present, too weathered to detect.													
120 BOREF			-					++++														20

			CI	חר	l ir	nit	ha		BOREHOLE w	vith	Pi	ezo	b LOG	ſ	Site Identi	fication: GL	D02a
		2	G	שי		1110	su		Auckland 1141							Sheet	: 3 of 3
	Pr Cli Sit	oje ient te:	ct: t:		F C V	Proje Ocea Vait	ect (ana(ni- C	Quatti Gold I Gadst	ro Ltd	nood	. 15	lup	16		`ontrootor:	Datum: Total Dep	th: 30.0m
	Jo	b N	lo.:		5	1/3	708	3	Comple	ted:	16-J	un-17	,	Ū		Terry Geolech	
ľ	Eq	uipn	nent		JD -	Tract	or R	ig	Inclination: -90)						Logged:	HB
	Sh Bo	ear re D	Vane iame	e: eter	(mm	ı): 96	6		Comments:							Processed: Checked:	CDM/AS HB
	Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	EW WW MS S Rock Strength	RQD (%)	20 60 20 Defect 200 Spacing 2000 (mm)	TESTS & SAMPLE / ROCK MASS DEFECTS: Depth, Type, Inclinations Roughness, Texture, Aperture Coating	, ∵, Piezometer
IB_PROJECT QUATTRO_FVN AND GLD HB COMPLETE DRAFT.GPJ NZ GINT DATA TEMPLATE VER 1.5.GDT 10/8/17		HQ Coring Drill	95 95 88 104 81 54 84	Supp	Wat	Coromandel Volcanics Geo	Cla	++++++++++++++++++++++++++++++++++++++	ROCK NAME (Formation Name) from 20.0m: completely weathered to moderately weathered. Completely weathered, very weak to weak, dark grey with mottled white weathered phenocrysts, no defects present, too weathered to detect. from 21.8m: pale greenish grey staining. from 22.8m: grey from 23.4m: weak from 24.5: very weak to weak from 25.0m: completely weathered (crystals not distinct in rock- very weathered. from 25.6m: very weak to weak from 25.8m: brown grey weathering.	Moi		BAN CW-HW CW RS CW		98 95 93 53 73		Exture, Aperture Coating Joint 2.163m.gently to roderately inclined, planar, smooth, very narrow, no coating Joint 2.28m, skepty narrow, no coating Joint 2.28m, skepty narrow, no coating Joint 2.33m, shepty more short, very narrow, no coating Joint 2.33m, shepty more short, very narrow, no coating Joint 2.36m, skepty more short, very narrow, no coating Joint 2.36m, skepty more short, very narrow, no coating Joint 2.36m, skepty monoth, very narrow, no coating Joint 2.36m, skepty monoth, very narrow, no coating Joint 2.36m, 23.86m Joint 2.36m, 23.85m Joint 2.30m, 25.35m, 15 boulder, coble, silt, very narrow to sight Joint 2.30m, 25.35m, 15 boulder, coble, silt, very narrow to sight Joint 2.53m, 25.35m, 15 boulder, coble, silt, very narrow to sight Joint 2.2.0m, gently inclined, skepped, smo very narrow to sight Joint 2.70m, stepl Joint 2.20m, stepl Joint 2.20m, stepl Joint 2.20m, stepl Joint Z 2.20m, stepl Joint Z 2.20m, stepl Joint Z 2.20m, stepl	21 21 22 22 23 23 23 23 24 24 24 25 25 25 26 26 27 26 27 26 27 27 28 27 28 27 28 28
OREHOLE LOG NZ ALT 5137083 NZ LI	29 29 3 3 3 30		99					+++++++++++++++++++++++++++++++++++++++	from 28.0m: creamy white grey, moderately strong to strong from 28.5m: dark grey, very weak from 28.9m: dark grey, moderately strong to strong from 29.0m: residual soil to completely weathered, extremely weak from 29.8m: completely weathered, weak.					57		 Jonni & collin, stepp stepped rough, very name Crush zone @ 28.4m. Crush zone @ 28.4m. Joint @ 28.8m. steep Joint @ 28.8m. steep very steeply inclined, very name Crush zone @ 30.0m30.5m. boulders boulders and fine to carse as an in 30.5m. coblet, fine to carse as an in 30.5m. stainning present 	r terial acarse ent it-clay and, 30

G	HD	G	HD	Liı	mit	ed		BOREHOLE W	vith	Pi	ez	οL	.0	G	ſ	Site	Iden	tification: GL	D03
P	roie	ect:		F	Proie	ect	Quatt	' Auckiano 1141										Sheet	1 of 1
C S J	lien ite: ob N	it: No.:		0 V 5	Dcea Vaił 51/3	ana ni- (708	Gold Sladst 3	Ltd one Comme Comple	nced ted:	: 20- 20-Ji	Jun-1	-17 7			c	ontra	actor	Datum: Total Dept	h: 9.0m
E	quip	ment	:	JD	Tract	tor F	Rig	Inclination: -90)									Logged:	НВ
SI Bi	near ore [Vane Diame	e: eter	(mn	1): 9	6		Comments:										Processed: Checked:	CDM/AS HB
h (m)/ [Elev.]	g Method	tun / Recovery (%)	rt / Casing (m)		ogical Fm	sification	hic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation)	ture Condition	sistency/ tive Density	thering		stimated		(%)	efect	pacing nm)	TESTS & SAMPLE / ROCK MASS DEFECTS: Depth, Type, Inclinations,	s ^b iezometer
Dept	Drilling	Core F	Suppo	Watei	Geolo	Clas	Grap	ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Mois	Cons Relat	Weat	WN NN	≥ 8° ₩ ₩	s S S	RQD	20 60 D	200 600 600 7	Roughness, Texture, Aperture, Coating	
- - - 0. - - - 1 -	2	66			olcanics	ML		TOPSOIL: SILT, minor fine to coarse sand; black (organic), very stiff, wet, non plastic, rootlets from 0.2m, stiff, moist SILT, some fine to medium sand, minor clay; brown, stiff to firm, moist, low plasticity	M	VS St St-F									1
- 1. - 1. - 1. - 1. - 1. - 2.	HQ Coring				Weathered Vo	мн	× × × × × × × × × × × ×	Clayey SILT, minor fine to coarse sand; grey, stiff to firm, wet, medium plasticity from 1.5m, very stiff to stiff, saturated from 1.8m, stiff to firm, wet Completely weathered to highly weathered, light grey	w s w	VSt- St St-F	CW	-		00000				-N.B* poor core recovery at 1.5- 3.0m run-drill encountered rock at ~2.0m 3.0m (boulder) could not recover softer material	2
1.0.011 10.017	ube	29						[Boulder]; moderately strong to strong			н₩	,						Dourdary unknown bouder depth to softer material - Push tube @ 3.0m-3.5m	3-
⊔- 	Push T	40																	
	9	152						Residual soil, very light grey - creamy greyish white with some brownish orange mottled [weathered ANDESITE and/or DACITE]; extremely weak; fine to coarse SAND, some silt; poorly graded, moderately dense, saturated, too weathered to detect rock defects. from 3.9m, completely weathered to highly weathered, very weak from 4.0m, residual soil to completely weathered, avtermely weak	s	.MD.	RS <u>CW-HI</u> RS- CW	<u>∧-</u>			86			 Joint @ 3.91m, steeply inclined, unclulating, rou to smooth, very narrow, Joint @ 40m, steeply very steeply inclined, unclulating to stepped, rough, very narrow, mining Iron Oxide staining 	ph 4
		103			anics			from 4.7m, brown from 5.5m, brownish staining/colouring weathered grey rock							99			-Crush zone @ 5.10m- 5.14m, fine to coarses gravel, fine to coarses silt, sub rounded to ang. clasts, poorly graded. m lon Crade -Joint @ 5.24m, sub- horizontai to gently incli undulating, smooth, very narrow, iron Coade stani -Joint @ 6.15m, sub- horizontai, undulating.	nd, 5-
	HQ Coring	105			Coromandel Volc			from 5.95m, completely weathered, extremely weak to very weak			CW				90			rough, very narrow to lig Iron Oxide staining Jolint (@ 3.8 m, sub- horizontal, unduilating lig Iron Oxide staining light, Iron Oxide - Crush zone @ 6.82m- 6.54m, fine to coarses sand, sub rounded to su anguiar clasts, poorly graded, minor Iron Oxid - Crush zone @ 6.80m-	
		102						from 7.6m, very weak to weak							83			 6.83m, fine to coarse gravel, medium to coarse sand, silt, sub rounded t sub angular clasts, medi graded, fron Chide stain -Janit @ 7.75m, gently stepped, rough, narrow iron -Joint @ 7.80m, very ge to gently indimed, undulating to stepped, rough to smooth, narrow Iron Chide staining -Crush zone @ 8.63m.8.87m, fine fine to coarse and .sub counder subangular clasts, mediu graded, iron oxide staining -Joint @ 8.75m, moderat steeppl to steepy inclined, undulating to stepped, rough to steepy inclined, undulating to stepped, rough to steepy inclined, undulating to stepped, not be smooth, narrow 	a a a a a a a a a a a a a a a a a a a
								Termination Depth = 9m,										 Joint all 8 33m, cently inclined, undualing smoke rough, very narrow, iron to horizontal and undualing and horizontal and undualing and to rough, very narrow to ta Iron Oxide staining or DB 	th to xide 9 ooth ght. ?

6	HI	G	HD	Liı	mit	ed		BOREHOLE W	vith	Pie	ezo	o L	.00	6	Sit	te Id	lentif	ication: GLD0	3a
						04		Auckland 1141										Sheet 1 of	3
F C S	Proje Clier Site: Ob	ect: nt: No.:		F C V 5	Proje Dcea Vail 51/3	ect ana ni- (708	Quatti Gold Gladst 3	ro Ltd one Comme Comple	nced ted:	: 20- 20-Jı	Jun- ın-17	-17 7			Con	trac	tor:	Datum: Total Depth: 2 Perry Geotech	!1.0m
S	duip hear ore l	ment Vane Diam	: e: eter	JD	1 rac 1): 9	ior f	kig	Comments:)									Processed: CDM Checked: HB	VAS
Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	EW VW	MS Estimated	ES RQD (%)	20	60 Defect 200 Spacing	600 (mm)	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
	0.2 0.4 0	66			Volcanics	ML		TOPSOIL: SILT, minor fine to coarse sand; black (organic), very stiff, wet, non plastic, rootlets from 0.2m, stiff, moist SILT, some fine to medium sand, minor clay; brown, stiff to firm, moist, low plasticity	M	VS St St-F								- N.B* poor	1-
	HQ Corir				Weathered	МН	× × × × × × × × × × × × × × × × × × ×	Clayey SILT, minor fine to coarse sand; grey, stiff to firm, wet, medium plasticity from 1.5m, very stiff to stiff, saturated from 1.8m, stiff to firm, wet	W S W	VSt- St St-F	004							core recovery at 1.5- 3.0m nu-dril encountered rock at ~2.0m-3.0m (boulder) could not recover softer material	2-
	Tube	29						Completely weathered to highly weathered, light grey [Boulder]; moderately strong to strong			HW	-							3-
		40				_		Residual soil, very light grey - creamy greyish white with some brownish orange mottled [weathered ANDESITE and/or DACITE]; extremely weak; fine to coarse SAND, some silt; poorly graded, moderately dense, saturated, too weathered to detect rock defects. from 3.9m, completely weathered to highly weathered, very weak from 4.0m, residual soil to completely weathered	S	'MD'	RS RS- CW	<u>.</u>		86	-			 -Joint @ 3.91m, steeply inclined, undulating, rough to smooth, very narrow, iron Oxide staining -Joint @ 4.0m, steeply to very steeply inclined, undulting to sample, rought using to sample, rought using to sample, 	4-
		103						from 5.5m, brownish staining/colouring weathered grey rock						99				 -Crush zone @ 5.10m- 5.14m, fine to coarse gravel, fine to coarse sand, sill, sub- rounded to angular clasts, poorly graded, minor iron -Joint @ 5.24m, sub- horzcratal to gently invend, marrow, iron Oxide staining -Joint @ 6.15m, sub- horizontal, undulating, rough, very narrow to tight, 	5-
	HQ Coring	105			Coromandel Volcanics			from 5.95m, completely weathered, extremely weak to very weak			CW			90				Iron Oxide staining -Jont @ S.4m, sub- hortzontal, undulating, tron Oxide staining -Jont @ 5.2m, sub- hortzontal, undulating, rough, tight, Iron Oxide -Crush zone @ 6.52m, sub- foredium to coarse sand, sub- rounded to sub angular dasts, poorly graded, minor Iron Oxide 0.50m, sub- clasts, poorly graded, minor Iron Oxide 0.50m, sub- clasts, poorly graded, minor tino Oxide 0.50m, sub- clasts, income @ 6.80m- el.53m, Iron b coarse sand sit, sub-rounded to sub angular dasts, endium graded, Iron	6- 7-
		102			0			from 7.6m, very weak to weak			RS-			83				Oxide staining -Jont @ 7.5m, gently inclined, undulating to stepped (rugh, narrow, Inny -to gently inclined, undulating to stepped, rough to smooth, narrow, Iron Oxide staining -Crush zone @8.63m. 8.67m, fine to coarse gravel, fine to coarse gravel, fine to coarse gravel, fine to coarse sand, sub rounded to subangular clasts, iron staining -Joint @ 8.75m, moderately steeply to stepped, rough undulating to stepped, rough	8-
	9.1	99						from 9.0m, residual soil to completely weathered, extremely weak, SILT, some sand, very soft, saturated from 9.1m, completely weathered, very weak from 9.8m, completely weathered, weak	S	VS	CW			58				inclined, undularing smooth to rough, very narow, tron -Joint (B, 699m, sub- horizontal, undularing smooth to rough, very narrow to tight, tron Oxide staining or DB? -DB set (B, 32:m-847m surface difficult to detect, minor iron Oxide staining	9-

		GI	ЧЬ	l ii	mit	ed			vith	Pi	ezo	b LC)G	ſ	Site Ident	ification: GLD0	3a
						54		Auckland 1141								Sheet 2 o	f 3
Pr Cl Si Jc	roje lien te: ob N	ct: t: lo.:		F C V 5	Proje Dcea Vaił 51/3	ect ana ni- (708	Quatti Gold I Gladst 33	ro Ltd one Comme Comple	encec eted:	l: 20- 20-J	Jun- un-17	17		С	contractor:	Datum: Total Depth: 2 Perry Geotech	21.0m
Eq	lnibr	nent	:	JD	Tract	tor F	₹ig	Inclination: -9	0							Logged: HB	
Sh Bo	iear ore D	Vane Jiame	e: eter	(mn	ı): 9	6		Comments:								Processed: CDM Checked: HB	1/AS
Depth (m)/ [Elev.]	Drilling Method	Core Run / Recovery (%)	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	SOIL DESCRIPTION: (Soil Code), Soil Name [minor MAJOR], colour, structure [zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condition	Consistency/ Relative Density	Weathering	EV W Ws Estimated	S Rock Strength	RQD (%)	20 60 Defect 200 Spacing 600 (mm)	TESTS & SAMPLES / ROCK MASS DEFECTS: Depth, Type, Inclinations, Roughness, Texture, Aperture, Coating	Piezometer
- "		99						from 10.3m, highly weathered, weak			сw			58		-Joint @ 10.2m; steeply inclined, undulating smooth to rough, narrow, Iron Oxide staining -Joint @ 10.32m, gently	
- - - - - - - - - -		92												84		inclined, undulating to stepped, rough, very narrow, tronOxide staining -Joint (2) 104 11m, moderately inclined, undulating, smooth to rough, narrow to moderately narrow with moderately inclined, stepped, rough to smooth, narrow, tion Oxide staining (motiled) -Joint (2) 11.6m, gently to moderately inclined, stepped, rough to smooth, narrow, tion Oxide staining (not oxide) 11.6m, gently to moderately inclined, stepped, rough, narrow, tion staining -Joint (2) 11.8m, gently to moderately inclined, stepped, rough, narrow, tion Oxide	11-
		109						from 12.4m, completely weathered to highly weathered, very weak			CW- HW			63		staining -Joint @ 1.10, very skeeply unduating to stepped, cough, narrow inor staining (mottled) -Joint @ 12.36n, gently inclined, unduating, cough to smooth, narrow, inon Oxde -Crush zone @ 12.4m, arrow, inne & coarse sand, gravel, line to coarse sand, sill, poorty graded, sub rounded to sub angular clasts, micro iron staining -Joint @ 12.8m gently inclined, unduating (iv) marrow, micro iron staining -Joint @ 12.8m gently inclined, unduating (iv) marrow, micro iron staining -Joint @ 12.8m gently inclined, subdating (iv) marrow, micro iron staining -Joint @ 12.8m gently inclined, subdating (iv) - marrow, micro iron staining -Joint @ 12.8m gently - marrow, micro iron staining - Joint @ 12.8m gently - marrow, micro iron staining - marrow, micro iron sta	12 13-
- - 14 - -		99			anics			from 13.7m, highly weathered, weak			HW			82		very narrow, iron Oxide -Joint @ 13.0m, sub- horizontal to gently inclined, stepped, ough, narrow to model of the stepped of the stepped -Joint @ 13.2m, way steppy inclined, undukting, rough, very narrow to narrow, iron -Joint @ 14.06m, sub- horizontal to gently inclined, undukting to stepped. -Joint @ 14.22, 14.28 & 14.4 m, -Joints @ 14.22, 14.28 & 14.4 m,	14
- - 15 - -	HQ Coring				Coromandel Volc											ently inclined, undukting, rough, vey narrow to narrow, Iron Oxide Joints © 14.6, 14.7 & 14.8 m, moderately to steeply inclined, stepped to undukting, smooth, very narrow, Iron oxide 15.2 m gently inclined, stepped to 20 m gently inclined, stepped to 20 m gently inclined, stepped to 20 m gently inclined, stepped to 20 m gently inclined, stepped to 20 m gently inclined, stepped to 20 m gently inclined, stepped to 20 m gently inclined, stepped to 20 m gently inclined, stepped to 20 m gently inclined in the stepped stepped to 20 m gently inclined in the stepped to 20 m gently inclined in the stepped to 20 m gently inclined stepped to 20 m gently inclined in the stepped to 20 m gently inclined stepped to 20 m gently inclined in the stepped to 20 m gently inclined stepped to 20 m gently inclined in the stepped to 20 m gently inclined stepped to 20 m gently inclined in the stepped to 20 m gently inclined stepped to 20 m gently inclined in the stepped to 20 m gently inclined stepped to 20 m gently inclined in the stepped to 20 m gently inclined stepped to 20 m gently inclined in the stepped to 20 m g	15-
<u>1</u> 6		94						from 16.5m, completely weathered to highly weathered, extremely weak to very weak			CW- HW			39		horizzniai, unduising, rough, modarately wide, Iron Oxide @ 16 Jm, very steeply inclined steppet, amoth, very narrow, Iron Joint @ 16.2m, gently inclined, unduising to stepped, rough to steppet, amoth, very narrow bently inclined, stepped, rough to snooth, very narrow to narrow, Iron	16-
		103						from 17.0m, highly weathered, weak			нw			94		-Joints @ 17.5m, 17.81 and 17.97 m, sub-horizontal to gently inclined, undukting to stepped, zough, very narrow to	17-
18 - - - - - - - - - - - - - -		99												78		Juitta (8 18.2m, 18.25m & 18.25m gentle to moderately inclined, undiation cough, very narrow to tight, fron Oxide	18
		90												83		-Joints @ 19.15m and 19.35m, sub-horizontal, undulating, rough, very narrow to tight, DB? -Joints @ 19.4m &19.77m, moderately inclined, undulating, rough, narrow to moderately wide, minor Iron Oxide	20-

	âH	D	GI	HD	Liı	mit	ed		PO Box 6543 Auckland 1141	/itn	PI	ezo		JG		Sit	e l	dent	ification: GLI	D03a
ſ	Pr Cli	oje ien	ct: t:		F	Proje	ect (ana	Quattr Gold I	ro _td										Datum: Total Dep	th: 21.0m
	Sit Jo	te: bN	lo.:		۷ 5	Vaił 51/3	ni- (708	3 3	one Comme Comple	enced eted:	l: 20- 20-Ji	Jun- un-17	17 ,		C	on	trad	ctor	Perry Geotech	
	Eq She	uipr ear '	nent Vane	:):	JD	Trac	tor F	lig	Inclination: -9 Comments:	C									Logged: Processed:	HB CDM/AS
┢	Bo	re D	iame	eter	(mn	ı): 9	6 		SOIL DESCRIPTION: (Soil Code), Soil	ion				£					Checked:	HB
	Depth (m)/ [Elev	Drilling Method	Core Run / Recovery	Support / Casing (m)	Water	Geological Fm	Classification	Graphic Log	[zoning, defects, cementing], plasticity or grain size, secondary components, structure. (Geological Formation) / ROCK DESCRIPTION: Weathering, colour, fabric, ROCK NAME (Formation Name)	Moisture Condit	Consistency/ Relative Density	Weathering	EW W Stimated	s Rock Streng	RQD (%)	20	60 Defect		/ ROCK MASS DEFECTS: Depth, Type, Inclinations Roughness, Texture, Aperture, Coating	Piezometer
	U	HQ Coring	90						from 20.8m, completely weathered, extremely weak			HW			83				-Joints @ 20.1m and 20.7 gently to moderately inclin undulating to stepped, rou narrow, Manganese, Iron Crush zone @ 20.8m-20 fine to coarse SAND, silt,	r m, international sector of the sector of t
VER 1.5.GDT 10/8/17	1 21.0 2 2								to weak Termination Depth = 21m			CW							rounded -angular clasts, loose, poorly graded	22
NZ GINT DATA TEMPLATE	4																			24-
PLETE DRAFT.GPJ	5																			25-
	6																			26-
ECT QUATTRO FVN	7																			27-
37083 NZ LIB_PROU	8																			28
HOLE LOG NZ ALT 51	9																			29
BORE	<u>o</u>																			30-

Source: OGNZL, 2017. Summary Report on Sterilization Drill- Hole GT020 (Proposed TSF3 Area). File name "TSRF3_Maps and Section_14Aug2017 for EngGeol.PDF". Provided by OGNZL to GHD via email on 25/11/2017.

Figure 2: Geology of the Waihi Area (derived from GNS 1:50 000 mapping) indicating regional extent of the Golden Valley Fault. Geological units and structures are further detailed in Fig. 3 below.

OGNZL, 2017. Summary Report on Sterilization Drill- Hole GT020 (Proposed TSF3 Area). File name "TSRF3_Maps and Section_14Aug2017 for EngGeol.PDF". Provided by OGNZL to GHD via email on 25/11/2017.

Figure 3: Geological map of waste rock and tailings storage area (proposed WRS-N and TSF-3 outlined in red). Permit boundary in solid black. Geological Section lines are annotated A-A¹; B-B¹. Note inferred extension of Golden Valley fault through tails facility (pink, dashed). Proposed TSF-3 test hole is indicated by a solid red dot and tail.

OGNZL, 2017. Summary Report on Sterilization Drill- Hole GT020 (Proposed TSF3 Area). File name "TSRF3_Maps and Section_14Aug2017 for EngGeol.PDF". Provided by OGNZL to GHD via email on 25/11/2017.

Figure 4: Cross Section A-A¹ through proposed TSF-3 area. Drill data west of PS-4 indicates easterly dip of ~ 15°. There is no reliable drilling data east of PS-4 and thickening particularly of the mnr (Ruahorohore) Rhyolite unit to the east is inferred from the lateral extent of the Ruahorhore dome. Width of Rhyolite unit underlying TSF-3 is likely to significantly exceed the drilled width of 150m in PS-4. Note the Golden Valley Fault (GVF) is inferred to transect the western part of TSF-3. The GVF may be prospective at depth and a drill hole is proposed to test this structure within the upper Andesite unit.

Appendix C Groundwater level data

Contents:

Table C.1	Gladstone Groundwater Level Data
Table C.2	NRS Groundwater Level Data
Table C.3	TSF3 Groundwater Level Data
Table C.4	Minimum and maximum vertical hydraulic gradients – Gladstone Shallow Groundwater System
Table C.5	Minimum and maximum vertical hydraulic gradients – Gladstone Deep Groundwater System
Table C.6	Minimum and maximum vertical hydraulic gradients – NRS Shallow Groundwater System
Figure C.1	Groundwater contours – Gladstone Shallow Groundwater System
Figure C.2	Groundwater contours – Gladstone Intermediate Groundwater System
Figure C.3	Groundwater contours – NRS Shallow Groundwater System
Figure C.4	Groundwater contours – NRS Deeper Groundwater System
Figure C.5	Groundwater contours – TSF3 Shallow Groundwater System
Figure C.6	Groundwater contours – TSF3 Deeper Groundwater System

Table C 1 Gladstone Groundwater Level Data

<u>GWLs in m RL</u>	Borehole	No. of records	Min (m RL)	Max (m RL)	Average	Fluctuation (m)	19/06/2017	27/06/2017	29/06/2017	30/06/2017	10/07/2017	11/07/2017	13/09/2017	24/10/2017	24/11/2017	13/12/2017	22/01/2018	5/03/2018	20/03/2018	3/05/2018	6/06/2018	5/07/2018	2/08/2018	5/09/2018
	GLD01	14	1123.27	1126.53	1124.08	3.26	1124.73	1124.15	1126.53		1124.26	1124.03	1123.97	1123.57		1123.269	1123.289	1123.359	1123.629	1123.994			1124.299	1124.059
	GLD01a	14	1121.52	1125.59	1123.55	4.07	1122.85	1124.68	1122.06		1124.26	1124.01	1125.59	1123.64		1121.52	1123.13	1123.26	1123.38	1123.705			1123.78	1123.77
	GLD01b	2	1096.70	1117.98	1107.34	21.28	1117.98	DRY	DRY	DRY		DRY		DRY					1096.698					
	GLD02	12	1112.79	1115.13	1114.06	2.34					1115.04		1114.57	1113.90	1114.11	1112.88	1112.79	1113.39	1113.35	1115.02	1115.13	1114.205		1114.32
Gladstone Hydro Bereholer	GLD02a	12	1112.06	1115.59	1113.64	3.53					1115.23		1115.02	1113.04	1113.327	1112.057	1112.447	1112.607	1112.317	1115.307	1115.587	1113.352		1113.457
diaustone nyuro borenoles	GLD03	14	1108.45	1110.46	1109.86	2.01		1109.95	1109.89		1110.14	1110.17	1109.78	1110.09			1108.452	1109.427	1109.152	1109.902	1110.462	1110.102	1110.242	1110.212
	GLD03a	13	1104.85	1109.51	1106.81	4.66		1109.51	1106.78		1107.15	1107.05	1107.07	1106.45			1104.853		1105.428	1106.558	1107.223	1106.703	1106.988	1106.773
	P79s	12	1096.53	1100.04	1097.52	3.50							1097.51	1096.88	1096.94	1096.53	1096.74	1096.97	1097.06	1099.7	1100.035	1097.105	1097.14	1097.63
	P79i	3	1090.15	1093.30	1092.03	3.15							1092.63	1093.30					1090.15					
	P79d	3	1080.84	1084.88	1083.29	4.04							1084.15	1084.88					1080.84					

<u>GWLs in m bgl</u>	Borehole	No. of records	Min (m RL)	Max (m RL)	Average	Fluctuation (m)	19/06/2017	27/06/2017	29/06/2017	30/06/2017	10/07/2017	11/07/2017	13/09/2017	24/10/2017	24/11/2017	13/12/2017	22/01/2018	5/03/2018	20/03/2018	3/05/2018	6/06/2018	5/07/2018	2/08/2018	5/09/2018
	GLD01	12	1.80	3.26	2.59	1.46	1.80	2.38			2.27	2.50	2.56	2.96		3.26		3.17	2.90	2.535			2.23	2.47
	GLD01a	13	0.96	5.03	2.97	4.07	3.70	1.87	4.49		2.29	2.54	0.96	2.91		5.03		3.29	3.17	2.845			2.77	2.78
	GLD01b	2	8.50	29.78	19.14	21.28	8.50	DRY	DRY	DRY		DRY		DRY					29.78					
	GLD02	12	4.34	6.68	5.41	2.34					4.43		4.90	5.57	5.36	6.59	6.68	6.08	6.12	4.45	4.34	5.265		5.15
Gladstone Hydro Boreholes	GLD02a	12	4.08	7.61	6.02	3.53					4.44		4.65	6.63	6.34	7.61	7.22	7.06	7.35	4.36	4.08	6.315		6.21
Glaustone Hydro Borenoles	GLD03	13	2.92	4.23	3.42	1.31		3.43	3.49		3.24	3.21	3.60	3.29				3.96	4.23	3.48	2.92	3.28	3.14	3.17
	GLD03a	12	3.86	7.95	6.40	4.09		3.86	6.59		6.22	6.32	6.30	6.92					7.95	6.815	6.15	6.67	6.385	6.6
	P79s	11	2.85	6.35	5.29	3.51							5.37	6.00	5.94	6.35		5.91	5.82	3.18	2.845	5.775	5.74	5.25
	P79i	3	9.65	12.80	10.92	3.15							10.32	9.65					12.80					
	P79d	3	18.11	22.15	19.70	4.04							18.84	18.11					22.15					

Table C 2 NRS Groundwater Level Data																										
<u>GWLs in m RL</u>	Borehole	No. of record	Min s (m RL)	Max (m RL)	Average	Fluctuation (m)	16/03/1995	5 16/06/2017	20/06/2017	7 27/06/201	30/06/2017	5/07/2017	11/07/2017	8/08/2017	8/09/2017	24/11/2017	29/11/2017	4/12/2017	8/02/2018	12/02/2018	19/02/2018	20/03/2018	26/04/2018	8/05/2018	17/05/2018	29/05/201
	WRS01	3	1099.25	1102.7	1100.54	3.54												1099.247		1102.792		1099.572				-
	WRS01a	3	1099.06	1100.8	1099.72	1.74												1099.059		1100.799		1099.294				
	WRS02	4	1100.66	1101.1	2 1100.90	0.46												1100.655		1101.118		1100.78			1101.06	
	WRS02a	4	1096.36	1101.1	0 1097.74	4.74												1096.356		1097.079		1096.411			1101.101	
	WRS03	7	1129.28	1130.2	5 1129.78	0.97				1130.09		1130.25		1130.00				1129.625		1129.397		1129.275				1129.8
	WRS03a	7	1129.23	1130.3	l 1129.90	1.07				1130.07		1130.31		1130.07				1129.678		1130.148		1129.233		1		1129.81
	WRS04	14	1095.19	1097.2	5 1096.08	2.07		1095.44	1095.32	1096.44		1096.61		1095.69	1096.42					1097.26	1096.395	1095.19		1095.75		
	WRS04a	14	1094.90	1096.70	1095.67	1.81		1095.23	1095.03	1095.82		1096.06		1095.29	1095.85					1096.703	1095.743	1094.898		1096.213		
W/DC Hudro Boroholos	WRS05	8	1096.39	1097.9	9 1096.86	1.60				1096.90	1096.75		1096.81	1096.67	1096.85				1096.386	1097.989		1096.501				
WKS Hydro Borenoles	WRS05a	10	1095.91	1096.9	5 1096.32	1.03				1096.52	1096.40		1095.97	1096.26	1096.52				1095.914	1096.947		1096.004			1096.324	
	WRS06	13	1097.53	1098.4	1098.00	0.86				1098.22	1098.18	1098.12						1097.534	1097.574	1098.397	1098.114	1097.704		1098.114		
	DH05A	15	1095.00	1098.4	1097.53	3.40	1097.59				1097.04	1098.07	1095.00	1097.59			1097.263		1097.334	1098.243	1097.784	1097.444		1097.894		
	DH05	14	1095.36	1098.7	l 1098.30	3.35					1098.48	1098.71	1095.36	1098.41			1098.229		1098.248	1098.688	1098.598	1098.568		1098.608		
	DH04	3	1096.59	1097.5	5 1096.95	0.96							1097.55					1096.585				1096.725				
	WRS07	11	1104.83	1106.0	3 1105.24	1.25				1105.20	1105.17	1105.35		1106.08				1104.826		1106.044		1104.931	1104.826			
	DH09	6	1105.40	1106.0	7 1105.69	0.67					1105.63	1105.81	1105.73	1105.52						1106.069		1105.397				
	WRS08	13	1104.84	1105.94	1105.20	1.10					1105.11	1105.44		1105.10			1104.841		1105.201	1105.939	1105.051	1105.091		1105.071		
	DH08	13	1101.43	1102.8	3 1101.85	1.45	1101.88					1101.98				1101.497	1101.427		1101.647	1101.997	1101.447	1101.602		1101.842		
GWLs in mbgl																										
	Borehole	No. of record	Min s (mbgl)	Max (mbgl)	Average	Fluctuation (m)	16/03/1995	5 16/06/2017	20/06/2017	7 27/06/201	7 30/06/2017	5/07/2017	11/07/2017	8/08/2017	8/09/2017	24/11/2017	29/11/2017	4/12/2017	8/02/2018	12/02/2018	19/02/2018	20/03/2018	26/04/2018	8/05/2018	17/05/2018	29/05/201
	Borehole WRS01	No. of record 3	Min s (mbgl) 2.76	Max (mbgl) 6.30	Average 5.01	Fluctuation (m) 3.55	16/03/1995	16/06/2017	20/06/2017	7 27/06/201	7 30/06/2017	5/07/2017	11/07/2017	8/08/2017	8/09/2017	24/11/2017	29/11/2017	4/12/2017 6.3	8/02/2018	12/02/2018 2.755	19/02/2018	20/03/2018 5.975	26/04/2018	8/05/2018	17/05/2018	29/05/201
	Borehole WRS01 WRS01a	No. of record 3 3	Min s (mbgl) 2.76 4.71	Max (mbgl) 6.30 6.45	Average 5.01 5.79	Fluctuation (m) 3.55 1.74	16/03/1995	16/06/2017	20/06/2017	7 27/06/201	7 30/06/2017	5/07/2017	11/07/2017	8/08/2017	8/09/2017	24/11/2017	29/11/2017	4/12/2017 6.3 6.45	8/02/2018	12/02/2018 2.755 4.71	19/02/2018	20/03/2018 5.975 6.215	26/04/2018	8/05/2018	17/05/2018	29/05/201
	Borehole WRS01 WRS01a WRS02	No. of record 3 3 4	Min s (mbgl) 2.76 4.71 4.16	Max (mbgl) 6.30 6.45 4.62	Average 5.01 5.79 4.37	Fluctuation (m) 3.55 1.74 0.46	16/03/1995	16/06/2017	20/06/2017	7 27/06/201	30/06/2017	5/07/2017	11/07/2017	8/08/2017	8/09/2017	24/11/2017	29/11/2017	4/12/2017 6.3 6.45 4.62	8/02/2018	12/02/2018 2.755 4.71 4.157	19/02/2018	20/03/2018 5.975 6.215 4.495	26/04/2018	8/05/2018	17/05/2018 4.215	29/05/201
	Borehole WRS01 WRS01a WRS02 WRS02a	No. of record 3 4 4	Min s (mbgl) 2.76 4.71 4.16 4.22	Max (mbgl) 6.30 6.45 4.62 8.97	Average 5.01 5.79 4.37 7.58	Fluctuation (m) 3.55 1.74 0.46 4.75	16/03/1995	16/06/2017	20/06/2017	7 27/06/201	30/06/2017	5/07/2017	11/07/2017	8/08/2017	8/09/2017	24/11/2017	29/11/2017	4/12/2017 6.3 6.45 4.62 8.965	8/02/2018	12/02/2018 2.755 4.71 4.157 8.242	19/02/2018	20/03/2018 5.975 6.215 4.495 8.91	26/04/2018	8/05/2018	17/05/2018 4.215 4.22	29/05/201
	Borehole WRS01 WRS01a WRS02 WRS02a WRS03	No. of record 3 4 4 7	Min s (mbgl) 2.76 4.71 4.16 4.22 1.90	Max (mbgl) 6.30 6.45 4.62 8.97 2.87	Average 5.01 5.79 4.37 7.58 2.36	Fluctuation (m) 3.55 1.74 0.46 4.75 0.97	16/03/1995	16/06/2017	20/06/2017	27/06/201	30/06/2017	5/07/2017 1.90	11/07/2017	8/08/2017	8/09/2017	24/11/2017	29/11/2017	4/12/2017 6.3 6.45 4.62 8.965 2.52	8/02/2018	12/02/2018 2.755 4.71 4.157 8.242 2.748	19/02/2018	20/03/2018 5.975 6.215 4.495 8.91 2.87	26/04/2018	8/05/2018	17/05/2018 4.215 4.22	29/05/201
	Borehole WRS01 WRS01a WRS02 WRS02a WRS03 WRS03a	No. of record 3 4 4 7 7 7	Min s (mbgl) 2.76 4.71 4.16 4.22 1.90 1.90	Max (mbgl) 6.30 6.45 4.62 8.97 2.87 2.98	Average 5.01 5.79 4.37 7.58 2.36 2.31	Fluctuation (m) 3.55 1.74 0.46 4.75 0.97 1.08	16/03/1995	16/06/2017	20/06/2017	27/06/201 2.06 2.14	30/06/2017	5/07/2017 1.90 1.90	11/07/2017	8/08/2017 2.15 2.14	8/09/2017	24/11/2017	29/11/2017	4/12/2017 6.3 6.45 4.62 8.965 2.52 2.53	8/02/2018	12/02/2018 2.755 4.71 4.157 8.242 2.748 2.06	19/02/2018	20/03/2018 5.975 6.215 4.495 8.91 2.87 2.975	26/04/2018	8/05/2018	17/05/2018 4.215 4.22	29/05/201
	Borehole WRS01 WRS01a WRS02 WRS02a WRS03 WRS03 WRS04 WRS04	No. of record 3 4 4 7 7 7 14	Min s (mbgl) 2.76 4.71 4.16 4.22 1.90 1.90 0.61	Max (mbgl) 6.30 6.45 4.62 8.97 2.87 2.98 2.98 2.68	Average 5.01 5.79 4.37 7.58 2.36 2.31 1.79	Fluctuation (m) 3.55 1.74 0.46 4.75 0.97 1.08 2.07	16/03/1995	2.43	20/06/2017	27/06/2011 2.06 2.14 1.43	30/06/2017	5/07/2017 1.90 1.90 1.26	11/07/2017	8/08/2017 2.15 2.14 2.19	8/09/2017	24/11/2017	29/11/2017	4/12/2017 6.3 6.45 4.62 8.965 2.52 2.53	8/02/2018	12/02/2018 2.755 4.71 4.157 8.242 2.748 2.06 0.61	19/02/2018	20/03/2018 5.975 6.215 4.495 8.91 2.87 2.975 2.68	26/04/2018	8/05/2018	17/05/2018 4.215 4.22	29/05/201 2.29 2.39
	Borehole WRS01 WRS01a WRS02a WRS03a WRS03a WRS04 WRS04 WRS04	No. of record 3 4 4 7 7 7 14 14	Min s (mbgl) 2.76 4.71 4.16 4.22 1.90 1.90 0.61 1.16 2.27	Max (mbgl) 6.30 6.45 4.62 8.97 2.87 2.87 2.98 2.68 2.68 2.68	Average 5.01 5.79 4.37 7.58 2.36 2.31 1.79 2.19	Fluctuation (m) 3.55 1.74 0.46 4.75 0.97 1.08 2.07 1.81	16/03/1995	2.43 2.63	20/06/2017 2.55 2.83	27/06/201 2.06 2.14 1.43 2.04	30/06/2017	5/07/2017 1.90 1.90 1.26 1.80	11/07/2017	8/08/2017 2.15 2.14 2.19 2.57 2.57	8/09/2017	24/11/2017	29/11/2017	4/12/2017 6.3 6.45 4.62 8.965 2.52 2.53	8/02/2018	12/02/2018 2.755 4.71 4.157 8.242 2.748 2.06 0.61 1.155	19/02/2018 	20/03/2018 5.975 6.215 4.495 8.91 2.87 2.975 2.68 2.96 2.55	26/04/2018	8/05/2018 2.12 1.645	17/05/2018 4.215 4.22	29/05/201 2.29 2.39
GWLs in m bgl	Borehole WRS01 WRS02 WRS02 WRS03 WRS03 WRS03 WRS04 WRS04 WRS04	No. of record 3 4 4 7 7 14 14 8 10	Min s (mbgl) 2.76 4.71 4.16 4.22 1.90 1.90 0.61 1.16 3.07 4.12	Max (mbgl) 6.30 6.45 4.62 8.97 2.87 2.98 2.98 2.98 2.98 2.96 4.67	Average 5.01 5.79 4.37 7.58 2.36 2.31 1.79 2.19 4.20 4.74	Fluctuation (m) 3.55 1.74 0.46 4.75 0.97 1.08 2.07 1.81 1.60	16/03/1995	2.43 2.63	20/06/2013 2.55 2.83	7 27/06/201 2.06 2.14 1.43 2.04 4.16	4.31	5/07/2017 1.90 1.90 1.26 1.80	4.25	8/08/2017 2.15 2.14 2.19 2.57 4.39	8/09/2017 1.45 2.01 4.21	24/11/2017	29/11/2017	4/12/2017 6.3 6.45 4.62 8.965 2.52 2.53	8/02/2018	12/02/2018 2.755 4.71 4.157 8.242 2.748 2.748 2.06 0.61 1.155 3.067 (417)	19/02/2018 	20/03/2018 5.975 6.215 4.495 8.91 2.87 2.975 2.68 2.96 4.555	26/04/2018	8/05/2018 2.12 1.645	17/05/2018 4.215 4.22	29/05/201 2.29 2.39
GWLs in m bgl	Borehole WRS01 WRS01a WRS02a WRS03 WRS03a WRS04a WRS04a WRS05 WRS05 WRS05	No. of record 3 4 4 4 7 7 7 14 14 14 8 10	Min s (mbgl) 2.76 4.71 4.16 4.22 1.90 1.90 0.61 1.16 3.07 4.12 2.00	Max (mbgl) 6.30 6.45 4.62 8.97 2.87 2.98 2.68 2.96 4.67 5.15	Average 5.01 5.79 4.37 7.58 2.36 2.31 1.79 2.19 4.20 4.74 1.30	Fluctuation (m) 3.55 1.74 0.46 4.75 0.97 1.08 2.07 1.81 1.60 1.03 2.06	16/03/1995	2.43 2.63	20/06/2013	27/06/201 2.06 2.14 1.43 2.04 4.16 4.54	30/06/2017	5/07/2017 1.90 1.90 1.26 1.80	11/07/2017 4.25 5.09	8/08/2017 2.15 2.14 2.19 2.57 4.39 4.81	8/09/2017 1.45 2.01 4.21 4.55	24/11/2017	29/11/2017	4/12/2017 6.3 6.45 4.62 8.965 2.52 2.53	8/02/2018 4.67 5.15	12/02/2018 2.755 4.71 4.157 8.242 2.748 2.06 0.61 1.155 3.067 4.117	19/02/2018 1.475 2.115	20/03/2018 5.975 6.215 4.495 8.911 2.87 2.975 2.68 2.96 4.555 5.06 4.555	26/04/2018	8/05/2018 2.12 1.645	17/05/2018 4.215 4.22 4.22 4.74	29/05/201 2.29 2.39
GWLs in m bgl	Borehole WRS01 WRS02 WRS02 WRS03 WRS03 WRS04 WRS04 WRS04 WRS05 WRS05 WRS05 WRS05 WRS05	No. of record 3 3 4 4 7 14 14 8 10 13	Min s (mbgl) 2.76 4.71 4.16 4.22 1.90 1.90 0.61 1.16 3.07 4.12 0.99 0.02	Max (mbgl) 6.30 6.45 4.62 8.97 2.87 2.98 2.68 2.96 4.67 5.15 1.85	Average 5.01 5.79 4.37 7.58 2.36 2.31 1.79 2.19 4.20 4.74 1.39	Fluctuation (m) 3.55 1.74 0.46 4.75 0.97 1.08 2.07 1.81 1.60 1.03 0.86 2.40		2.43 2.63	20/06/2013	7 27/06/201 2.06 2.14 1.43 2.04 4.16 4.54 1.16	30/06/2017	5/07/2017 1.90 1.90 1.26 1.80 	11/07/2017 4.25 5.09	8/08/2017 2.15 2.14 2.19 2.57 4.39 4.81	8/09/2017 1.45 2.01 4.21 4.55	24/11/2017	29/11/2017	4/12/2017 6.3 6.45 4.62 8.965 2.52 2.53 2.53	8/02/2018 4.67 5.15 1.81	12/02/2018 2.755 4.71 4.157 8.242 2.748 2.06 0.61 1.155 3.067 4.117 0.987	19/02/2018 1.475 2.115 1.27	20/03/2018 5.975 6.215 4.495 2.975 2.975 2.68 2.96 4.555 5.06 1.68 1.98	26/04/2018	8/05/2018 2.12 1.645 1.27	17/05/2018 4.215 4.22 4.22 4.74	29/05/201
GWLs in m bgl	WRS01 WRS01a WRS02a WRS02a WRS03 WRS03 WRS04a WRS04a WRS05 WRS05 WRS05 WRS06 DH05A	No. of record 3 3 4 4 7 14 14 8 10 13 14	Min s (mbgl) 2.76 4.71 4.16 4.22 1.90 1.90 0.61 1.16 3.07 4.12 0.99 0.92 0.92	Max (mbgl) 6.30 6.45 4.62 8.97 2.87 2.98 2.68 2.96 4.67 5.15 1.85 4.41 2.61	Average 5.01 5.79 4.37 7.58 2.36 2.31 1.79 2.19 4.20 4.74 1.39 1.83	Fluctuation (m) 3.55 1.74 0.46 4.75 0.97 1.08 2.07 1.81 1.60 1.03 0.86 3.49 2.25	16/03/1999	16/06/2017	20/06/2017	27/06/201 2.06 2.14 1.43 2.04 4.16 4.54 1.16	30/06/2017 4.31 4.67 1.20 2.37	5/07/2017 1.90 1.90 1.26 1.80 1.26 1.34 1.26 1.34	11/07/2017 4.25 5.09 4.41	8/08/2017 2.15 2.14 2.19 2.57 4.39 4.81 1.82 1.82	8/09/2017 1.45 2.01 4.21 4.55	24/11/2017	29/11/2017	4/12/2017 6.3 6.45 4.62 8.965 2.52 2.53 2.53 1.85	8/02/2018 4.67 5.15 1.81 1.99	12/02/2018 2.755 4.71 4.157 8.242 2.748 2.06 0.61 1.155 3.067 4.117 0.987 1.081	19/02/2018 1.475 2.115 1.27 1.54	20/03/2018 5.975 6.215 4.495 8.91 2.87 2.975 2.68 2.96 4.555 5.06 1.68 1.88 0.045	26/04/2018	8/05/2018 2.12 1.645 1.27 1.43	17/05/2018 4.215 4.22 4.22 4.74	29/05/201
GWLs in m bgl	Borehole WRS01 WRS02 WRS02 WRS03 WRS03 WRS03 WRS04 WRS05 WRS05 WRS05 WRS05 DH05A DH05A DH05A	No. of record 3 4 4 7 7 7 14 14 14 8 10 13 15 14	Min s (mbg)) 2.76 4.71 4.16 4.22 1.90 1.90 0.61 1.16 3.07 4.12 0.99 0.92 0.62 7.46	Max (mbgl) 6.30 6.45 4.62 8.97 2.87 2.98 2.68 2.96 4.67 5.15 1.85 4.41 3.97 8.43	Average 5.01 5.79 4.37 7.58 2.36 2.31 1.79 2.19 4.20 4.74 1.39 1.83 1.08	Fluctuation (m) 3.55 1.74 0.46 4.75 0.97 1.08 2.07 1.81 1.60 1.03 0.86 3.49 3.35 0.96	16/03/1995	16/06/2017	20/06/2013	27/06/201 2.06 2.14 1.43 2.04 4.16 4.54 1.16	30/06/2017 4.31 4.67 1.20 2.37 0.85	5/07/2017 1.90 1.26 1.80 1.26 1.34 0.62	11/07/2017 4.25 5.09 4.41 3.97 3.97	8/08/2017 2.15 2.14 2.19 2.57 4.39 4.81 1.82 0.91	8/09/2017 1.45 2.01 4.21 4.55	24/11/2017	29/11/2017	4/12/2017 6.3 6.45 8.965 2.52 2.53 1.85	8/02/2018 4.67 5.15 1.81 1.99 1.165	12/02/2018 2.755 4.71 4.157 8.242 2.748 2.06 0.61 1.155 3.067 4.117 0.987 1.081 0.725	19/02/2018 1.475 2.115 1.27 1.54 0.815	20/03/2018 5.975 6.215 4.495 8.911 2.875 2.975 2.68 2.96 4.555 5.06 1.68 1.88 0.845 \$ 9.75	26/04/2018	8/05/2018 2.12 1.645 1.27 1.43 0.805	17/05/2018 4.215 4.22 4.22 4.74	29/05/201
GWLs in m bgl	Borehole WRS01 WRS02 WRS02 WRS03 WRS03 WRS04 WRS04 WRS04 WRS04 WRS05a WRS05a WRS05 DH05A DH05A DH05 DH04 WRS07	No. of record 3 4 4 7 7 7 14 14 14 8 10 13 15 14 3 11	Min s (mbg)) 2.76 4.71 4.16 4.22 1.90 0.61 1.16 3.07 4.12 0.99 0.92 0.62 7.46	Max (mbgl) 6.30 6.45 4.62 8.97 2.87 2.98 2.68 2.96 4.67 5.15 1.85 4.41 3.97 8.42 2.71	Average 5.01 5.79 4.37 7.58 2.36 2.31 1.79 2.19 4.20 4.74 1.39 1.83 1.08 8.05	Fluctuation (m) 3.55 1.74 0.46 4.75 0.97 1.08 2.07 1.81 1.60 1.03 0.86 3.49 3.35 0.96 1.25	16/03/1999	16/06/2017	20/06/2013	7 27/06/201 2.06 2.14 1.43 2.04 4.16 4.54 1.16	4.31 4.31 4.67 1.20 2.37 0.85	5/07/2017 1.90 1.90 1.26 1.80 	11/07/2017 4.25 5.09 4.41 3.97 7.46	8/08/2017 2.15 2.14 2.19 2.57 4.39 4.81 1.82 0.91	8/09/2017 1.45 2.01 4.21 4.55	24/11/2017	29/11/2017	4/12/2017 6.3 6.45 4.62 2.52 2.53 2.53 1.85 1.85 8.42 2.71	8/02/2018 4.67 5.15 1.81 1.99 1.165	12/02/2018 2.755 4.71 4.157 8.242 2.748 2.06 0.61 1.155 3.067 4.117 0.987 1.081 0.725	19/02/2018 1.475 2.115 1.27 1.54 0.815	20/03/2018 5.975 6.215 4.495 2.87 2.975 2.68 2.96 4.555 5.06 1.68 1.88 0.845 8.28 2.66	26/04/2018	8/05/2018 2.12 1.645 1.27 1.43 0.805	17/05/2018 4.215 4.22 4.22 4.74	29/05/201
GWLs in m bgl	Borehole WRS01 WRS01a WRS02a WRS03 WRS03 WRS04a WRS04a WRS05a WRS05a WRS05a DH05A DH05A DH05A DH04 WRS07 DH04	No. of record 3 4 4 7 7 7 7 14 14 14 8 10 13 15 14 3 11 6	Min s (mbg)) 2.76 4.71 4.16 4.22 1.90 1.90 1.90 1.90 1.90 0.61 1.16 3.07 4.12 0.99 0.62 7.46 2.46 2.42	Max (mbgl) 6.30 6.45 4.62 8.97 2.87 2.87 2.87 2.96 2.96 4.67 5.15 1.85 4.41 3.97 8.42 3.71 2.90	Average 5.01 5.79 4.37 7.58 2.36 2.31 1.79 4.20 4.74 1.39 1.83 1.08 8.05 3.29	Huctuation (m) 3.55 1.74 0.46 4.75 0.97 1.08 2.07 1.81 1.60 1.03 0.86 3.49 3.35 0.96 1.25 0.96 1.25	16/03/1995	2.43 2.63	20/06/2011	7 27/06/2011 2.06 2.14 1.43 2.04 4.16 4.54 1.16 3.34	30/06/2017 4.31 4.67 1.20 2.37 0.85 	5/07/2017 1.90 1.26 1.80 1.26 1.34 0.62 3.19 2.40	4.25 5.09 4.41 3.97 7.46	8/08/2017 2.15 2.14 2.19 2.57 4.39 4.81 1.82 0.91 2.46 2.46 2.78	8/09/2017 1.45 2.01 4.21 4.55	24/11/2017	29/11/2017	4/12/2017 6.3 6.45 4.62 8.965 2.52 2.53 1.85 1.85 8.42 3.71	8/02/2018 4.67 5.15 1.81 1.99 1.165	12/02/2018 2.755 4.71 4.157 8.242 2.748 2.060 0.61 1.155 3.067 4.117 0.987 1.081 0.987 1.081 0.725 	19/02/2018 1.475 2.115 1.27 1.54 0.815	20/03/2018 5.975 6.215 4.495 8.91 2.975 2.68 2.975 5.06 1.68 1.88 0.845 8.28 3.605 2.20	26/04/2018	8/05/2018 2.12 1.645 1.27 1.43 0.805	17/05/2018 4.215 4.22 4.22 4.74	29/05/201 2.29 2.39 2.39
GWLs in m bgi	Borehole WRS01 WRS02 WRS02 WRS03 WRS03 WRS03 WRS04 WRS05 WRS05 WRS05 WRS05 DH05A DH05A DH05 DH04 WRS07 DH09 WWS07	No. of record 3 4 4 4 7 7 7 14 14 14 8 8 10 13 15 14 3 11 6 6 12	Min win win win win win win win win win w	Max (mbgl) 6.30 6.45 4.62 8.97 2.87 2.98 2.68 2.96 4.67 5.15 1.85 1.85 1.85 1.85 1.85 1.85 1.85	Average 5.01 5.79 4.37 7.58 2.36 2.31 1.79 2.19 4.20 4.74 1.39 1.08 8.05 3.29 2.61	Fluctuation (m) 3.55 1.74 0.46 4.75 0.97 1.08 2.07 1.81 1.60 1.03 0.86 3.49 3.35 0.96 1.25 0.96 1.25 0.67	16/03/1999	16/06/2017 2.43 2.63	20/06/2011	7 27/05/201 2.06 2.14 1.43 2.04 4.16 4.54 1.16 3.34	30/06/2017 4.31 4.31 4.67 1.20 2.37 0.85 3.37 2.67 2.76	5/07/2017 1.90 1.90 1.26 1.80 1.26 1.34 0.62 3.19 2.49 2.42	11/07/2017 4.25 5.09 4.41 3.97 7.46 2.57	8/08/2017 2.15 2.14 2.19 4.39 4.81 1.82 0.91 1.82 0.91	8/09/2017 1.45 2.01 4.21 4.55	24/11/2017	29/11/2017	4/12/2017 6.3 6.45 4.62 8.965 2.52 2.53 1.85 1.85 8.42 3.71	8/02/2018 4.67 5.15 1.811 1.99 1.165	12/02/2018 2.755 4.711 4.157 8.242 2.748 2.066 0.61 1.155 3.067 4.117 0.987 1.081 0.725 2.492 2.228 2.228 2.228	19/02/2018 1.475 2.115 1.27 1.54 0.815	20/03/2018 5.975 6.215 4.495 8.91 2.87 2.975 2.68 2.96 4.555 5.06 1.68 1.88 0.845 8.28 8.28 3.605 2.99 2.70	26/04/2018	8/05/2018 2.12 1.645 1.27 1.43 0.805	17/05/2018 4.215 4.22 4.74 4.74	29/05/201 2.29 2.39
GWLs in m bgl	WRS01 WRS01 WRS02 WRS02 WRS03 WRS03 WRS04 WRS04 WRS04 WRS05a WRS05a WRS05a WRS05 DH05 DH05 DH05 DH05 DH05 DH05 DH04 WRS07 DH09 WRS07 DH09 WRS07	No. of record 3 4 4 4 7 7 7 14 14 14 14 8 10 13 15 14 3 11 6 13 12	Min s (mbgl) 2.76 2.76 4.71 4.16 4.22 1.90 1.90 0.61 1.16 3.07 4.12 0.99 0.92 0.62 7.46 2.46 2.23 2.93	Max (mbgl) 6.30 6.45 4.62 8.97 2.87 2.98 2.68 2.98 2.98 2.98 4.67 5.15 1.85 4.41 3.97 8.42 3.71 2.90 4.03 2.45	Average 5.01 5.79 4.37 7.58 2.36 2.31 1.79 2.19 4.20 4.71 1.39 1.83 1.08 8.05 3.29 2.61 3.67	Huctuation (m) 3.55 1.74 0.46 4.75 0.97 1.08 2.07 1.81 1.60 1.03 0.86 3.49 3.35 0.96 1.25 0.67 1.10	16/03/1999	16/06/2017	20/06/2011	7 27/05/201 2.06 2.14 1.43 2.04 4.16 4.54 1.16 3.34	30/06/2017 4.31 4.67 1.20 2.37 0.85 3.37 2.67 3.76	5/07/2017 1.90 1.90 1.26 1.80 1.26 1.34 0.62 3.19 2.49 3.43 1.90	4.25 5.09 4.41 3.97 7.46 2.57	8/08/2017 2.15 2.14 2.19 2.57 4.39 4.81 1.82 0.91 2.46 2.78 3.77	8/09/2017 1.45 2.01 4.21 4.55	24/11/2017	29/11/2017 2.15 1.095 4.03	4/12/2017 6.3 6.45 4.62 8.965 2.52 2.53 1.85 1.85 8.42 3.71	8/02/2018 4.67 5.15 1.81 1.99 1.165	12/02/2018 2.755 4.711 4.157 8.242 2.748 2.066 0.61 1.155 3.067 4.117 0.987 1.081 0.725 2.492 2.228 2.228 2.932 1.907	19/02/2018 1.475 2.115 1.27 1.54 0.815 3.82 2.42	20/03/2018 5.975 6.215 6.215 7.2.975 2.68 2.96 4.555 5.06 1.68 0.845 8.28 0.845 8.28 3.605 2.99 3.78 2.97	26/04/2018 3.71	8/05/2018 2.12 1.645 1.27 1.43 0.805 3.8 3.8 2.025	17/05/2018 4.215 4.22 4.22 4.74	29/05/201

/05/2018	8/06/2018	6/07/2018	17/07/2018	16/08/2018	28/08/2018	13/09/2018
1129.85						
1129.813						
	1096.57		1096.52	1096.25		1095.31
	1095.988		1095.888	1095.688		1095.018
				1096.354		
	1098.209	1097.904		1098.114		1097.784
	1098.034	1097.714		1098.404		1097.524
	1098.643	1098.568		1098.618		1098.528
	1105.256	1105.046				1104.976
	1105.301		1105.451		1105.041	1104.951
	1102.157		1101.967		1102.877	1101.707

018	8/06/2018	6/07/2018	17/07/2018	16/08/2018	28/08/2018	13/09/2018
295						
395						
	1.3		1.35	1.62		2.56
	1.87		1.97	2.17		2.84
				4.71		
	1.175	1.48		1.27		1.6
	1.29	1.61		0.92		1.8
	0.77	0.845		0.795		0.885
	3.28	3.49				3.56
	3.57		3.42		3.83	3.92
	1.72		1.91		1	2.17

Table C 3 TSF3 Groundwater Level Data

GWLs in m RL	Borehole	No. of records	Min M s (m RL) (n	Nax Average RL)	Fluctuation (m)) 16/03/1995	5 16/06/2017	30/06/2017	7 4/07/2017	11/07/2017	24/11/2017	5/12/2017	8/12/2017	14/12/2017	7 23/01/2018	8 12/02/2018	21 - 22/02/2018	20-22/03/2018	4/05/2018	10-11/05/2018	16/05/2018 21-28/05/20	14/06/202	8 20/06/2018 1	9-23/07/2018	31/07/2018 2	28-31/08/2018	14-21/09/2018 19-	20/02/2019
	AP20	2	1110.56 11	10.75 1110.66	0.19																					1110.75	1110.56	
	AP01	11	1109.10 11	10.23 1109.76	1.13				1110.11	1109.94		1109.46				1110.23	1109.74	1109.68		1109.683				1109.918		1109.743	1109.703	1109.098
	AP01a	7	1109.89 11	10.58 1110.39	0.69				1110.25	1109.89		1110.55				1110.45	1110.58	1110.52										1110.478
	AP02	5	1110.66 11	11.47 1111.02	0.81							1110.96				1111.47		1110.88			11	1.13						1110.66
	AP02a	5	1110.98 11	12.17 1111.49	1.19							1111.31				1112.17		1111.28			111	.723						1110.983
	AP03	5	1117.05 11	19.58 1117.79	2.52					1117.90		1117.12				1119.58		1117.28										1117.051
	AP03a	5	1113.67 11	19.17 1115.68	5.50					1117.51		1114.10				1119.17		1113.93										1113.669
	AP04	4	1108.06 11	09.40 1108.61	1.34							1108.57				1109.40		1108.42										1108.063
	AP04a	4	1108.77 11	09.47 1109.12	0.71							1109.14				1109.47		1109.08										1108.768
	AP05	13	1108.37 11	09.82 1109.08	1.45		1108.98	1109.16	1109.39	1109.28		1108.86				1109.82		1108.88		1108.982			1109.202	1109.282		1109.027	1108.837	1108.372
	AP05a	11	1109.73 11	10.13 1110.00	0.40		1110.02	1110.09	1109.95	1110.10		1110.06				1110.13		1110.02		1109.978				1109.978		1109.978		1109.728
	AP06	6	1111.86 11	13.05 1112.38	1.20							1112.20				1113.05		1112.26								1112.525	1112.365	1111.855
	AP06a	6	1111.69 11	12.67 1112.16	0.98							1112.04				1112.67		1112.03								1112.316	1112.236	1111.686
TCF2 Under	AP07	10	1112.54 11	13.69 1113.21	1.15		1113.17	1113.30	1113.41	1113.35		1112.86				1113.31		1112.54			1113.332 111	.157						1113.687
TSF3 Hydro	AP07a	8	1112.52 11	13.43 1112.89	0.91		1112.71	1112.89	1112.98	1113.43		1112.84				1113.19		1112.59										1112.519
Borenoies	AP08	5	1113.06 11	14.11 1113.56	1.05					1113.88		1113.36				1114.11		1113.37										1113.06
	DH12	7	1112.91 11	14.05 1113.54	1.14	1113.67				1114.05								1113.24			111	.645	1113.685		1113.56			1112.93
	AP09	5	1112.35 11	13.76 1112.94	1.41					1113.76		1112.83				1112.99		1112.73										1112.353
	DH11	5	1117.05 11	18.29 1117.91	1.24	1117.99				1118.29								1118.00			111	.245						1117.045
	AP10	8	1128.00 11	29.49 1128.43	1.49		1128.28	1128.40	1128.48	1128.57		1128.11				1129.49		1128.11										1128.001
	AP10a	8	1113.62 11	15.19 1114.41	1.57		1115.19	1114.92	1115.19	1114.78		1114.13				1113.81		1113.66										1113.617
	AP11	13	1118.77 11	23.03 1119.89	4.26		1119.92	1119.97	1121.04	1120.95		1118.92				1123.03		1118.98	1119.372			1120.32	2		1119.062	1119.142	1119.027	1118.772
	AP11a	11	1114.51 11	16.23 1115.51	1.71		1115.48	1115.79	1115.95	1116.17		1114.88				1116.23	1115.36	1114.89	1116.196								1115.181	1114.511
	DH10	6	1158.26 11	51.53 1159.62	3.27					1161.53	1159.17			1159.72				1158.77								1160.257		1158.257
	DH10A	7	1140.11 11	42.15 1141.40	2.04					1142.15	1141.80				1141.52			1141.02								1142.102	1140.112	1141.112
	DH14	4	1109.49 11	09.89 1109.70	0.40					1109.69			1109.49			1109.89		1109.73										
	DH14A	6	1110.08 11	10.58 1110.43	0.50	1110.08				1110.58			1110.50			1110.56		1110.56										1110.262
	DH23	4	1145.55 11	47.73 1146.68	2.18					1147.73								1146.46									1146.962	1145.552
	DH23A	6	1131.88 11	33.24 1132.74	1.36	1131.88				1133.24	1132.91							1132.68									1133.096	1132.636
orange cell indicates water level was above ground level																												

GWLs in mbgl	Borehole	no. or	(mbgl)	(mbgl)	Average	Fluctuation (m)	16/03/1995	16/06/2017	30/06/2017	4/07/2017	11/07/2017	24/11/2017 5/12/2017 8/12/2017	14/12/2017	23/01/2018	12/02/2018	21 - 22/02/2018	20-22/03/2018	4/05/2018 10-11/05/2018	16/05/2018 2	21-28/05/2018	14/06/2018	20/06/2018 19-23/07/2018	31/07/2018	3 28-31/08/2018	14-21/09/2018 1	9-20/02/2019
	AP20	2	1.55	1.74	1.65	0.19																		1.55	1.74	
	AP01	11	0.27	1.40	0.72	1.14				0.39	0.56	1.04			0.27	0.76	0.82	0.76				0.5	25	0.7	0.74	1.40
	AP01a	11	0.00	0.66	0.21	0.66				0.30	0.66	0.00			0.10	0.03	0.03	0.06				0.	58	0.06	0.37	0.07
	AP02	5	0.87	1.68	1.31	0.81						1.38			0.87		1.46			1.16						1.68
	AP02a	5	0.11	1.30	0.77	1.19						0.97			0.11		1.01			0.48						1.30
	AP03	5	0.79	3.31	2.54	2.53					2.38	3.16			0.79		3.08									3.31
	AP03a	5	1.11	6.61	4.64	5.50					2.85	6.26			1.11		6.35									6.61
	AP04	4	0.13	1.47	0.92	1.34						0.96			0.13		1.11									1.47
	AP04a	4	0.06	0.77	0.42	0.71						0.39			0.06		0.45									0.77
	AP05	14	0.35	1.80	1.03	1.45		1.19	1.01	0.78	0.89	1.31			0.35	1.00	1.29	1.045				0.825 0.74	15	1	1.19	1.80
	AP05a	14	0.00	0.49	0.15	0.49		0.20	0.13	0.27	0.12	0.16			0.09	0.09	0.20	0.12				0 0.:	12	0.12	0	0.49
	AP06	6	0.49	1.68	1.15	1.20						1.34			0.49		1.28							0.97	1.13	1.68
	AP06a	6	0.87	1.85	1.36	0.99						1.50			0.87		1.51							1.17	1.25	1.85
TCE2 Hudro	AP07	10	1.27	2.42	1.72	1.15		1.79	1.66	1.55	1.61	2.10			1.65		2.42		1.485	1.66						1.27
Boreholes	AP07a	8	1.53	2.44	2.07	0.91		2.25	2.07	1.98	1.53	2.12			1.77		2.37									2.44
Dorenoies	AP08	5	1.77	2.82	2.32	1.05					2.00	2.52			1.77		2.51									2.82
	DH12	7	1.78	2.92	2.50	1.14	2.16				1.78						2.60			2.675		2.635	2.76	5		2.92
	AP09	5	5.70	7.11	6.53	1.41					5.70	6.63			6.47		6.73									7.11
	DH11	5	0.92	2.16	1.39	1.24	1.22				0.92						1.20			1.44						2.16
	AP10	8	2.58	4.07	3.64	1.49		3.79	3.67	3.59	3.50	3.96			2.58		3.96									4.07
	AP10a	8	16.93	18.50	17.71	1.57		16.93	17.20	16.93	17.34	17.99			18.31		18.46									18.50
	AP11	13	0.80	5.06	3.90	4.26		3.91	3.87	2.79	2.88	4.91			0.80		4.85	4.35			3.4		4.66	5 4.58	4.695	5.06
	AP11a	11	7.61	9.32	8.31	1.72		8.35	8.04	7.88	7.66	8.95			7.61	8.47	8.94	7.615							8.63	9.32
	DH10	6	4.62	7.89	6.70	3.27					4.62	6.98	6.93				7.38							6.39		7.89
	DH10A	7	24.31	26.90	25.29	2.59					24.31	24.66		25.49			25.44							24.91	26.9	25.35
	DH14	4	0.72	1.12	0.91	0.40					0.92	1.12			0.72		0.88									
	DH14A	6	0.00	0.50	0.16	0.50	0.50				0.00	0.08			0.02		0.02									0.32
	DH23	4	10.29	12.47	11.40	2.18					10.29						11.56								11.28	12.47
	DH23A	6	23.96	25.32	24.54	1.36	25.32				23.96	24.29					24.52								24.58	24.56
Table C.4

Minimum and maximum vertical hydraulic gradients – Gladstone Shallow Groundwater System

Well Pair	Date	Water Level Difference (m)	Vertical Distance (m)	Vertical Gradient (up/down)
GLD01 – GLD01a	29/06/17	4.47	4.2	1.1 (down)
	5/03/18	0.1		0.02 (down)
GLD02 – GLD02a	23/03/18	1.03	14.0	0.07 (down)
	10/07/18	0.19		0.01 (up)
GLD03 – GLD03a	20/03/18	3.72	9.0	0.4 (down)
	27/06/17	0.44		0.05 (down)
P79s – P79i	20/03/18	6.91	28.5	0.2 (down)
	24/10/17	3.58		0.1 (down)

Table C.5

Minimum and maximum vertical hydraulic gradients – Gladstone Deep Groundwater System

Well Pair	Date	Water Level Difference (m)	Vertical Distance (m)	Vertical Gradient (up/down)
P79s – P79d	20/03/18	16.22	40	0.4 (down)
(shallow - deep)	07/11/20	9.5		0.2 (down)
P79i – P79d	20/03/18	9.31	10.5	0.9 (down)
(shallow - deep)	07/11/20	4.95		0.5 (down)
GLD01 – GLD01b (shallow - deep)	29/06/17	>30	19.5	> 1.5 (down)
GLD01a – GLD01b (shallow - deep)	13/09/17	>29	13.3	> 2.2 (down)
P68s – P68d	2001*	0.55	5.0	0.1 (down)
(Shallow to deep system)	(URS, 2003)	0.72		0.1 (down)
P61s – P61	13/10/2020	38.03	32.6	1.2 (down)
(shallow - deep)	2003 (URS, 2003)	38.65	-	1.2 (down)
GLD04s – GLD04d (shallow - deep)	29/10/2020	0.39	52.6	0.007 (up)
GLD04i – GLD04d (deep system)	29/10/2020	0.03	36.9	0.0008 (up)
* Recent data not availa	able for P68s due to da	mage to the piezometer.		

Table C.6

Minimum and maximum vertical hydraulic gradients – NRS Shallow Groundwater System

Well Pair	Date	Water Level Difference (m)	Vertical Distance (m)	Vertical Gradient (up/down)
WRS01 – WRS01a	4/12/2017	0.188	8.7	0.02 (down)
	12/02/2018	1.993		0.2 (down)
WRS02 – WRS02a	17/05/2018	0.041	8.5	0.005 (up)
	20/03/2018	4.369		0.51 (down)
WRS03 – WRS03a	29/05/2018	0.037	8.5	0.004 (down)
	12/02/2018	0.751		0.09 (up)
WRS04 – WRS04a	16/06/2017	0.212	11.5	0.02 (down)
	19/02/2018	0.652		0.06 (down)
WRS05 – WRS05a	8/09/2017	0.33	8	0.04 (down)
	12/02/2018	1.04		0.1 (down)
DH05 – WRS06	12/02/2018	0.29	5.7	0.05 (down)
	20/03/2018	0.86		0.2 (down)
WRS06 – DH05a	5/07/2017	0.05	6.5	0.01 (down)
	30/06/2017	1.14		0.2 (down)
WRS07 – DH09	20/03/2018	0.47	6.0	0.08 (up)
	8/08/2017	0.56		0.09 (down)
WRS08 – DH08	28/08/2018	2.16	9.0	0.2 (down)
	12/02/2018	3.94		0.4 (down)

© 2021. Whilst every care has been taken to prepare this map, GHD (and LINZ, ESRI, Oceana Gold Limited, EGL) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: Aerial imagery - LINZ; General topo - LINZ; Bores - OGL. Created by:dbbanatin

Level 3, 138 Victoria Street, PO Box 13 468, Christchurch 8141, New Zealand T 64 3 378 0900 F 64 3 378 8001 E chcmail@ghd.com W www.ghd.com

Job Number | 12552081 Revision Date

0 25 Nov 2021

Groundwater contours - Gladstone Shallow Groundwater System

© 2021. Whilst every care has been taken to prepare this map, GHD (and LINZ, ESRI, Oceana Gold Limited, EGL) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason Data source: Aerial imagery - LINZ; General topo - LINZ; Bores - OGL. Created by:dbbanatin

Level 3, 138 Victoria Street, PO Box 13 468, Christchurch 8141, New Zealand T 64 3 378 0900 F 64 3 378 8001 E chcmail@ghd.com W www.ghd.com

Job Number | 12552081 Revision Date

0 25 Nov 2021

Groundwater contours - Gladstone Intermediate Groundwater System

-N:\NZ\Christchurch\Projects\51\12552081\GIS\Maps\Deliverables\12552081_C3_NRS_ShallowGWSystem.mxd

© 2021. Whilst every care has been taken to prepare this map, GHD (and LINZ, ESRI, Oceana Gold Limited, EGL) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason Data source: Aerial imagery - LINZ; General topo - LINZ; Bores - OGL. Created by:dbbanatin

Level 3, 138 Victoria Street, PO Box 13 468, Christchurch 8141, New Zealand T 64 3 378 0900 F 64 3 378 8001 E chcmail@ghd.com W www.ghd.com

Groundwater contours - NRS Shallow Groundwater System Job Number | 12552081 Revision Date

0 25 Nov 2021

© 2021. Whilst every care has been taken to prepare this map, GHD (and LINZ, ESRI, Oceana Gold Limited, EGL) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason Data source: Aerial imagery - LINZ; General topo - LINZ; Bores - OGL. Created by:dbbanatin

Level 3, 138 Victoria Street, PO Box 13 468, Christchurch 8141, New Zealand T 64 3 378 0900 F 64 3 378 8001 E chcmail@ghd.com W www.ghd.com

Groundwater contours - NRS Deeper Groundwater System Job Number | 12552081 Revision Date

0 25 Nov 2021

N:\NZ\Christchurch\Projects\51\12552081\GIS\Maps\Deliverables\12552081_C5_TSF3_ShallowGWSystem.mxd

© 2021. Whilst every care has been taken to prepare this map, GHD (and LINZ, ESR), Oceana Gold Limited, EGL) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason Data source: Aerial imagery - LINZ; General topo - LINZ; Bores - OGL. Created by:dbbanatin

Level 3, 138 Victoria Street, PO Box 13 468, Christchurch 8141, New Zealand T 64 3 378 0900 F 64 3 378 8001 E chcmail@ghd.com W www.ghd.com

Groundwater contours - TSF3 Shallow Groundwater System Job Number | 12552081 Revision Date

0 25 Nov 2021

© 2021. Whilst every care has been taken to prepare this map, GHD (and LINZ; ESRI, Ocd Limited, EGL) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: Aerial imagery - LINZ; General topo - LINZ; Bores - OGL. Created by:dbbanatin

Level 3, 138 Victoria Street, PO Box 13 468, Christchurch 8141, New Zealand T 64 3 378 0900 F 64 3 378 8001 E chcmail@ghd.com W www.ghd.com

Groundwater contours - TSF3 Deeper Groundwater System

Job Number | 12552081 Revision Date

0 25 Nov 2021

Appendix D Permeability analyses

Contents:

Table D.1	Gladstone Permeability Test Data
Table D.2	NRS Permeability Test Data
Table D.3	TSF3 Permeability Test Data
Figure D.1	Plan showing distribution of Gladstone permeability results
Figure D.2	Plan showing distribution of NRS permeability results
Figure D.3	Plan showing distribution of TSF3 permeability results (GHD data)
Figure D.4	Plan showing distribution of TSF3 permeability results (EGL data)

Table D.1 Gladstone Permeability Test Data

Bore ID - Shallow Wells	Test	Aquifer Type Assessed	Permeability (m/s)	Solution	Screen	Comments	
	FHT 1		4.5E-08	8 3 Bouwer and Rice, 1976 (Unconfined) 3) 2 m Screen		
	RHT 1	Unconfined	2.8E-08				
	FHT 2	oncommed	3.6E-08				
GLD01	RHT 2		2.5E-08			Alluvial silt/clav	
		Geomean	3.3E-08		5.5 - 7.5 m		
	Danga	Min	2.5E-08				
	Range:	Max	4.5E-08				
	FHT 1		2.0E-08	Bouwer and Rice, 1976 (Unconfined))		
	RHT 1		7.7E-08	for all GLD03:			
	FHT 2	Unconfined	<4E-08	Recovery did not reach 70%			
	RHT 2	oncommed	<4E-08	Recovery did not reach 70%		Volcanics (Completely weathered, very narrow - tight	
GLD03	FHT 3		6.0E-08		2 m Screen	ioints with iron oxide staining, crush zones with iron	
	RHT 3		<4E-08	Recovery did not reach 70%	6 - 8 m	oxide staining).	
		Geomean	<4E-08				
	Pango:	Min	2.0E-08				
	kange:	Max	7.7E-08				

Bore ID - Deep Wells	Test	Aquifer Type Assessed	Permeability (m/s)	Solution	Screen	Comments		
	FHT 1 - FHT2		Not analysed	Recovery did not reach 50%				
GLD01a	RHT 1 -RHT 3	Confined	Not analysed	Recovery did not reach 50%				
	FHT 3		3.8E-08	Hyder et al, 1994 (KGS model)	2 m Screen	Alluviual silt/clay (water pressure increase noted		
		Geomean	n/a		11.7 - 13.7 m	during drilling).		
		Adopted value	<1E-08					
	FHT 1	Confined	9.8E-08	Butler, 1998 (Confined)	-	Volcanics (highly weathered, tight to narrow joints with iron oxide staining).		
	RHT 1		2.3E-08	Hyder et al, 1994 (KGS model)				
	FHT 2		1.2E-07	Butler, 1998 (Confined)				
	RHT 2	Commed	3.8E-08	Hyder et al, 1994 (KGS model)				
GLD03a	FHT 3		1.1E-07	Butler, 1998 (Confined)	3 m Screen			
	RHT 3		2.6E-08	Hyder et al, 1994 (KGS model)	17 - 20 m			
		Geomean	5.5E-08					
	Damaa	Min	2.3E-08					
	Kange:	Max	1.2E-07					

Table D.2 NRS Permeability Test Data

Bore ID - Shallow Wells	Test	Aquifer Type Assessed	Permeability (m/s)	Solution	Screen	Comments	
	FHT 1		9.6E-06				
	RHT 1		8.9E-06				
	FHT 2		9.9E-06				
	RHT 2	Unconfined	8.1E-06	Bouwer and Rice, 1976 (Unconfined)			
	FHT 3		8.4E-06	5	2	Instantiate (Consultately wastly and Desidual Call years)	
WRS04	RHT 3	-	8.2E-06	-	3 m Screen	Ignimbrite (Completely weathered - Residual Soll, Very	
	FHT 4	-	8.8E-06	-	2.5 - 5.5 111	narrow - closed joints with strong manganese stanning).	
	RHT 4		8.7E-06				
		Geomean	8.8E-06		-		
	Range:	Min	8.1E-06				
	nunge.	Max	9.9E-06				
WRS05		Adopted Value	1.0E-06	n/a	3 m Screen 2.5 - 5.5 m	Dacite (Completely weathered - Residual). Data lost; field records noted "similar response to FVN02 time-wise", supported by <10 minute test runs. Rounded value similar to FVN02 adopted, which is consistent with dacite WRS results.	
WRS06	FHT 1 RHT 1 FHT 2 RHT 2	Unconfined	1.4E-06 1.4E-06 1.5E-06 1.2E-06 1.2E-06		2 m Screen	Ignimbrite (completely weathered, very narrow join	
		Geomean	1.4E-06		10 - 12 m	with manganese staming).	
	Dangai	Min	1.2E-06				
	Kange:	Max	1.5E-06	1.5E-06			
WRS07	FHT 1 - FHT 4 RHT 1 - RHT 4	Unconfined	Not analysed Not analysed	Rapid response Rapid response	3 m screen	Screened across Alluvium (sandy SILT) /Ignimbrite contact (completely weathered - residual soil).	
		Geomean	n/a		3.0 - 6.0 m	Rapid WL response, screen limited; could not be	
		Adopted value	>1.0E-04			analysed. Adopted K value > 1×10^{-4} m/s.	

Bore ID - Deep Wells	Test	Aquifer Type Assessed	Permeability (m/s)	Solution	Screen	Comments	
	FHT 1		1.3E-06		3 m Screen 17 - 20 m		
	RHT 1		1.3E-06				
	FHT 2	Confined	6.3E-07				
	RHT 2		1.4E-06				
WRS04a	FHT 3		1.2E-06			Ignimbrite (highly weathered, crush zone with no	
	RHT 3		1.2E-06	5		staining).	
	Geomean		1.1E-06				
	Pangai	Min	6.3E-07				
	Kalige.	Max	1.4E-06				
	FHT 1		2.1E-06	Hyder et al, 1994 (KGS model)			
	RHT 1		1.3E-07	Butler, 1998 (Confined)			
	FHT 2	Confined	1.2E-06	Butler, 1998 (Confined)			
	RHT 2	commed	7.5E-07	Hyder et al, 1994 (KGS model		Dacite (moderately weathered - highly weathered.	
WRS05a	FHT 3		1.3E-06	Butler, 1998 (Confined)	3 m Screen	crush zone with iron staining, very narrow - tight	
	RHT 3		1.2E-06	Hyder et al, 1994 (KGS model	13.5 -16.5 m	fractures with iron and manganese staining).	
		Geomean	8.5E-07				
	Dangai	Min	1.3E-07				
	Range: M	Max	2.1E-06]		

AP01 AP05	FHT 1 RHT 1 FHT 2 RHT 2 FHT 2 FHT 1 RHT 1 FHT 2 RHT 1 FHT 2 FHT 3 FHT 3 FHT 4 RHT 4 RHT 4 RHT 4	Unconfined Geomean Min Max Unconfined	Not analysed 3.4E-07 1.9E-07 2.2E-07 2.4E-07 3.4E-07 1.7E-05 1.3E-05 3.4E-07 1.7E-05 1.3E-05 3.4E-07 1.7E-05 1.3E-05 1.9E-05 1.9E-05 1.9E-05 1.9E-05 1.9E-05	Test tao short, did nat reach full recovery Bouwer and Rice, 1976 (Unconfined) Bouwer and Rice, 1976 (Unconfined)	2 m Screen 3 - 5 m	Rhyolite - Tuff
AP01 AP05	RHT 1 FHT 2 RHT 2 RHT 1 RHT 1 RHT 1 FHT 1 RHT 2 FHT 3 FHT 3 FHT 4 RHT 4	Unconfined Geomean Min Max Unconfined	3.4E-07 1.9E-07 2.2E-07 2.4E-07 1.9E-07 1.7E-05 1.3E-05 8.5E-06 2.1E-05 1.9E-05 1.9E-05 1.9E-05 1.1	Bouwer and Rice, 1976 (Unconfined)	2 m Screen 3 - 5 m	Rhyolite - Tuff
AP01	FHT 2 RHT 2 Range: FHT 1 RHT 1 FHT 2 RHT 3 FHT 4 RHT4 RHT4	Geomean Min Max Unconfined	1.9E-07 2.2E-07 2.4E-07 3.4E-07 1.7E-05 1.3E-05 8.5E-06 2.1E-05 1.9E-05 1.8E-05 1.8E-05 1.1E-05	Bouwer and Rice, 1976 (Unconfined)	2 m Screen 3 - 5 m	Rhyolite - Tuff
AP01	RHT 2 Range: FHT 1 RHT 2 RHT 2 FHT 3 FHT 4 RHT 4 RHT 4	Geomean Min Max Unconfined	2.2E-07 2.4E-07 1.9E-07 1.7E-05 1.3E-05 8.5E-06 2.1E-05 1.9E-05 1.8E-05 1.8E-05 1.1E-05	Bouwer and Rice, 1976 (Unconfined)	2 m Screen 3 - 5 m	Rhyolite - Tuff
AP05	Range: FHT 1 RHT 1 FHT 2 RHT 2 FHT 3 RHT 3 FHT 4 RHT4 RHT4	Geomean Min Max Unconfined	2.4E-07 1.9E-07 3.4E-07 1.7E-05 1.3E-05 8.5E-06 2.1E-05 1.9E-05 1.9E-05 1.4E-05 1.4E-05 1.4E-05	Bouwer and Rice, 1976 (Unconfined)	3 - 5 m	
AP05	Range: FHT 1 RHT 1 FHT 2 RHT 3 RHT 3 FHT4 RHT4 RHT4	Min Max Unconfined	1.9E-07 3.4E-07 1.7E-05 1.3E-05 8.5E-06 2.1E-05 1.9E-05 1.8E-05 1.8E-05	Bouwer and Rice, 1976 (Unconfined)		
AP05	FHT 1 RHT 1 FHT 2 RHT 2 FHT 3 FHT 3 FHT 4 RHT 4 RHT 4	Max Unconfined	3.4E-07 1.7E-05 1.3E-05 8.5E-06 2.1E-05 1.9E-05 1.8E-05 1.1E-05 1.1E-05	Bouwer and Rice, 1976 (Unconfined)		
AP05	FHT 1 RHT 1 FHT 2 RHT 2 FHT 3 RHT 3 FHT4 RHT4 RHT4 RANGE:	Unconfined	1.7E-05 1.3E-05 8.5E-06 2.1E-05 1.9E-05 1.8E-05 1.1E-05	Bouwer and Rice, 1976 (Unconfined)		
AP05	RHT 1 FHT 2 RHT 2 FHT 3 RHT 3 FHT4 RHT4 RHT4 RAnge:	Unconfined	1.3E-05 8.5E-06 2.1E-05 1.9E-05 1.8E-05 1.1E-05	Bouwer and Rice, 1976 (Unconfined)		
APO5	FHT 2 RHT 2 FHT 3 RHT 3 FHT4 RHT4 RHT4 RAnge:	Unconfined	8.5E-06 2.1E-05 1.9E-05 1.8E-05 1 1E-05	Bouwer and Rice, 1976 (Unconfined)		
AP05	RHT 2 FHT 3 RHT 3 FHT4 RHT4 RHT4 Range:	Unconfined	2.1E-05 1.9E-05 1.8E-05 1 1E-05	Bouwer and Rice, 1976 (Unconfined)		
AP05	FHT 3 RHT 3 FHT4 RHT4 RAnge:	Geomean	1.9E-05 1.8E-05 1 1E-05	bounce and mee, 1970 (oneonined)		
AP05	RHT 3 FHT4 RHT4 Range:	Geomean	1.8E-05	i		
	FHT4 RHT4 Range:	Geomean	1 1F-05		2 m Screen	Rhyolite - Tuff
	RHT4 Range:	Geomean	1.12-03		3 - 5 m	
	Range:	Geomean	2.0E-05			
	Range:	Gcomean	1.5E-05			
	Range:	Min 8.5E-06				
		Max				
	FHT 1		6.1E-06			
	RHT 1	1	5.5E-06			
	FHT 2	1	5.4E-06	6 6 Pouwer and Pice 1076 (Unconfined)		
АР07	RHT 2	Unconfined	9.0E-06			1.0 m alluvium;
	FHT 3	oncommed	5.7E-06	Bouwer and Rice, 1976 (Oncommed)		
	RHT 3		7.2E-06		3 m Screen	
	FHT4		6.3E-06		2.5 - 5.5 m	2.0 Rhyolite - Tuff
	RHT4		7.7E-06			
		Geomean	6.5E-06			
	Demos	Min	5.4E-06			
	Range:	Max	9.0E-06	9.0E-06		
	FHT 1		1.7E-06			
	RHT 1	1	5.1E-06	Bouwer and Rice, 1976 (Unconfined)		
	FHT 2		1.5E-06			Flow rhyolite, MW-SW
	RHT 2	Unconfined	3.9E-06		3 m Screen 4 - 7 m	
	FHT 3		1.6E-06			
AP10	RHT 3		2.2E-06			
	FHT 4		2.7E-06			
		Geomean	2.4E-06			
	Dever	Min	1.5E-06			
	Range:	Max	5.1E-06			
	FHT 1		Not analysed	Rapid response		
	RHT 1		Not analysed	Rapid response		
	FHT 2	Unconfined	Not analysed	Rapid response		
	RHT 2	oncommed	9.2E-05	Springer-Gelhar, 1991 (Unconfined, inertial)	3 m Screen	
AP11	FHT 3		Not analysed	Rapid response	4 - 7 m	Flow rhyolite, MW-SW
	RHT 3		1.2E-04	Springer-Gelhar, 1991 (Unconfined, inertial)		
		Geomean	n/a			
		Adopted value	>1.0E-04			
	FHT 1		1.8E-06			
	RHT 1]	8.6E-07			
	FHT 2	Unconfined	2.0E-06	Huder et al. 1004 (KCC model)		
	RHT 2	uncontinea	5.2E-07	nyuer et al, 1994 (KGS model)	No log	
DH14	FHT 3]	2.0E-06]	(3 m screen	Rhyolite - Tuff
	RHT 3	1	7.7E-07	1	assumed)	inition full
-		Geomean	1.2E-06		ussumed)	
		Min	5.2F-07			
		IVIIII	J.22 J/			

Bore ID - Deep Wells	Test	Aquifer Type Assessed	Permeability (m/s)	Solution	Screen	Comments
	FHT 1		6.4E-06	5		
	RHT 1		6.3E-06	5		
AP01a AP05a	FHT 2	_	6.6E-06			
	RHT 2	Confined	5.3E-06	Hyder et al, 1994 (KGS model)		
	FHT 3	-	6.4E-06		3 m Screen	
AP01a	RHT 3	-	6.5E-06	-		Flow rhyolite, MW-SW
	FH14	-	6.0E-06		50.5 55.5	
	KH14	C	6.3E-06	6.3E-U6		
		Geomean	6.2E-06		. !	
	Range:	Max	5.3E-06		-	
	RHT 1		1 4E-06	Hyder et al. 1994 (KGS model)		
	RHT 2	Confined (artesian)	Not analysed	Ranid response		
40050	RHT 3	commed (artesian)	Not analysed	Rapid response	3 m Screen	Dhualita Tuff
Arusa		Geomean	n/a		19 - 22 m	Kilyonte - Tuli
		Adopted value	>1.0E-04		1	
	FHT 1		1.4F-06			
	RHT 1	-	3.4F-06	Hyder et al, 1994 (KGS model)		
	FHT 2	-	Not analysed	Logger shifted / moved		
	RHT 2		2.3E-06	Hyder et al, 1994 (KGS model)	1	
	FHT 3	Confined	Not analysed	Logger shifted / moved		
AP07a	RHT 3	1	3.4E-06	5	3 m Screen	Flow rhyolite CW-HW
	FHT 4		2.1E-06	Hyder et al, 1994 (KGS model)	24 - 27 m	now myonice, ew mw
	RHT 4		3.4E-06	5		
		Geomean	2.5E-06			
	Danga	Range: Min		1.4E-06		
	Range:	Max	3.4E-06			
	FHT 1		Not analysed	WL within screen; screen not developed above WL		
	RHT 1	Unconfined	2.5E-04	Springer-Gelhar, 1991 (Unconfined, inertial)		
40100	FHT 2	oncommed	Not analysed	WL within screen; screen not developed above WL	3 m Screen	Flow shuelite AAA/ C\A/
APIUd	RHT 2		9.1E-05	Springer-Gelhar, 1991 (Unconfined, inertial)	15.5 - 18.5 m	riow myolite, www-sw
		Geomean	n/a			
		Adopted value	>1.0E-04			
	FHT 1		Not analysed	Response too slow for meaningful analysis		
	RHT 1	Confined	Not analysed	Response too slow for meaningful analysis		
40110	FHT 2		1.80E-08	Hyder et al, 1994 (KGS model)	3 m Screen	Flow shuelite AAA/ C\A/
APIId	RHT 2		Not analysed	Response too slow for meaningful analysis	17 - 20 m	riow myolite, www-sw
	-	Geomean	n/a			
		Adopted value	<1.0E-08			
	RHT 1		2.14E-04	Butler, 1998 (Confined)		Dedesselted Toff
	RHT 2	Confined (artesian)	Not analysed	Rapid response	No log	Redeposited Luft -
DH14a*	RHT 3		Not analysed	Rapid response	(assumed 23-24 m	sesnsitive (interred from
		Geomean	n/a		from EGL table)	APUIA log located 2.8 m
		Adopted value	>1.0E-04			awayj

			Caller and a start	And a los	" and the second	A A A		P64D	P64A	P64 d
	ALC: N	A ALLAN			No. Com	. 19 3	Geomean	6.0E-09	5.0E-04	◆ P64 a
Catholic Carl		Call of the second		and the dame	- AND NO		Unit	And.	And. (vein)	~ 18 S
	+ 59 9 34		A AT A STATE			1	Depth	47.9-53.6 m	156.4-184.5 m	1 A Charles
		K Area a	AL IN AN	The second second		A COL	No.		101	1 1 2 3 4
at distant	135. 9 20					S PARA	Matting +			A STAR
	A Part	1.00000		A LONG CLC RING CO		Sector Sector		1000		9 3 4 19
	North					and the second				
N. Contraction						A Relation		2 1.4		ale 1
Kan			Contraction of the					- *		
	CREATE	Se Charles								A ALAS
11			and the factor			P61s	P61	- No leave		P60
	WWW COL		A LOW TO A		Geomean	2.5E-06	7.0E-09	P60 P61	Geomean	5.0E-07
11/1	State 1	and the second	VAL THE SA		Unit	Ash	And.	P61s	Unit	And.
S AND					Depth	1.5-4.5 m	37.1-49.5 m		Depth	82.3 -96.6 m
27.		Ser State	「「「「「「「」」			A			A Property	A PLA
		or sand the No			WE SUN				ANNOS	
States and		The States and	And a state of the				E.		La HIGH	
	P79s	P79i	P79d		ALC: ALC: N				A A A A A A A A A A A A A A A A A A A	
Geomean	1.3E-05	2.7E-07	4.2E-07		· Station		GLD01	GLD01a	T AND AND AND A	E STER
Unit	lg.	RT	And.			Geomean	3.3E-08	<1E-08*	200	
Depth	11-12 m	40.5-41.5 m	52-55 m			Unit	Ash	RT	Con 1-2C	
			1			Depth	5.5-7.5 m	11.7-13.7 m		The format of
Mar and	1 Jan W		THE R						and the second second	and the
Ald A	and the				P79 d				And the second sec	
and the second	a partir	California Cal		P79 s 🎔 P	79 i			GLD01		CLEAR
	1 Carl					Contraction of the second	GLD	01b 🗣 GLD01a GLD03	a Geom	GLD03
Carp ::	X	and the second se	an in					GLD03	Unit	Dac.
Saure Ve								GLD02	Depth	6-8 m
					Carl Carl		GLD02a	•		1
		1	6 1 E							Xanada
31 2 1		1.2	1 1					· · //	*	
p Da	5.62	You was	18 22							1
			GLI	OO4i 🗣 GLD04d						
			GL	D04s	ALC: NO					A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A
-		1	-							al and the
		· · ·	F (23)			Brown and		MP (A A A A A A A A A A A A A A A A A A A
A 35	DCP	DCQ		P68 s	WELS	and the second	Barris !!	and the second		
Geomean	6.0F-06	1.0F-05		P68 d		10000		and the second	A STATE	-
Unit	Ash	lg.		the Caller	50 A	170 5	State of the second	and the state	all a	
Depth	2.15-5.55 m	10.5-15.5 m			No. of Concession, Name	1 alter	Nº 13	a start	and the	A State
			CONTRACTOR OF A	Real of the second second	A Horas and a second			a state and	· ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	

N:\NZ\Christchurch\Projects\51\12552081\GIS\Maps\Deliverables\12552081_D1_GladstonePermeabilityResults.mxd

© 2021. Whilst every care has been taken to prepare this map, GHD (and LINZ, ESRI, Oceana Gold Limited, EGL) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: Aerial imagery - LINZ; General topo - LINZ; Bore locations - OGL. Created by dbbanatin

Level 3, 138 Victoria Street, PO Box 13 468, Christchurch 8141, New Zealand T 64 3 378 0900 F 64 3 378 8001 E chcmail@ghd.com W www.ghd.com

Oceana Gold Limited

Job Number | 12552081 Revision Date

0 25 Nov 2021

Plan showing distribution of Gladstone permeability results

Figure D.1

All results are presented in m/s * Test was screen limited and a single value greater or less than is provided

N:\NZ\Christchurch\Projects\51\12552081\GIS\Maps\Deliverables\12552081_D2_NRSPermeabilityResults.mxd

© 2021. Whilst every care has been taken to prepare this map, GHD (and LINZ, ESRI, Oceana Gold Limited, EGL) make no representations or warranties about its accuracy, reliability, completeness or suitability for a of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being is Data source: Aerial imagery - LINZ; General topo - LINZ; Bore locations - OGL. Created by: dbbanatin ess or suitability for any particular purpose and cannot accept liability and responsibility sult of the map being inaccurate, incomplete or unsuitable in any way and for any reasor Level 3, 138 Victoria Street, PO Box 13 468, Christchurch 8141, New Zealand T 64 3 378 0900 F 64 3 378 8001 E chcmail@ghd.com W www.ghd.com

Job Number | 12552081 Revision

0

	the f	7.00-0	And Martin	
- 11 1	1	AP07	AP07a	77
616	Geomean	6.5E-06	2.5E-06	112
	Unit	Rhyo. Tuff	Rhyo (MW-SW)	3 000
	Depth	3-5 m	24-27 m	N. 18

and the second second second	a far a stand of the	and the second s
	DH14	DH14a
Geomean	1.2E-06	>1e-4*
Unit	Rhyo. Tuff	Redep. Tuff
Depth	Approx 10 m	Approx 23 m

N:\NZ\Christchurch\Projects\51\12552081\GIS\Maps\Deliverables\12552081_D3_GHD_TSF3PermeabilityResults.mxd

© 2021. Whilst every care has been taken to prepare this map, GHD (and LINZ, ESRI, Oceana Gold Limited, EGL) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason Data source: Aerial imagery - LINZ; General topo - LINZ; Bore locations - OGL. Created by: dbbanatin

Level 3, 138 Victoria Street, PO Box 13 468, Christchurch 8141, New Zealand T 64 3 378 0900 F 64 3 378 8001 E chcmail@ghd.com W www.ghd.com

AP11

>1e-4*

4-7 m

Rhyo (MW-SW) Rhyo (MW-SW)

AP09

AP10

AP10a

Geomean

Unit

Depth

AP11 AP11a

AP11a

<1e-8*

17-20 m

	in		
	APIO	AP102	の日本の
Geomean	2.4F-06	>1e-4*	
Unit	Rhyo (MW-SW)	Rhyo (MW-SW)	
Depth	4-7 m	16-19 m	
		RA	

Job Number | 12552081 Revision Date

0 25 Nov 2021

Plan showing distribution of TSF3 permeability results (GHD data)

Figure D.3

21		Depth (m)
	>r-	-	100
	4		*
	300	- K	1
		TPA1	
M 🖶	Geomean	4.0E-08	
T. F.	Unit	Alluv.	$\backslash I$
-1-	Depth (m)	1.5	14
L	Seal of the Seal of the		11

TPA2 🖶

TPA2 9.0E-08

> Alluv. 0.5

Geomean

Unit

The second second second second second second second second second second second second second second second s			and the second					
and the second		CPT-156		CPT-125		CPT-04		CPT-132
a strate	Geomean	5.22E-09	Geomean	3.2E-08	Result	2.1E-08	Result	3.24E-09
	Unit	Rhyo. Tuff	Unit	Rhyo (CW-HW)	Unit	Rhyo (CW-HW)	Unit	Rhyo. Froth
1 deste	Depth (m)	4.5 - 5.6	Depth (m)	4.4 -5.2	Depth (m)	5	Depth (m)	8.93
- Il the second	all and a		1		A STATE OF LAND			1

TP

	CPT-136A	CPT-136A			TE SKI			1 1000		`		Manual I Avenue	
Geomean	2.2E-07	7.5E-06			a second and a sec	1000	. The set	1-24					
Unit	Alluv.	Redep. Tuf	f Cha	11- 12-14		1000 2		19		CPT04			
Depth (m)	2.9 - 4.6	7 - 23.7	1	· · · · · ·	1 de	X to 0	CPT156 🔽						
	al sold Ve		1. 15			and the second second				10			
	CPT-136B	CPT-136B	all al		- 24	and the second							
Geomean	1.1E-07	2.9E-06		the state of the s							1	-	
Unit	Alluv.	Redep. Tuf	f	The stand of the stand		1002			1 1		No.	5	
Depth (m)	2.3 - 3.8	4.6 - 30.8	1 14	11 18 ·····			6 ° /				A.		
SO PL		113 13	1 1		******	CPT136A		√ СР	T125			Coorner	
	CPT-136C	CPT-136C	100		CPT13	6C CPT136B	*		CPT132	3	CPT154	Geomean	-
Geomean	2.3E-06	1.0E-07			10	CPT1	03					Denth (m)	-
Unit	Redep. Tuff	Rhyo (CW-H\	N)	Carrie and and		1.	A 2 5 5 5 5					Depen (iii)	
Depth (m)	6.5 - 32.6	33.1 - 33.2		6		1.		15		1 .		1	
and a	1-1-1-	2 All		1	and and		Haller.	CPT157	CPT10a 🔽	N.		CRT 10-	
-	CDT 102	CDT 102	3		- 184	A A	ODT (OD)	CPT123a		· ····	Coomoon	E 25-00	-
	2 25 00	CP1-103					CP11230		1		Geomean	5.5E-09	Dh
Geomean	3.2E-09	2.20E-09	122	A.J.						N.	Double (m)	Alluv.	Kn
	Alluv.	Rhyo. Tuff					Cart .				Depth (m)	4.0	
Deptn (m)	2.9	3.7 - 5.3				1							19.00
	AN M	and the second	in in				17 Carton			- y	V3 Comp	War and	-
				007.457			and the second second	E	CDT 1320		CDT 132C	CDT 132C	
				CP1-157		CPT-123A	CPT-123A	0	CP1-125B	C	1 05 00	CP1-125C	<u> </u>
- tand			eomean	9.32-09	Geomean	4.7E-08	1.5E-06	Geomean	Dadan Tuff	Geomean	1.85-08	Deden Tuff	Dh
The second	the All			KNYO (CW-HW)		Alluv.	Redep. Tuff		Redep. Tuff	Danth (m)	Alluv.	Redep. Tuff	Kn
The second division in	and the	Natola 2	Pepth (m)	3.9 - 6.9	Depth (m)	2.9	5.7 - 10.1	Depth (m)	4.6 - 5.7	Depth (m)	1.8 - 3.3	4.3 - 10.3	

N:\NZ\Christchurch\Projects\51\12552081\GIS\Maps\Deliverables\12552081_D4_EGL_TSF3PermeabilityResults.mxd

© 2021. Whilst every care has been taken to prepare this map, GHD (and LINZ, ESRI, Oceana Gold Limited, EGL) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason Data source: Aerial imagery - LINZ; General topo - LINZ; Bore locations - OGL. Created by: dbbanatin

Level 3, 138 Victoria Street, PO Box 13 468, Christchurch 8141, New Zealand T 64 3 378 0900 F 64 3 378 8001 E chcmail@ghd.com W www.ghd.com

Job Number | 12552081 Revision Date

0 25 Nov 2021

Plan showing distribution of TSF3 permeability results (EGL data)

Figure D.4

Appendix E Water quality

Contents:

Table E.1	Summary of Gladstone sampling
Table E.1	Summary of Gladstone sampling
Table E.1	Summary of Gladstone sampling
Table E.2	Summary of NRS sampling

Table E.3	TSF3 sampling
Table E.4	Summary of Gladstone groundwater quality
Table E.5	Summary of Gladstone surface water quality
Table E.6	Summary of NRS groundwater quality
Table E.7	Summary of NRS surface water quality
Figure E.1	Piper Plot – Gladstone Groundwater Quality (P79-d June 2018. GLD04 well series October 2020. All other bores September 2018). (Excludes GLD01b which is recorded as dry).
Figure E.2	Piper Plot – Gladstone surface water quality (TB5 September 2019. All other samples September 2017)
Figure E.3	Piper Plot – NRS groundwater quality (November 2019)
Figure E.4	Piper Plot – NRS surface water quality (June 2019)
Figure E.5	Piper Plot – NRS surface water quality (September 2019)
Figure E.6	Piper plot – TSF3 water quality (April 2018)
Figure E.7	Piper plot – TSF3 water quality (May 2018)
Figure E.8	Piper plot – TSF3 water quality (shed spring vs. RU10)

Table E.1 Summary of Gladstone sampling

Location	Туре	Total samples	Sampling commenced	Frequency
GLD01	GWQ	6	Dec-17	Bi-monthly
GLD01a	GWQ	6	Dec-17	Bi-monthly
GLD02	GWQ	8	Dec-17	Monthly
GLD02a	GWQ	8	Dec-17	Monthly
GLD03	GWQ	9	Jan-18	Monthly
GLD03a	GWQ	8	Jan-18	Monthly
P79-s	GWQ	10	Dec-17	Monthly
P79-i	GWQ	3	May-18	Periodic (Quarterly)
p79-d	GWQ	2	Jun-18	Periodic
OH6	SWQ	800+	Oct-94	Weekly
OH11	SWQ	4	Sep-18	Periodic
Glad Springs	SWQ and flow	4/1	Sep-17	Periodic / One-off
TB4	SWQ and flow	4 / 1	Sep-17	Quarterly / One-off (low flow)

Table E.2 Summary of NRS sampling

Location	Туре	Total samples	Sampling commenced	Frequency
WRS02	GWQ	2	May-18	Periodic
WRS03	GWQ	2	May-18	Periodic
WRS03a	GWQ	2	Feb-18	Periodic
WRS04	GWQ	8	Feb-18	Monthly
WRS04a	GWQ	8	Aug-18	Monthly
WRS05	GWQ	1	May-18	One-off
WRS05a	GWQ	2	Feb-18	Monthly
WRS06	GWQ	8	Feb-18	Monthly
DH05a	GWQ	8	Feb-18	Monthly
DH05	GWQ	9	Apr-18	Monthly
WRS07	GWQ	5	Feb-18	Bi-monthly
WRS08	GWQ	8	Feb-18	Monthly
DH08	GWQ	8	May-06	Monthly
OC2	SWQ	500+	May-06	Weekly
TB1a	SWQ and Flow	200+/4	Mar-06 / Oct-18	6 monthly / Periodic
WRS TB	SWQ	3	Aug-18	Periodic
ОНЗ	SWQ	1000+	Aug-07	Monthly
Frendrups	Flow	4000+	Oct-07	Daily

Table E.3 TS	F3 sampling			
Location	Туре	Total Events	Sampling commenced	Frequency
AP01	GWQ	6	Feb-18	Periodic (bi-monthly)
AP01a	GWQ	6	Feb-18	Periodic (bi-monthly)
AP02	GWQ	1	May-18	One-off
AP02a	GWQ	1	May-18	One-off
AP05	GWQ	1	Apr-19	First sample
AP05a	GWQ	1	Apr-19	First sample
AP06	GWQ	8	Feb-18	Monthly
AP06a	GWQ	8	Feb-18	Monthly
AP07	GWQ	2	Aug-18	Monthly
AP07a	GWQ	2	Aug-18	Monthly
DH10	GWQ	2	May-18	Periodic
DH10a	GWQ	2	May-18	Periodic
AP11	GWQ	2	Jan-18	Periodic (6 monthly)
AP11a	GWQ	3	Aug-18	Periodic (6 monthly)
AP20	GWQ	7	Apr-18	Monthly
DH23	GWQ	5	Apr-18	Periodic
DH23A	GWQ	3	Aug-18	monthly
DH12	GWQ	3	Aug-18	monthly
DH11	GWQ	2	Sep-18	Periodic
RU1	SWQ	3	May-18	Monthly
RU3	SWQ	1	May-18	One-off
RU6	Flow	500+	Feb-94	Monthly
TB1b***	SWQ	100+	Feb-94	Monthly
RU7	Flow	3	Oct-18	Periodic
RU10	SWQ	150+	Mar-06	Periodic
Ruddocks	Flow	3	Oct-18	Periodic
OH5	SWQ	200+	Jul-07	Monthly
Shed Springs	SWQ	4000+	Oct-07	Daily

Table E.4 Summary of Gladstone groundwater quality2017-2019 Water Quality Sampling

Devenueten	GLD01	n= 1	7	GLD01a	n= '	7	GLD02	n=	10	GLD02a	LD02a n= 10		GLD03 n= 10		10	0 GLD03a		n= 9	
Parameter	Min	Median I	Max	Min	Median	Max	Min	Median	dian Max Min		Median	Max	Min	Median	Max	Min	Median I	Max	
Alkalinity - Total (g/m3 as CaCO3)	3.2	3.4	9	11	19.1	50	1.7	3	4.3	39	53	70	5.6	7.75	20	3.8	4.9	28	
Aluminium-Dissolved(g/m3)	0.032	0.036	0.168	0.01	0.017	0.106	0.007	0.046	0.164	0.003	0.003	0.005	0.011	0.015	0.141	0.004	0.012	0.016	
Antimony-Dissolved(g/m3)	0.0002	0.0002	0.0002	0.0002	0.0002	0.0005	0.0002	0.0002	0.0002	0.001	0.00175	0.069	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	
Arsenic-Dissolved(g/m3)	0.001	0.001	0.0015	0.0014	0.0022	0.0051	0.001	0.001	0.0014	0.034	0.072	0.147	0.001	0.001	0.0012	0.001	0.001	0.0031	
Barium-Dissolved(g/m3)	0.055	0.073	0.082	0.057	0.058	0.068	0.027	0.0365	0.053	0.023	0.026	0.031	0.031	0.033	0.034	0.027	0.0285	0.031	
Bicarbonate (g/m3 at 25°C)	3.9	4.1	11	13.4	23	60	2.1	3.7	5.2	47	65	85	6.8	9.45	25	4.6	6	34	
Boron-Dissolved(g/m3)	0.008	0.01	0.01	0.011	0.013	0.02	0.006	0.008	0.009	0.008	0.014	0.018	0.006	0.0085	0.01	0.006	0.008	0.009	
Cadmium-Dissolved(g/m3)	0.00005	0.00005	0.00007	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.0001	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	
Caesium - Dissolved (g/m3)(g/m3)	0.00038	0.000495	0.00052	0.00078	0.000805	0.00127	0.00055	0.000665	0.00082	0.005	0.0055	0.0091	0.00071	0.00076	0.00082	0.00058	0.0006	0.00062	
Calcium-Dissolved(g/m3)	3.1	4.6	6	4.7	6.9	14.3	0.56	1.54	4.9	29	80	142	0.82	1.285	3.5	0.61	0.83	1.98	
Chloride(g/m3)	14	19	22	12	15	16	10	13	14	5	28	34	11	13	15	6	7.9	9	
Chromium-Dissolved(g/m3)	0.0005	0.0005	0.001	0.0005	0.0005	0.0006	0.0005	0.0005	0.0008	0.0005	0.0005	0.0013	0.0005	0.0005	0.0007	0.0005	0.0005	0.001	
Cobalt-Dissolved(g/m3)	0.0006	0.0008	0.0013	0.0002	0.0005	0.0027	0.0005	0.0011	0.0186	0.0003	0.0114	0.029	0.0002	0.0003	0.001	0.0002	0.0005	0.0008	
Copper-Dissolved(g/m3)	0.0005	0.002	0.046	0.0005	0.0005	0.0011	0.0005	0.00065	0.0015	0.0005	0.0005	0.0035	0.0005	0.0005	0.0024	0.0005	0.0005	0.0009	
Electrical Conductivity (EC) (mS/m)	14	19.1	24.5	14.4	20.2	33.3	0.1	7.9	11.3	21.9	96.35	134.2	8.2	9.1	13	4.8	5	10.8	
Hardness-Total(g/m3 as CaCO3)	20	21	31	28	32	56	3	9	21	91	360	400	7.8	9.1	13.3	3.4	4.6	7.1	
Iron-Dissolved(g/m3)	0.05	0.08	0.26	0.35	3.6	5.2	0.02	0.02	1.2	0.02	0.045	0.7	0.02	0.02	0.07	0.02	0.02	0.02	
Lanthanum - Dissolved (g/m3)(g/m3)	0.00013	0.000215	0.00027	0.00022	0.000245	0.00026	0.0001	0.00013	0.00042	0.00027	0.00064	0.00106	0.0001	0.00012	0.00025	0.00013	0.000135	0.00032	
Lead-Dissolved(g/m3)	0.00013	0.00016	0.00023	0.0001	0.0001	0.0001	0.0001	0.0001	0.00031	0.0001	0.0001	0.00013	0.0001	0.0001	0.00011	0.0001	0.0001	0.00014	
Lithium - Dissolved (g/m3)(g/m3)	0.0011	0.0019	0.0021	0.0113	0.0127	0.0163	0.0013	0.00165	0.0033	0.0063	0.076	0.1	0.0012	0.00315	0.0034	0.0022	0.0034	0.0041	
Magnesium-Dissolved(g/m3)	2.4	3.3	3.9	3.9	5.4	9.1	0.4	1.4	2.1	4.4	45.5	66	1.12	1.235	1.34	0.43	0.47	1.17	
Manganese-Dissolved(g/m3)	0.022	0.04	0.063	0.057	0.11	0.3	0.0076	0.0255	0.79	0.0042	0.149	0.27	0.0031	0.0055	0.048	0.0024	0.0087	0.0142	
Mercury-Dissolved(g/m3)	0.0042	0.0055	0.0119	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	
Molybdenum-Dissolved(g/m3)	0.0002	0.0002	0.0002	0.0002	0.0002	0.0006	0.0002	0.0002	0.0002	0.0004	0.0008	0.0049	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	
Nickel-Dissolved(g/m3)	0.0019	0.0025	0.0034	0.0019	0.0035	0.062	0.0005	0.00055	0.0049	0.0018	0.01005	0.024	0.0005	0.0005	0.0035	0.0005	0.0005	0.0066	
Nitrate-N(g/m3)	0.76	2.6	3.4	0.002	0.02	0.089	1.66	1.75	3.6	0.002	0.019	1.64	1.76	2.2	2.8	0.048	0.11	0.171	
Nitrate-N + Nitrite-N(g/m3)	0.36	2.6	4.5	0.002	0.002	0.095	1.61	1.76	3.6	0.002	0.0215	1.64	1.76	2.2	2.8	0.021	0.091	0.22	
Nitrite-N(g/m3)	0.003	0.014	0.034	0.002	0.006	0.02	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.003	0.002	0.002	0.002	
Nitrogen-Total(g/m3)	0.49	2.85	4.6	0.26	0.39	3.6	1.77	2.5	3.3	0.35	0.87	1.63	2.2	2.4	2.6	0.11	0.135	0.3	
Nitrogen-Total Ammoniacal(g/m3)	0.035	0.0625	0.073	0.17	0.285	3.1	0.01	0.011	0.018	0.039	0.189	0.37	0.01	0.01	0.01	0.01	0.01	0.01	
pH(pH units)	5.1	5.4	6	5.8	6	6.5	4.8	5	5.7	6.2	6.45	7.2	5.6	6	6.3	5.4	5.8	6.6	
Potassium-Dissolved(g/m3)	2.2	3	4.8	3.1	3.6	4.6	0.64	1.365	4.2	7.6	12.55	15.6	0.81	0.925	10.3	0.49	0.76	1.92	
Rubidium - Dissolved (g/m3)(g/m3)	0.0057	0.0073	0.0079	0.0118	0.01195	0.0154	0.0028	0.0031	0.004	0.05	0.058	0.075	0.00198	0.0021	0.0025	0.00193	0.002065	0.0042	
Selenium-Dissolved(g/m3)	0.001	0.001	0.0011	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	
Silver-Dissolved(g/m3)	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	
Sodium-Dissolved(g/m3)	13.0	22	32	13.8	19.4	22	7.3	9.05	9.7	8	48.5	52	8.7	13	15.9	0.0004	/	15.9	
Strontium-Dissolvea(g/m3)	0.028	0.0365	0.039	0.044	0.0555	0.092	0.0105	0.0124	0.0175	0.51	0.04	0.9	0.0082	0.0096	0.0098	0.0064	0.0064	0.0173	
Supnate(g/m3)	17	37	48	28	47	70	C 0.50	0 0 0 0	9	25	410	000	0 77	0.0	8	3.5	0.45	0.54	
Sum of Anions(meq/L)	1.03	1.44	1.97	1.15	1.42	2.4	0.50	0.000	0.81	2.2	10.2	10.0	0.77	0.85	1.1	0.39	0.45	0.51	
Sum of Calions(meq/L)	1.14	1.43	Z.I	0.00005	1.37	2.4	0.42	0.02	0.00	2.4	9.0	0.0042	0.00	0.04	1.1Z	0.09	0.43	0.74	
Tin Dissolved(g/m3)	0.00008	0.00095	0.00011	0.00005	0.00005	0.00005		0.000075	0.00054	0.00005	0.00009	0.00042	0.00005	0.00005	0.00005	0.00007	0.00007	0.00007	
Tin-Dissoived(g/m3)	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0018	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	
Total Susponded Solide(g/m2)	0.12	0.13	0.10	0.20	10.000	3.0	U.15 25	0.10	1.40	0.34	0.52	0.00	U.I	0.13	0.19	0.1	0.1	0.1	
Uranium Dissolvod(g/m3)	0 00002	0.000025	0 00003	4	0.00002	0.00002	25 0.0000	0.0000	0 0000	0.00002	0.00002	0.00002	0 00002	4	0.00002	0 00002	0.00002	0.0002	
Vanadium - Dissolved (g/III3)	0.00002	0.000020	0.00003	0.0002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.0002	
Woak Acid Dissociable (WAD) Cyanide (g/m2)	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	
Zinc-Dissolved(g/m3)	0.001	0.001	0.002	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.0029	0.001	0.001	0.002	0.001	0.0015	0.002	
Zine-Dissolveu(g/ins)	0.0029	0.0007	0.0093	0.0014	0.0027	0.001	0.0025	0.0047	0.03	0.0008	0.01095	0.074	0.0034	0.0043	0.013	0.0024	0.003	0.0034	

Notes:

* Only one sample round from 2020

Blank cells indicate parameter not tested

Sample number indicates max sample size for

individual parameters

Not all parameters tested during each sample

round

Table E.4 Summary of Gladstone groundwater quality2017-2019 Water Quality Sampling

	P79-s n= 12		P79-i	n=	4	P79-d	n=	2	GLD04-s	GLD04-i	GLD04-d	
Parameter	Min	Median	Max	Min	Median	Max	Min	Median	Max	Median*	Median*	Median*
Alkalinity - Total (g/m3 as CaCO3)	4.9	5.7	6.9	49	50.5	52	30	32	34	65	22	39
Aluminium-Dissolved(g/m3)	0.012	0.014	0.087	0.003	0.003	0.009	0.003	0.004	0.005	0.088	0.057	0.06
Antimony-Dissolved(g/m3)	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0007	0.00425	0.0078	0.0002	0.0003	0.0015
Arsenic-Dissolved(g/m3)	0.001	0.001	0.001	0.0192	0.0235	0.029	0.0054	0.0083	0.0112	0.001	0.0016	0.001
Barium-Dissolved(g/m3)	0.09	0.1	0.103							0.14	0.081	0.107
Bicarbonate (g/m3 at 25°C)	6	6.9	8.4	60	61	63	37	39	41	79	27	47
Boron-Dissolved(g/m3)	0.007	0.0115	0.016	0.015	0.016	0.017	0.021	0.0225	0.024	0.088	0.023	0.038
Cadmium-Dissolved(g/m3)	0.00005	0.00005	0.00008	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005
Caesium - Dissolved (g/m3)(g/m3)	0.00089	0.001015	0.00109							0.00094	0.00145	0.002
Calcium-Dissolved(g/m3)	5.1	5.45	6.1	13.1	13.7	14.2	6.2	8	9.8	10.5	7.5	25
Chloride(g/m3)	19	23	29	8	9	11.5	11	11.5	12	9	10	11
Chromium-Dissolved(g/m3)	0.0005	0.0005	0.0007	0.0005	0.0005	0.0006	0.0005	0.00055	0.0006	0.0005	0.0005	0.0005
Cobalt-Dissolved(g/m3)	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0165	0.0165	0.0032
Copper-Dissolved(g/m3)	0.0005	0.0005	0.001	0.0005	0.0005	0.0011	0.0005	0.00055	0.0006	0.0014	0.0005	0.0005
Electrical Conductivity (EC) (mS/m)	14.8	16.7	17.2	15.9	16.45	17.1	16	16.35	16.7	19.2	15.9	29.4
Hardness-Total(g/m3 as CaCO3)	23	24.5	27	41	45	46	32	35	38			
Iron-Dissolved(g/m3)	0.02	0.02	0.02	0.33	1.19	1.74	0.08	0.54	1	0.03	0.57	1.18
Lanthanum - Dissolved (g/m3)(g/m3)	0.00014	0.000155	0.00018							0.00024	0.0001	0.0001
Lead-Dissolved(g/m3)	0.0001	0.0001	0.00011	0.0001	0.000155	0.00033	0.0001	0.00013	0.00016	0.0001	0.0001	0.0001
Lithium - Dissolved (g/m3)(g/m3)	0.0008	0.0009	0.001	0.014	0.0161	0.0168	0.025	0.028	0.031	0.0179	0.0176	0.027
Magnesium-Dissolved(g/m3)	2.4	2.8	3.1	2.1	2.65	2.7	3.4	3.7	4	2.8	4.4	7.7
Manganese-Dissolved(g/m3)	0.0142	0.0157	0.0168	0.036	0.0785	0.141	0.038	0.1055	0.173	0.43	0.81	0.25
Mercury-Dissolved(g/m3)	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008
Molybdenum-Dissolved(g/m3)	0.0002	0.0002	0.0002	0.0002	0.00025	0.0003	0.0002	0.0002	0.0002	0.0007	0.0004	0.0026
Nickel-Dissolved(g/m3)	0.0005	0.0005	0.002	0.0005	0.0005	0.0005	0.0006	0.00075	0.0009	0.0089	0.0081	0.0033
Nitrate-N(g/m3)	2.3	2.7	2.9	0.002	0.005	0.039	0.002	0.07	0.138			
Nitrate-N + Nitrite-N(g/m3)	2.1	2.55	2.9	0.003	0.007	0.039	0.002	0.0705	0.139	0.121	0.02	0.012
Nitrite-N(g/m3)	0.002	0.002	0.002	0.002	0.002	0.003	0.002	0.002	0.002			
Nitrogen-Total(g/m3)	2.1	2.3	3.1							0.27	0.14	0.17
Nitrogen-Total Ammoniacal(g/m3)	0.01	0.01	0.01							0.01	0.01	0.013
pH(pH units)	5.4	5.6	6	7.4	7.8	8	6.8	6.9	7	6.8	6.6	6.8
Potassium-Dissolved(g/m3)	4.8	5.5	5.9	3.7	3.85	3.9	2.7	2.75	2.8	3.5	4.6	6.3
Rubidium - Dissolved (g/m3)(g/m3)	0.0148	0.016	0.0171							0.0157	0.0173	0.028
Selenium-Dissolved(g/m3)	0.001	0.001	0.001							0.001	0.001	0.001
Silver-Dissolved(g/m3)	0.0001	0.0001	0.0001							0.0001	0.0001	0.0001
Sodium-Dissolved(g/m3)	13.7	16.25	17.5	13	13.8	14	14.8	15.75	16.7	24	11.6	15
Strontium-Dissolved(g/m3)	0.033	0.036	0.038							0.085	0.049	0.104
Sulphate(g/m3)	12	17	20	12.4	14.5	16	19	21.5	24	17	31	78
Sum of Anions(meq/L)	1.16	1.285	1.47	1.5	1.58	1.59	1.39	1.41	1.43			
Sum of Cations(meq/L)	1.19	1.37	1.44	1.53	1.655	1.68	1.48	1.485	1.49		0.00407	0.00044
Thailium-Dissolved(g/m3)	0.00005	0.00005	0.00005	0.0005	0.0005	0.0005	0 0005	0.00005	0.0000	0.00026	0.00127	0.00014
TIN-DISSOIVEd(g/m3)	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.00065	0.0008	0.0008	0.0008	0.0038
Total Kjeldani Nitrogen (TKN)(g/m3)	0.1	0.1	0.16							0.15	0.13	0.16
Total Suspended Solids(g/m3)	3	3	3							430	14	61
Uranium-Dissolved(g/m3)	0.00003	0.00003	0.00004	0.004	0.004	0.004	0.004	0.004	0.004	0.00003	0.00002	0.00003
Vanadium - Dissolved (g/m3)(g/m3)	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Weak Acid Dissociable (WAD) Cyanide(g/m3	0.001	0.001	0.002	0.004	0.0024	0.0454	0 0000	0.0654	0 400	0.002	0.002	0.002
Zinc-Dissolved(g/m3)	0.0038	0.00555	0.0111	0.001	0.0024	0.0154	0.0088	0.0654	0.122	0.13	0.05	0.17

Notes:

* Only one sample round from 2020

Blank cells indicate parameter not tested

Sample number indicates max sample size for

individual parameters

Not all parameters tested during each sample

round

21/01/2021

Table E.5Summary of Gladstone surface water quality2017-2019Water Quality Sampling

Peremeter	OH6	n=	188	OH11	n=	7	TB4	n=	7	TB5	n=	2	GLAD Spring A	n= -	4	GLAD Spring B	n= 4	
Parameter	Min	Median	Max	Min	Median	Max	Min	Median	Max	Min	Median	Max	Min	Median	Max	Min	Median N	<i>l</i> lax
Alkalinity - Total (g/m3 as CaCO3)	8.3	15.8	26	12.5	16.7	27	6.4	8	19.7		3		5.7	6.15	6.9	4.1	4.75	5.9
Aluminium-Dissolved(g/m3)				0.005	0.01	0.017	0.032	0.07	0.077		0.066		0.017	0.0295	0.051	0.013	0.03	0.044
Antimony-Dissolved(g/m3)	0.0002	0.0006	0.0034	0.0002	0.0011	0.0067	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Arsenic-Dissolved(g/m3)	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Barium-Dissolved(g/m3)				0.03	0.033	0.034	0.037	0.041	0.048				0.019	0.024	0.031	0.02	0.029	0.03
Bicarbonate (g/m3 at 25°C)	10.1	19.2	32	15.2	20	33	7.8	9.8	24		3.7		6.9	7.5	8.4	5	5.8	7.2
Boron-Dissolved(g/m3)				0.012	0.013	0.047	0.007	0.0075	0.009		0.017		0.006	0.009	0.009	0.005	0.009	0.009
Cadmium-Dissolved(g/m3)	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00006	0.000085	0.00011	0.00005	0.00005	0.00005	0.00005	0.000055	0.00006
Calcium-Dissolved(g/m3)	3.3	48	169	33	68	270	2.2	2.8	3.2	4.6	5.3	6	5.4	6.5	7.9	4.7	5.05	5.8
Carbonate (g/m3 at 25°C)	1	1	1					1						1			1	
Chloride(g/m3)	11	16	27	12	16	27	7	12	16		8		10.7	12	14	10.2	12.5	14
Chromium-Dissolved(g/m3)				0.0005	0.0007	0.0009		0.0005			0.0005		0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
Chromium-Hexavalent(g/m3)	0.001	0.01	0.01					0.001			0.01			0.001			0.001	
Chromium-Total(g/m3)							0.00053	0.00053	0.00053					0.00053			0.0024	
Cobalt-Dissolved(g/m3)	0.0002	0.0009	0.0026	0.0003	0.0006	0.0046	0.0002	0.0002	0.0015	0.0005	0.0005	0.0005	0.0003	0.00045	0.0006	0.0002	0.0002	0.0004
Copper-Dissolved(g/m3)	0.0005	0.0005	0.0102	0.0005	0.0014	0.0062	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
Cyanide-Total(g/m3)	0.001	0.002	0.003					0.001						0.001			0.001	
Electrical Conductivity (EC) (mS/m)	7.5	36.9	107.6	31.3	50.7	150	7.4	8	9.4	9.5	10.3	11.1	10.3	11.85	13.5	10.1	10.25	11
Fluoride (g/m3)	0.05	0.05	0.11					0.05						0.05			0.05	
Hardness-Total(g/m3 as CaCO3)	13.9	138	510	101	300.5	730	11.6	14.3	15.6	19.3	22.15	25	30	31	32	19.9	21.95	24
Iron-Dissolved(g/m3)	0.03	0.08	0.27	0.04	0.06	0.11	0.21	0.3	2.4	0.02	0.02	0.02	0.02	0.02	0.05	0.02	0.06	0.2
Iron-Total(g/m3)								0.38						0.09			3	
Lead-Dissolved(g/m3)	0.0001	0.0001	0.00028	0.0001	0.0001	0.00013	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
Magnesium-Dissolved(g/m3)	1.2	4.4	21	4.3	5.3	15.8	1.46	1.56	1.89	1.89	2.195	2.5	1.87	2.4	3	1.7	1.89	2.3
Manganese-Dissolved(g/m3)	0.0114	0.01925	0.113	0.0101	0.0154	0.022	0.025	0.03	0.44	0.0141	0.01445	0.0148	0.0139	0.01535	0.025	0.0136	0.01485	0.042
Mercury-Dissolved(g/m3)	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008
Molybdenum-Dissolved(g/m3)				0.0002	0.0005	0.0064	0.0002	0.0002	0.0002		0.0002		0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Nickel-Dissolved(g/m3)	0.0005	0.0005	0.0005	0.0005	0.0005	0.0007	0.0005	0.0005	0.0005	0.0005	0.00065	0.0008	0.0008	0.0011	0.0014	0.0005	0.0005	0.0007
Nitrate-N(g/m3)	0.12	0.81	1.41	0.45	1.145	2.2	0.049	0.146	0.32		1.14			0.78			0.39	
Nitrate-N + Nitrite-N(g/m3)	0.12	0.98	1.42	0.32	1.06	2.6	0.051	0.32	0.65		1.14		0.59	0.9	1.65	0.39	0.87	1.27
Nitrite-N(g/m3)	0.054	0.1	0.33	0.015	0.089	0.42	0.002	0.006	0.1		0.002			0.1			0.1	
Nitrogen-Total Ammoniacal(g/m3)	0.01	0.121	0.69	0.038	0.13	0.26	0.01	0.016	0.022	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.011	0.019
pH(pH units)	6.5	7.1	7.8	7	7.2	7.6	6	6.6	6.7	5.6	6.05	6.5	5.5	5.8	6	5.6	5.95	6.3
Phosphorus-Total (g/m3)	0.004	0.01	0.44					0.012			0.007			0.004			0.018	
Potassium-Dissolved(g/m3)	2.5	3.6	9.4	2.7	3.7	12	1.08	1.56	2.3		2.1		1.35	1.785	1.97	1.15	1.445	4.3
Reactive Phosphorus-Dissolved(g/m3)	0.004	0.004	0.012		0.004		0.004	0.004	0.004		0.004			0.004			0.004	
Selenium-Dissolved(g/m3)	0.0002	0.001	0.0048	0.001	0.001	0.0013	0.001	0.001	0.001		0.001		0.001	0.001	0.001	0.001	0.001	0.001
Silica-Reactive(g/m3 as SiO2)	16.3	25	31					16.1						14.2			13	
Silver-Dissolved(g/m3)	0.0001	0.0001	0.00015	0.0001	0.0001	0.00014	0.0001	0.0001	0.0001		0.0001		0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
Sodium-Dissolved(g/m3)	8.4	17.7	50	13	20	62	7.9	8.5	9.3		8.3		8.8	9.35	10.3	8.9	9.45	9.5
Strontium-Dissolved(g/m3)				0.193	0.22	0.5	0.0163	0.0174	0.021				0.022	0.023	0.03	0.02	0.021	0.021
Sulphate(g/m3)	16	210	520	93	192	720	0.9	6	10		18		18	20.85	30	14.8	16	27
Thallium-Dissolved(g/m3)				0.00005	0.00006	0.00008	0.00005	0.00005	0.00005				0.00006	0.00007	0.00009	0.00005	0.00005	0.00009
Tin-Dissolved(g/m3)				0.0005	0.0005	0.0005	0.0005	0.0005	0.0005		0.0005		0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
Total Kjeldahl Nitrogen (TKN)(g/m3)	0.1	0.415	1.43	0.16	0.28	0.58	0.13	0.195	0.2		0.2		0.1	0.185	0.22	0.15	0.46	0.82
Total Suspended Solids(g/m3)	3	3	230	3	3	3	3	3	5		3		3	15	40	28	50	109
Uranium-Dissolved(g/m3)				0.00002	0.00002	0.00002	0.00002	0.00002	0.00002				0.00002	0.00002	0.00002	0.00002	0.00002	0.00004
Weak Acid Dissociable (WAD) Cyanide(g/m3	0.001	0.002	0.007	0.002	0.002	0.005	0.001	0.001	0.003		0.001		0.001	0.001	0.002	0.001	0.001	0.002
Zinc-Dissolved(g/m3)	0.001	0.0023	0.055	0.001	0.0018	0.0038	0.0026	0.004	0.0105	0.0145	0.0147	0.0149	0.0021	0.00315	0.004	0.0023	0.003	0.0037

Notes:

Blank cells indicate parameter not tested,

median only indicates only one sample for

specific parameter

Sample number indicates max sample size for

individual parameters - Not all parameters

tested during each sample round

Table E.5 Summary of Gladstone surface water quality 2017-2019 Water Quality Sampling

Parameter	GLAD Spring C	n=	4	GLAD Spring D	n=	4	
	Min	Median	Max	Min	Median	Max	
Alkalinity - Total (g/m3 as CaCO3)	3.5	3.7	4.1	6.8	8.2	9.6	
Aluminium-Dissolved(g/m3)	0.019	0.0275	0.032	0.036	0.073	0.094	
Antimony-Dissolved(g/m3)	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	
Arsenic-Dissolved(g/m3)	0.001	0.001	0.001	0.001	0.001	0.001	
Barium-Dissolved(g/m3)	0.019	0.026	0.033	0.036	0.039	0.042	
Bicarbonate (g/m3 at 25°C)	4.3	4.5	5	8.3	9.95	11.7	
Boron-Dissolved(g/m3)	0.007	0.009	0.01	0.008	0.008	0.01	
Cadmium-Dissolved(g/m3)	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	
Calcium-Dissolved(g/m3)	2.1	2.85	3.9	2.7	2.75	3	
Carbonate (g/m3 at 25ŰC)		1			1		
Chloride(g/m3)	12.7	13.6	15	15	16	17.2	
Chromium-Dissolved(g/m3)	0.0005	0.0005	0.0005	0.0005	0.0005	0.0006	
Chromium-Hexavalent(g/m3)		0.001			0.001		
Chromium-Total(g/m3)		0.00053			0.00053		
Cobalt-Dissolved(g/m3)	0.0002	0.00025	0.0003	0.0002	0.0002	0.0002	
Copper-Dissolved(g/m3)	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	
Cyanide-Total(g/m3)		0.001			0.001		
Electrical Conductivity (EC) (mS/m)	7.4	8.35	10.4	9.1	9.45	9.7	
Fluoride (g/m3)		0.05			0.05		
Hardness-Total(g/m3 as CaCO3)	11.6	14.75	17.9	15.4	16.05	16.7	
Iron-Dissolved(g/m3)	0.02	0.02	0.02	0.04	0.045	0.05	
Iron-Total(g/m3)		0.035			0.084		
Lead-Dissolved(g/m3)	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	
Magnesium-Dissolved(g/m3)	1.12	1.465	1.94	1.91	1.98	2.2	
manganese-Dissolved(g/m3)	0.0036	0.0061	0.0062	0.0099	0.01125	0.0155	
Mercury-Dissolved(g/m3)	0.0008	0.00008	0.00008	0.0008	0.00008	0.00008	
Niekel Disselved(g/m3)	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	
Nicker-Dissolveu(g/iii3)	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	
Nitrate-N(g/III3)	0.77	1 025	1 50	0.62	0.03	0.97	
Nitrite N(g/m3)	0.77	1.035	1.59	0.03	0.755	0.07	
Nitrogen-Total Ammoniacal(g/m3)	0.01	0.1	0.01	0.01	0.1	0.012	
nH(nH units)	5.3	5.7	6.2	5.5	5.75	0.012	
Phosphorus-Total (g/m3)	0.0	0.004	0.2	0.0	0.006		
Potassium-Dissolved(g/m3)	1 48	1 855	22	1.66	1.83	22	
Reactive Phosphorus-Dissolved(g/m3)		0.004			0.004		
Selenium-Dissolved(a/m3)	0.001	0.001	0.001	0.001	0.001	0.001	
Silica-Reactive(g/m3 as SiO2)		11.2			18.6		
Silver-Dissolved(g/m3)	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	
Sodium-Dissolved(g/m3)	8.2	8.55	9.9	9.7	10.25	10.5	
Strontium-Dissolved(g/m3)	0.0112	0.0148	0.0187	0.019	0.0191	0.022	
Sulphate(g/m3)	6.5	9.75	13	7	7.4	9	
Thallium-Dissolved(g/m3)	0.00005	0.00005	0.00006	0.00005	0.00005	0.00005	
Tin-Dissolved(g/m3)	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	
Total Kjeldahl Nitrogen (TKN)(g/m3)	0.1	0.25	0.37	0.12	0.215	0.23	
Total Suspended Solids(g/m3)	3	52	71	3	10.5	16	
Uranium-Dissolved(g/m3)	0.00002	0.00002	0.00002	0.00002	0.00002	0.00003	
Weak Acid Dissociable (WAD) Cyanide(g/m3	0.001	0.001	0.002	0.001	0.001	0.003	
Zinc-Dissolved(a/m3)	0.0017	0.00225	0 0049	0.0023	0.0024	0.0028	

Notes:

Blank cells indicate parameter not tested,

median only indicates only one sample for specific parameter

Sample number indicates max sample size for individual parameters - Not all parameters

tested during each sample round

21/01/2021

Table E.6 Summary of NRS groundwater quality2017-2019 Water Quality Sampling

	DH05	n= 1	0	WRS06	n=	10	DH05a	n= -	10	WRS08	n= -	10	DH08	n=	10	WRS07	n= '	7
Parameter	Min	Median N	Max	Min	Median	Max	Min	Median I	Max	Min	Median	Max	Min	Median	Max	Min	Median	Max
Alkalinity - Total (g/m3 as CaCO3)	6.1	6.55	7.8	23	25	27	28	33	37	27	38	55	19.1	23.5	24	2.4	3.6	4.4
Aluminium-Dissolved(g/m3)	0.012	0.017	0.039	0.003	0.003	0.011	0.003	0.003	0.006	0.013	0.037	0.159	0.006	0.0345	0.074	0.023	0.028	0.033
Antimony-Dissolved(g/m3)	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Arsenic-Dissolved(g/m3)	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.0096	0.0152	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Barium-Dissolved(g/m3)	0.053	0.055	0.055	0.191	0.196	0.2	0.6	0.67	0.77	0.055	0.0575	0.058	0.093	0.105	0.112		0.169	
Bicarbonate (g/m3 at 25°C)	7.4	8	9.5	28	30.5	33	35	40	45	33	46	67	23	28.5	30	2.9	4.4	5.4
Boron-Dissolved(g/m3)	0.012	0.0135	0.017	0.008	0.012	0.014	0.005	0.008	0.01	0.009	0.012	0.013	0.011	0.0145	0.015	0.13	0.2	0.37
Cadmium-Dissolved(g/m3)	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00006	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005
Caesium - Dissolved (g/m3)(g/m3)	0.00184	0.0023	0.0023	0.0016	0.00163	0.00168	0.00119	0.001255	0.00128	0.00097	0.001955	0.002	0.0001	0.0001	0.0001		0.00064	
Calcium-Dissolved(g/m3)	1.96	2.1	2.3	1.77	1.83	2.1	2.5	2.7	6.1	5	6.95	12.9	3.1	4.7	5.1	3.7	4	5.6
Chloride(g/m3)	11	14	16	7	10.5	12	7	9	11	5	10	14	8	10	13	15	18	19
Chromium-Dissolved(g/m3)	0.0005	0.0005	0.0006	0.0005	0.0005	0.0005	0.0005	0.0005	0.0008	0.0005	0.0005	0.0007	0.0005	0.00055	0.0011	0.0005	0.0005	0.0005
Cobalt-Dissolved(g/m3)	0.0002	0.0002	0.0003	0.0046	0.00535	0.0057	0.0002	0.0405	0.063	0.0002	0.0002	0.0008	0.0002	0.0002	0.0002	0.0004	0.0005	0.0005
Copper-Dissolved(g/m3)	0.0005	0.00055	0.0013	0.0005	0.0005	0.0007	0.0005	0.0005	0.0008	0.0008	0.00105	0.0019	0.0005	0.00055	0.0011	0.0005	0.0005	0.0005
Electrical Conductivity (EC) (mS/m)	7.7	8.35	8.6	8	8.7	8.9	9.6	10.25	11	21.2	23	27.4	8.4	9.15	9.4	12.3	13.5	15.7
Hardness-Total(g/m3 as CaCO3)	12.3	12.5	14.6	7.5	7.95	8.9	11.5	12.55	23	23	30.5	43	10	13.55	15.5	23	25.5	33
Iron-Dissolved(g/m3)	0.02	0.02	0.02	4.9	5.5	6.2	0.02	6.8	11.2	0.02	0.025	0.17	0.02	0.02	0.03	0.02	0.02	0.02
Lanthanum - Dissolved (g/m3)(g/m3)	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.00011	0.000175	0.00026	0.0001	0.0001	0.0001	0.0002	0.0002	0.0002
Lead-Dissolved(g/m3)	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.000155	0.00064	0.0001	0.0001	0.0001	0.00049	0.00076	0.00186	0.0001	0.00013	0.00015
Lithium - Dissolved (g/m3)(g/m3)	0.0018	0.0019	0.0021	0.0019	0.0021	0.0022	0.0021	0.0023	0.0027	0.0047	0.00825	0.0112	0.0065	0.007	0.0075	0.0022	0.0024	0.0032
Magnesium-Dissolved(g/m3)	1.67	1.8	2.1	0.69	0.76	0.88	1.12	1.205	1.9	2.4	2.7	4	0.55	0.685	0.82	3.2	3.9	4.6
Manganese-Dissolved(g/m3)	0.0166	0.02	0.024	0.4	0.42	0.45	0.0088	1.535	2.7	0.0027	0.01025	0.043	0.0005	0.0005	0.0017	0.0042	0.0051	0.0069
Mercury-Acid Soluble(g/m3)	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008
Mercury-Dissolved(g/m3)	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008
Molybdenum-Dissolved(g/m3)	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.001	0.0012	0.0002	0.00035	0.0005	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Nickel-Dissolved(g/m3)	0.0005	0.0005	0.0006	0.0007	0.00195	0.0173	0.0005	0.00505	0.011	0.0014	0.0027	0.0072	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
Nitrate-N(g/m3)	0.64	0.92	1.16	0.002	0.003	0.016	0.012	0.0505	1.39	0.64	0.815	0.96	0.065	0.088	0.21	2.5	3.2	3.9
Nitrate-N + Nitrite-N(g/m3)	0.64	1.04	1.19	0.002	0.0025	0.016	0.009	0.0185	1.39	0.59	0.87	1.14	0.065	0.0795	0.21	2.5	3.3	3.9
Nitrite-N(g/m3)	0.002	0.002	0.002	0.002	0.002	0.003	0.002	0.0055	0.023	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Nitrogen-Total(g/m3)	1.06	1.2	1.27	0.11	0.11	0.11	0.1	0.105	0.12	0.71	0.975	1.2	0.11	0.125	0.16		3.7	
Nitrogen-Total Ammoniacal(g/m3)	0.01	0.01	0.011	0.015	0.0175	0.018	0.06	0.0635	0.067	0.01	0.01	0.01	0.01	0.01	0.01		0.01	
pH(pH units)	5.4	5.75	6.1	6.2	6.4	6.7	6.4	6.5	7	6.1	6.7	7	6.3	6.55	7.2	5	5.4	5.7
Potassium-Dissolved(g/m3)	1.77	2	2.3	2	2.1	2.2	2.1	2.25	4.5	8	9.3	11.8	4	4.2	4.5	5.9	6.4	7.3
Rubidium - Dissolved (g/m3)(g/m3)	0.0062	0.0067	0.0069	0.0086	0.0089	0.009	0.011	0.01145	0.0115	0.023	0.0345	0.036	0.0161	0.01635	0.0166		0.0135	
Selenium-Dissolved(g/m3)	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.0012	0.0014	0.0019	0.001	0.001	0.001		0.001	
Silver-Dissolved(g/m3)	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001		0.0001	
Sodium-Dissolved(g/m3)	7.9	8.85	9.5	8.4	9.5	11.1	9.3	9.9	10.9	24	28.5	34	9.3	9.9	10.4	8.6	9.3	9.7
Strontium-Dissolved(g/m3)	0.021	0.022	0.024	0.0162	0.01655	0.0171	0.022	0.0235	0.025	0.043	0.0465	0.118	0.037	0.0385	0.04		0.049	
Sulphate(g/m3)	4.2	6	7	5	5	7	5	5	6	30	42	75	2.1	5	7	10.7	13	17
Sum of Anions(meq/L)	0.63	0.7	0.72	0.79	0.86	0.95	0.97	1.015	1.06	1.93	2.045	2.3	0.64	0.78	0.86	0.93	1.06	1.16
Sum of Cations(meq/L)	0.65	0.67	0.75	0.78	0.825	0.85	1	1.02	1.15	2	2.15	2.4	0.72	0.82	0.85	0.99	1.07	1.25
Thallium-Dissolved(g/m3)	0.00005	0.00005	0.00006	0.00008	0.00009	0.00012	0.00074	0.000835	0.00101	0.00024	0.00036	0.00039	0.00005	0.00005	0.00005		0.00005	
Tin-Dissolved(g/m3)	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0006	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
Total Kjeldahl Nitrogen (TKN)(g/m3)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.12	0.1	0.1	0.1		0.19	
Total Suspended Solids(g/m3)	3	3	3	3	8.5	10	3	4	27	5	16.5	112	4	10	175		3	
Uranium-Dissolved(g/m3)	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00009	0.000105	0.00017	0.00005	0.00006	0.00007		0.00002	
Vanadium - Dissolved (g/m3)(g/m3)	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.0012	0.00205	0.0028	0.001	0.001	0.001	0.001	0.001	0.001
Weak Acid Dissociable (WAD) Cyanide(g/m3)	0.001	0.001	0.002	0.001	0.001	0.002	0.001	0.001	0.002	0.001	0.001	0.002	0.001	0.001	0.002		0.001	
Zinc-Dissolved(g/m3)	0.0046	0.00505	0.0062	0.001	0.00125	0.0028	0.0039	0.01605	0.035	0.0032	0.00445	0.0058	0.0034	0.0049	0.0096	0.0044	0.0055	0.0088

Notes:

Blank cells indicate parameter not tested, median only indicates only one sample for specific parameter Sample size (n) indicates max sample size for sample location - Not all parameters tested

during each sample round

Table E.6 Summary of NRS groundwater quality2017-2019 Water Quality Sampling

Devenetor	DH09	n=	3	WRS02	n=	4	WRS02a	n=	3	WRS03	n= -	3	WRS03a	n=	3	WRS04	n=	10
Parameter	Min	Median	Max	Min	Median	Max	Min	Median	Max	Min	Median	Max	Min	Median	Max	Min	Median	Max
Alkalinity - Total (g/m3 as CaCO3)	18.3	19.2	19.4	9.9	20.5	26	57	72	74	6	6	6.5	14.4	14.8	16.9	2.4	2.95	4.2
Aluminium-Dissolved(g/m3)	0.004	0.004	0.005	0.031	0.038	0.06	0.015	0.041	0.069	0.01	0.011	1.36	0.012	0.026	0.047	0.04	0.0825	0.31
Antimony-Dissolved(g/m3)	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Arsenic-Dissolved(g/m3)	0.001	0.001	0.001	0.001	0.0018	0.0068	0.001	0.001	0.0021	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Barium-Dissolved(g/m3)					0.082						0.04			0.106		0.157	0.1665	0.184
Bicarbonate (g/m3 at 25°C)	22	23	24	12.1	25	31	69	87	90	7.3	7.3	7.9	17.6	18	21	2.9	3.6	5.1
Boron-Dissolved(g/m3)	0.016	0.016	0.018	0.016	0.022	0.039	0.012	0.013	0.017	0.009	0.01	0.01	0.012	0.013	0.013	0.006	0.009	0.01
Cadmium-Dissolved(g/m3)	0.00005	0.00005	0.00005	0.00005	0.000105	0.00017	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005
Caesium - Dissolved (g/m3)(g/m3)					0.0005						0.00027			0.00045		0.00024	0.00028	0.00034
Calcium-Dissolved(g/m3)	2.1	2.1	2.3	2.8	3.25	6.1	23	33	61	0.57	0.58	0.66	1.3	1.47	2	1.55	1.795	2.4
Chloride(g/m3)	9	11	11	12	16	21	9	10	14	13	13	14	10	12	12	9	14.45	16
Chromium-Dissolved(g/m3)	0.0008	0.0008	0.001	0.0005	0.00055	0.0007	0.0005	0.0005	0.0007	0.0005	0.0005	0.0035	0.0005	0.0005	0.0008	0.0005	0.0007	0.0011
Cobalt-Dissolved(g/m3)	0.0002	0.0002	0.0002	0.0093	0.0395	0.054	0.0004	0.0031	0.0086	0.0002	0.0002	0.0009	0.0002	0.0002	0.0019	0.0008	0.0009	0.0011
Copper-Dissolved(g/m3)	0.0005	0.0005	0.0008	0.0005	0.0008	0.0014	0.0005	0.0005	0.0016	0.0005	0.0005	0.0009	0.0005	0.0008	0.0009	0.0005	0.0005	0.0005
Electrical Conductivity (EC) (mS/m)	8.6	9	9.2	13.6	17.1	24.4	26.1	34.9	51.8	7.5	7.7	7.8	7.8	8.1	8.4	9.1	10.1	11.5
Hardness-Total(g/m3 as CaCO3)	8.3	8.9	9.2	18.5	18.8	24	84	115	196	5.2	5.25	5.3	6	6.25	6.5	14.9	16.7	21
Iron-Dissolved(g/m3)	0.02	0.02	0.02	1.31	1.735	2.6	0.02	0.04	1.29	0.02	0.02	1.33	0.02	0.02	0.02	0.02	0.05	0.27
Lanthanum - Dissolved (g/m3)(g/m3)					0.00054						0.0098			0.0001		0.0001	0.000165	0.00038
Lead-Dissolved(g/m3)	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.00018	0.00019	0.0005	0.0001	0.0001	0.0001	0.0001	0.0001	0.00012
Lithium - Dissolved (g/m3)(g/m3)	0.0042	0.0048	0.0051	0.007	0.00745	0.0104	0.0065	0.0076	0.0082	0.001	0.001	0.0014	0.0027	0.0029	0.0032	0.0023	0.00255	0.0028
Magnesium-Dissolved(g/m3)	0.77	0.85	0.87	2.8	3.1	3.7	6.6	7.6	10.6	0.89	0.9	1.06	0.68	0.68	0.83	2.6	2.95	3.7
Manganese-Dissolved(g/m3)	0.0005	0.0005	0.0005	1.01	2.86	4.1	0.28	2.1	2.5	0.0052	0.0058	0.023	0.0171	0.029	0.067	0.0146	0.01885	0.023
Mercury-Acid Soluble(g/m3)	0.00008	0.00008	0.00008	0.00097	0.0049	0.0076	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008
Mercury-Dissolved(g/m3)	0.00008	0.00008	0.00008	0.00015	0.00605	0.0111	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008
Molybdenum-Dissolved(g/m3)	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0004	0.0005	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Nickel-Dissolved(g/m3)	0.0005	0.0009	0.001	0.0041	0.0197	0.03	0.0005	0.001	0.0014	0.0005	0.0005	0.0028	0.0007	0.001	0.0016	0.0005	0.0005	0.0006
Nitrate-N(g/m3)	0.4	0.6	0.78	0.003	0.006	0.018	0.061	0.079	0.67	0.57	0.625	0.68	0.144	0.147	0.15	1.89	2.6	5.4
Nitrate-N + Nitrite-N(g/m3)	0.4	0.6	0.78	0.003	0.0125	0.032	0.061	0.08	0.67	0.52	0.58	0.68	0.144	0.15	0.155	1.89	2.7	5.4
Nitrite-N(g/m3)	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Nitrogen-Total(g/m3)					0.22						0.59			0.24		2.3	2.8	5.1
Nitrogen-Total Ammoniacal(g/m3)					0.119						0.01			0.01		0.01	0.01	0.01
pH(pH units)	6.4	6.6	6.9	5.2	5.85	6.2	6.7	6.7	6.9	5.6	5.9	6.5	6	6.3	6.9	4.8	5.25	5.6
Potassium-Dissolved(g/m3)	4.7	5.3	6	3	3.2	3.4	5.9	6.2	6.2	2.6	2.7	2.7	2.9	3	3.1	1.19	1.375	1.57
Rubidium - Dissolved (g/m3)(g/m3)					0.0116						0.0095			0.012		0.0035	0.0037	0.0037
Selenium-Dissolved(g/m3)					0.001						0.001			0.001		0.001	0.001	0.001
Silver-Dissolved(g/m3)					0.0001						0.0001			0.0001		0.0001	0.0001	0.0001
Sodium-Dissolved(g/m3)	10.6	10.8	11.5	13.6	16.75	31	14.7	17.6	21	10.4	10.4	10.6	11	11	11.6	8.5	10	11
Strontium-Dissolved(g/m3)					0.035						0.008			0.0155		0.02	0.024	0.031
Sulphate(g/m3)	5	5	6	16	26	41	40	75	155	5	5	5	5	5	6	5	7.5	14
Sum of Anions(meq/L)	0.8	0.81	0.83	1.08	1.25	1.37	2.6	3.3	4.8	0.62	0.62	0.62	0.69	0.705	0.72	0.66	0.835	0.87
Sum of Cations(meq/L)	0.76	0.79	0.82	1.19	1.28	1.54	2.6	3.3	5	0.63	0.63	0.63	0.68	0.685	0.69	0.71	0.835	0.96
Thallium-Dissolved(g/m3)					0.00078						0.00005			0.00015		0.00005	0.00005	0.00005
Tin-Dissolved(g/m3)	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0013	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
Total Kjeldahl Nitrogen (TKN)(g/m3)					0.18						0.1			0.1		0.1	0.1	0.12
Total Suspended Solids(g/m3)					52						9			3		3	53.5	73
Uranium-Dissolved(g/m3)					0.00004						0.00004			0.00007		0.00002	0.000025	0.00005
Vanadium - Dissolved (g/m3)(g/m3)	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.0022	0.001	0.001	0.0018	0.001	0.001	0.0011
Weak Acid Dissociable (WAD) Cyanide(g/m3)					0.0032						0.001			0.001		0.001	0.001	0.002
Zinc-Dissolved(g/m3)	0.0101	0.012	0.0125	0.0103	0.0124	0.0167	0.0056	0.0144	0.028	0.0012	0.0014	0.0032	0.0033	0.0045	0.0069	0.0022	0.0031	0.0045

Notes:

Blank cells indicate parameter not tested, median only indicates only one sample for

specific parameter

Sample size (n) indicates max sample size for

sample location - Not all parameters tested

during each sample round

Table E.6 Summary of NRS groundwater quality2017-2019 Water Quality Sampling

Parameter Materiol		WRS04a n= 10 W		WRS05	n=	3	WRS05a n= 5			
Alkalnity-Total (g/m3 as CaCO3) 33 35.5 49 6.4 7.6 11.1 6.4 7.6 11.1 6.4 7.6 11.1 6.4 7.6 11.1 6.4 7.6 11.1 6.4 7.6 11.1 6.4 7.6 11.1 6.4 7.6 11.1 6.4 7.6 11.1 6.4 7.6 11.1 6.4 7.6 10.19 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0001 0.00011 0.0	Parameter	Min	Median	Max	Min	Median	o Max	Min	Median	Max
Aluminum-Dissolved(g/m3) 0.038 0.037 0.039 0.019 0.033 0.091 0.019 0.033 0.001 Artimony-Dissolved(g/m3) 0.0001 0.0001 0.0001 0.0015 0.0002	Alkalinity - Total (g/m3 as CaCO3)	33	35.5	49	6.4	7.6	11.1	6.4	7.6	11.1
Antimory-Dissolved(gm3) 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0011 0.0005 0.00005	Aluminium-Dissolved(g/m3)	0.038	0.127	0.195	0.019	0.033	0.091	0.019	0.033	0.091
Arsenic-Dissolved(g/m3) 0.001 0.009 0.009 0.009 0.008 0.0008	Antimony-Dissolved(g/m3)	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Bartum-Dissolved(gm3) 0.117 0.127 0.29 0.09 0.09 0.09 Berarbonst (gm3 at 25x ²) 40 43 59 78 93 13.5 78 93 13.5 Boron-Dissolved(gm3) 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0005 0.0007 0.0005 0.0007 0.0005 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0005 0.0005 0.0005 0.0007 0.0005 <th>Arsenic-Dissolved(g/m3)</th> <th>0.001</th> <th>0.001</th> <th>0.0011</th> <th>0.001</th> <th>0.001</th> <th>0.001</th> <th>0.001</th> <th>0.001</th> <th>0.001</th>	Arsenic-Dissolved(g/m3)	0.001	0.001	0.0011	0.001	0.001	0.001	0.001	0.001	0.001
Bicarbonate (gm3 at 25A*C) 40 43 59 7.8 9.3 13.5 10.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0007 0.0007 0.0007 0.0007 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002	Barium-Dissolved(g/m3)	0.117	0.167	0.2	0.09	0.09	0.09		0.09	
Boron-Disolved(g/m3) 0.006 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.0005 0.00	Bicarbonate (g/m3 at 25ŰC)	40	43	59	7.8	9.3	13.5	7.8	9.3	13.5
Cadmium-Dissolved(g/m3) 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00017 0.0002 0.00017 0.0002 0.00017 0.0002 0.00017 0.00025 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00011 0.0001 0.00011	Boron-Dissolved(g/m3)	0.006	0.009	0.01	0.008	0.009	0.009	0.008	0.009	0.009
Casesium - Dissolved (g/m3)(g/m3) 0.00074 0.00075 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00015 0.00025 0.0002 0.00025 0.0002 0.00025 0.0002 0.00025 0.00015 0.00025 0.00021 0.0002 0.00021 0.00015 0.00021 0.00015 0.00021 0.00015 0.00021 0.00015 0.00015 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00021 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0.00011 0	Cadmium-Dissolved(g/m3)	0.00005	0.00005	0.00006	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005
Calcium-Dissolved(g/m3) 4.8 5.4 7.4 2.4 2.8 3.8 2.4 2.8 3.8 Chloride(g/m3) 7 10 28 10 13 110 13 14 13 13 14 13 13 14 15 15 10.02 10.001 10.001 10.001 10.001 10.001 10.001 10.001	Caesium - Dissolved (g/m3)(g/m3)	0.00074	0.000875	0.00094	0.00015	0.00015	0.00015		0.00015	
Chloride(g/m3) T 10 26 10 13 13 10 13 13 Chromlum-Dissolved(g/m3) 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0005 0.0003 0.0005 0.0005 0.0003 0.0005 0.0003 0.0003 0.0003 0.0005 0.0003 0.0005 0.0003 0.0005 0.0003 0.0005 0.0003 0.0005 0.0003 0.0001 0.0001 0.0001 0.001 0.0001	Calcium-Dissolved(g/m3)	4.8	5.4	7.4	2.4	2.8	3.8	2.4	2.8	3.8
Chromium-Dissolved(g/m3) 0.0006 0.0009 0.0007 0.0009 0.0007 0.0009 0.0007 0.0009 0.0007 0.0009 0.0007 0.0009 0.0002 0.0001 0.0001 0.0011 0.0011 0.0001	Chloride(g/m3)	7	10	26	10	13	13	10	13	13
Cobatt-Dissolved(g/m3) 0.0002 0.0007 0.0003 0.0002 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0005 0.0001	Chromium-Dissolved(g/m3)	0.0006	0.00095	0.0018	0.0005	0.0007	0.0009	0.0005	0.0007	0.0009
Copper-Dissolved(g/m3) 0.0005 0.0001 0.0000 0.0000 0.0000 0.0000 0.00000	Cobalt-Dissolved(g/m3)	0.0002	0.0007	0.0039	0.0002	0.0002	0.0003	0.0002	0.0002	0.0003
Electrical Conductivity (EC) (mS/m) 10.7 11.05 13.5 8.9 9 10.6 8.9 9 10.6 Hardness-Total(g/m 3a 62.03 18.7 20.5 22 18.8 18.35 19.9 16.8 18.35 19.9 Iron-Dissolved (g/m3) 0.0001 0.0002 0.0004 0.0002 0.	Copper-Dissolved(g/m3)	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
Hardness-Total(g/m3) 18.7 20.5 22 16.8 18.35 19.9 16.8 18.35 19.9 Ipon-Dissolved(g/m3) 0.03 0.075 1.75 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.001 0.0002 0.00	Electrical Conductivity (EC) (mS/m)	10.7	11.05	13.5	8.9	9	10.6	8.9	9	10.6
Iron-Dissolved(g/m3) 0.03 0.075 1.75 0.02 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.001 0.0002 0.0002 <th>Hardness-Total(g/m3 as CaCO3)</th> <th>18.7</th> <th>20.5</th> <th>22</th> <th>16.8</th> <th>18.35</th> <th>19.9</th> <th>16.8</th> <th>18.35</th> <th>19.9</th>	Hardness-Total(g/m3 as CaCO3)	18.7	20.5	22	16.8	18.35	19.9	16.8	18.35	19.9
Lanthanum - Dissolved (g/m3)(g/m3) 0.0001 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0	Iron-Dissolved(g/m3)	0.03	0.075	1.75	0.02	0.02	0.05	0.02	0.02	0.05
Lead-Dissolved(g/m3) 0.0001 0.00013 0.0001 0.00011 0.00111 0.00111	Lanthanum - Dissolved (g/m3)(g/m3)	0.0001	0.000185	0.00025	0.0001	0.0001	0.0001		0.0001	
Lithium - Dissolved (g/m3)(g/m3) 0.0068 0.0071 0.0081 0.0029 0.0034 0.006 Magneseium-Dissolved(g/m3) 1.63 1.79 2.1 2.4 2.5 2.6 2.4 2.5 2.6 Manganese-Dissolved(g/m3) 0.034 0.0685 0.56 0.0047 0.0108 0.0044 0.0008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00008 0.00002 0.0002	Lead-Dissolved(g/m3)	0.0001	0.0001	0.00013	0.0001	0.0001	0.00019	0.0001	0.0001	0.00019
Magnesum-Dissolved(g/m3) 1.63 1.79 2.1 2.4 2.5 2.6 2.4 2.5 2.6 Manganese-Dissolved(g/m3) 0.034 0.0685 0.56 0.0047 0.0108 0.024 0.0047 0.0108 0.024 Mercury-Acid Soluble(g/m3) 0.0008 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 </th <th>Lithium - Dissolved (g/m3)(g/m3)</th> <th>0.0068</th> <th>0.0071</th> <th>0.0081</th> <th>0.0029</th> <th>0.0034</th> <th>0.006</th> <th>0.0029</th> <th>0.0034</th> <th>0.006</th>	Lithium - Dissolved (g/m3)(g/m3)	0.0068	0.0071	0.0081	0.0029	0.0034	0.006	0.0029	0.0034	0.006
Manganese-Dissolved(g/m3) 0.034 0.0685 0.56 0.047 0.0108 0.024 0.0047 0.0108 0.024 0.0047 0.0108 0.024 0.0047 0.0108 0.0008 0.00002 0.0007 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0002	Magnesium-Dissolved(g/m3)	1.63	1.79	2.1	2.4	2.5	2.6	2.4	2.5	2.6
Mercury-Acid Soluble(g/m3) 0.00008 0.00002 0.0002	Manganese-Dissolved(g/m3)	0.034	0.0685	0.56	0.0047	0.0108	0.024	0.0047	0.0108	0.024
Mercury-Dissolved(g/m3) 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0007 0.0015 0.0005 0.0005 0.0007 0.0005 0.0007 0.0002 0.0007 0.0002	Mercury-Acid Soluble(g/m3)	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008
Molybdenum-Dissolved(g/m3) 0.0002 0.0004 0.0012 0.0002 0.0002 0.0002 0.0002 0.0002 0.0005 0.0002 0.002	Mercury-Dissolved(g/m3)	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008
Nickel-Dissolved(g/m3) 0.0007 0.00155 0.0059 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0005 0.0007 0.0002	Molybdenum-Dissolved(g/m3)	0.0002	0.0004	0.0012	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Nitrate-N(g/m3) 0.124 0.1835 0.47 2.8 3.35 3.9 2.8 3.35 3.9 Nitrate-N + Nitrite-N(g/m3) 0.024 0.1415 0.48 2.8 3.3 3.9 2.8 3.35 3.9 Nitrate-N(g/m3) 0.02 0.001 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.001 0.001 0.001 0.001 0.0011 0.001 0.001 <th>Nickel-Dissolved(g/m3)</th> <th>0.0007</th> <th>0.00155</th> <th>0.0059</th> <th>0.0005</th> <th>0.0005</th> <th>0.0007</th> <th>0.0005</th> <th>0.0005</th> <th>0.0007</th>	Nickel-Dissolved(g/m3)	0.0007	0.00155	0.0059	0.0005	0.0005	0.0007	0.0005	0.0005	0.0007
Nitrate-N + Nitrite-N(g/m3) 0.024 0.1415 0.48 2.8 3.3 3.9 2.8 3.3 3.9 Nitrite-N(g/m3) 0.002 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0	Nitrate-N(g/m3)	0.124	0.1835	0.47	2.8	3.35	3.9	2.8	3.35	3.9
Nitrite-N(g/m3) 0.002 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.	Nitrate-N + Nitrite-N(g/m3)	0.024	0.1415	0.48	2.8	3.3	3.9	2.8	3.3	3.9
Nitrogen-Iotal(g/m3) 0.13 0.18 0.21 3.3 3.3 3.3 3.3 Nitrogen-Total Ammoniacal(g/m3) 0.01 0.0175 0.046 0.01 0.01 0.01 pH(pH units) 6.2 6.65 7 5.7 5.8 5.9 5.7 5.8 5.9 Potassium-Dissolved(g/m3) 2.1 2.35 3 2.2 2.3 2.3 2.2 3 2.3 2.2 2.3	Nitrite-N(g/m3)	0.002	0.002	0.007	0.002	0.002	0.002	0.002	0.002	0.002
Nitrogen-Total Ammoniacal(g/m3) 0.01 0.0175 0.046 0.01 0.01 0.01 0.01 pH(pH units) 6.2 6.65 7 5.7 5.8 5.9 5.7 5.8 5.9 Potassium-Dissolved(g/m3) 2.1 2.35 3 2.2 2.3 2.3 2.2 2.3 2.3 2.2 2.3 2.4 2.5 5 5	Nitrogen-Total(g/m3)	0.13	0.18	0.21	3.3	3.3	3.3		3.3	
pH(pH units) 6.2 6.05 7 5.7 5.8 5.7 5.8 5.9 Potassium-Dissolved(g/m3) 2.1 2.35 3 2.2 2.3 2.2 2.3 2.2 2.3 2.3 2.2 2.3 2	Nitrogen-Total Ammoniacal(g/m3)	0.01	0.0175	0.046	0.01	0.01	0.01	F 7	0.01	5.0
Portassium-Dissolved (g/m3) 2.1 2.3 3 2.2 2.3 3	pH(pH units)	0.2	0.05	1	5.7	5.8	5.9	5.7	5.8	5.9
Rubblum - Dissolved (g/m3) 0.0074 0.0082 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.001 0.0001 0.0000 0.0001 0.0001 <t< th=""><th>Potassium-Dissolved (g/m3)</th><th>Z.I</th><th>2.30</th><th>3</th><th>2.2</th><th>2.3</th><th>2.3</th><th>Z.Z</th><th>2.3</th><th>2.3</th></t<>	Potassium-Dissolved (g/m3)	Z.I	2.30	3	2.2	2.3	2.3	Z.Z	2.3	2.3
Steintun-Dissolved(g/m3) 0.001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.001	Rubialum - Dissolvea (g/ms)(g/ms)	0.0074	0.0005	0.0092	0.000	0.000	0.000		0.000	
SilverUpssolved(g/m3) 0.0001	Selemum-Dissolved(g/m3)	0.001	0.001	0.001	0.001	0.001	0.001		0.001	
Strontium-Dissolved(g/m3) 0.036 0.0455 0.05 0.025 0.025 0.025 0.025 Sulphate(g/m3) 2.8 5.5 8 5 5 6 5 6 Sum of Anions(meq/L) 0.97 1.075 1.57 0.74 0.825 0.91 0.74 0.825 0.91 Sum of Cations(meq/L) 1 1.075 1.16 0.73 0.82 0.91 0.73 0.82 0.91 Sum of Cations(meq/L) 1 1.075 1.16 0.73 0.82 0.91 0.73 0.82 0.91 Sum of Cations(meq/L) 1 1.075 1.16 0.73 0.82 0.91 0.73 0.82 0.91 Sum of Cations(meq/L) 1 1.075 1.16 0.73 0.82 0.91 0.73 0.82 0.91 Thallium-Dissolved(g/m3) 0.00006 0.0003 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.00005 0.0005 0.00005 <th>Sodium-Dissolved(g/113)</th> <th>0.0001</th> <th>0.0001</th> <th>0.0001</th> <th>6.6</th> <th>0.0001</th> <th>0.0001</th> <th>6.6</th> <th>0.0001</th> <th>10.1</th>	Sodium-Dissolved(g/113)	0.0001	0.0001	0.0001	6.6	0.0001	0.0001	6.6	0.0001	10.1
Subinitum-Dissolved(g/m3) 0.030 0.0433 0.033 0.023 0.011 0.1 0.14 0.11 0.13 0.1 0.1 0.0005 </th <th>Strontium Discolved(g/m3)</th> <th>0.036</th> <th>0.0455</th> <th>0.05</th> <th>0.0</th> <th>0.025</th> <th>0.025</th> <th>0.0</th> <th>0.025</th> <th>10.1</th>	Strontium Discolved(g/m3)	0.036	0.0455	0.05	0.0	0.025	0.025	0.0	0.025	10.1
Sum of Anions(meq/L) 0.97 1.075 1.57 0.74 0.825 0.91 0.74 0.825 0.91 Sum of Anions(meq/L) 0.97 1.075 1.57 0.74 0.825 0.91 0.74 0.825 0.91 Sum of Cations(meq/L) 1 1.075 1.16 0.73 0.82 0.91 0.73 0.82 0.91 Thallium-Dissolved(g/m3) 0.00006 0.0003 0.00039 0.00005	Sulphate(a/m3)	2.8	0.0400	0.03	0.025	0.025	0.025	5	0.025	6
Sum of Cations(meq/L) 1.073 1.073 1.073 0.023 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.01 0.015 0.00005 0.0005 0.0005	Sum of Anions(meg/L)	2.0	1 075	1 57	0.74	0.825	0 01	0.74	0.825	0 01
Thallium-Dissolved(g/m3) 0.00006 0.0003 0.00039 0.00005 0.00005 0.00005 0.00005 0.00005 Tin-Dissolved(g/m3) 0.0005	Sum of Cations(med/L)	0.37	1.075	1.57	0.74	0.020	0.01	0.74	0.020	0.31
Tin-Dissolved(g/m3) 0.00005 0.0005 <th< th=""><th>Thallium-Dissolved(g/m3)</th><th></th><th>0.0003</th><th>0 00030</th><th>0.75</th><th>0.02</th><th>0.01</th><th>0.75</th><th>0.02</th><th>0.91</th></th<>	Thallium-Dissolved(g/m3)		0.0003	0 00030	0.75	0.02	0.01	0.75	0.02	0.91
Total Kjeldahl Nitrogen (TKN)(g/m3) 0.1 0.1 0.15 0.1 0.1 0.1 0.1 Total Suspended Solids(g/m3) 5 7.5 79 9 9 9 9 Uranium-Dissolved(g/m3) 0.00003 0.000035 0.00004 0.00003 0.00003 0.00003 0.00003 Vanadium - Dissolved (g/m3)(g/m3) 0.001 0.001 0.002 0.002 0.002 0.002	Tin-Dissolved(g/m3)	0.00000	0.0005	0.00003	0.00005	0.00005	0.00000	0 0005	0.00005	0 0005
Total Suspended Solids(g/m3) 5 7.5 79 9 9 9 9 Uranium-Dissolved(g/m3) 0.00003 0.000035 0.00004 0.00003 0.0001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 <th>Total Kieldahl Nitrogen (TKN)(g/m3)</th> <th>0.0003</th> <th>0.0003</th> <th>0.0003</th> <th>0.0003</th> <th>0.0003</th> <th>0.0003</th> <th>0.0005</th> <th>0.0003</th> <th>0.0005</th>	Total Kieldahl Nitrogen (TKN)(g/m3)	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0005	0.0003	0.0005
Uranium-Dissolved(g/m3) 0.00003 0.00003 0.00004 0.00003 0.0001 0.002 0.002 <th>Total Suspended Solids(g/m3)</th> <th>5</th> <th>7.5</th> <th>79</th> <th>0.1 Q</th> <th>0.1 Q</th> <th>0.1 Q</th> <th></th> <th>0.1 Q</th> <th></th>	Total Suspended Solids(g/m3)	5	7.5	79	0.1 Q	0.1 Q	0.1 Q		0.1 Q	
Vanadium - Dissolved (g/m3)(g/m3) 0.001 0.0026 0.0002 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.000	Uranium-Dissolved(g/m3)	0 00003	0.00035	0 00004	0 00003	0 0003	0 00003		0 00003	
Weak Acid Dissociable (WAD) Cyanide(g/m3) 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.001	Vanadium - Dissolved (g/m3)(g/m3)	0.00003	0.000000	0.00004	0.00003	0.00003	0.00003	0.001	0.00003	0 001
	Weak Acid Dissociable (WAD) Cvanide(g/m3)	0.001	0.0020	0.0032	0.001	0.001	0.001	0.001	0.001	0.001
$Z_{inc-Dissolved}(q/m3)$ 0.0018 0.00285 0.0061 0.0029 0.0031 0.0034 0.0029 0.0031 0.0034	Zinc-Dissolved(g/m3)	0.0018	0.00285	0.002	0.0029	0.002	0.002	0 0029	0.002	0 0034

Notes:

Blank cells indicate parameter not tested, median only indicates only one sample for specific parameter Sample size (n) indicates max sample size for sample location - Not all parameters tested

during each sample round

21/01/2021

Table E.7 Summary of NRS surface water quality

2017-2019 Water Quality Sampling

Perometer	OH3	n= 48 W		WRS TB	n= 7		TB1b	n= 8		TB1f	n= 6		TB1a	n= 9	
Parameter	Min	Median	Max												
Alkalinity - Total (g/m3 as CaCO3)	7.7	13.8	24	6.5	13	13.5	7.3	10.45	32	13.5	16	28	11.5	15.2	27
Aluminium-Dissolved(g/m3)				0.007	0.018	0.023	0.012	0.0175	0.05	0.013	0.019	0.021	0.011	0.026	0.042
Antimony-Dissolved(g/m3)	0.0002	0.0002	0.0007	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Arsenic-Dissolved(g/m3)	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Barium-Dissolved(g/m3)				0.045	0.046	0.05	0.029	0.031	0.033	0.035	0.036	0.037	0.029	0.0305	0.032
Bicarbonate (g/m3 at 25°C)	9.4	16.8	29	7.9	15.8	16.4	8.9	12.7	38	16.4	19.5	34	14	18.5	33
Boron-Dissolved(g/m3)				0.01	0.012	0.012	0.009	0.012	0.013	0.012	0.012	0.013	0.011	0.012	0.012
Cadmium-Dissolved(g/m3)	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00009	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005
Calcium-Dissolved(g/m3)	2.6	2.95	28	0.91	1.13	2.6	2.1	5.95	25	2.5	2.8	21	3	3.7	20
Carbonate (g/m3 at 25°C)	1	1	1.1												
Chloride(g/m3)	9	12	14	8	10	28	6	12	16	7	10.5	22	9	11	14.7
Chromium-Dissolved(g/m3)				0.0005	0.0005	0.0007	0.0005	0.0005	0.0006	0.0005	0.0005	0.0007	0.0005	0.0005	0.0009
Chromium-Hexavalent(g/m3)	0.001	0.01	0.01				0.01	0.01	0.01				0.01	0.01	0.01
Cobalt-Dissolved(g/m3)	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0003	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
Copper-Dissolved(g/m3)	0.0005	0.0005	0.0011	0.0005	0.0005	0.0006	0.0005	0.0005	0.0016	0.0005	0.0005	0.0016	0.0005	0.0005	0.0013
Cyanide-Total(g/m3)	0.001	0.002	0.002												
Electrical Conductivity (EC) (mS/m)	7.9	8.45	25.3	6.7	7.2	11.8	8	11.7	21.7	7.9	8.65	20.3	8.5	10	19.9
Fluoride (g/m3)	0.05	0.05	0.05												
Hardness-Total(g/m3 as CaCO3)	12.2	15.05	83	5.4	5.95	14.1	10.3	33.5	85	10.8	12.15	73	12.9	18.9	71
Iron-Dissolved(g/m3)	0.03	0.1	0.21	0.02	0.06	0.08	0.02	0.03	0.95	0.02	0.285	0.3	0.02	0.25	0.53
Lead-Dissolved(g/m3)	0.0001	0.0001	0.00016	0.0001	0.0001	0.0001	0.0001	0.0001	0.00011	0.0001	0.0001	0.0001	0.0001	0.0001	0.00021
Magnesium-Dissolved(g/m3)	1.4	1.86	4.3	0.7	0.81	1.85	1.25	2.7	8.5	1.12	1.305	5.1	1.34	1.95	4.9
Manganese-Dissolved(g/m3)	0.0016	0.01005	0.087	0.001	0.0076	0.0178	0.0005	0.047	0.162	0.0006	0.095	0.115	0.0129	0.064	0.14
Mercury-Dissolved(g/m3)	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	80000.0	0.00008	0.00008	0.00008	80000.0	0.00008	0.00008	0.00008
Molybdenum-Dissolved(g/m3)	0.0005	0.0005	0.0005	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
NICKEI-DISSOIVED(g/m3)	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.00065	0.0037	0.0005	0.0005	0.0017	0.0005	0.0005	0.0023
Nitrate-N(g/M3)	0.1	0.5	1.67	0.064	0.089	0.81	0.057	0.1735	0.35	0.046	0.0975	0.21	0.074	0.135	0.4
Nitrate-N + Nitrite-N(g/m3)	0.1	0.51	1.08	0.065	0.095	0.02	0.057	0.2745	0.93	0.047	0.117	0.27	0.076	0.148	0.4
Nitrie-N(g/m3)	0.1	0.1	0.1	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
nitrogen-rotal Ammoniacai(g/m3)	6.6	0.01	0.23	0.01	0.01	7.3	0.01	6.0	0.034	0.015	0.049	0.009	0.015	0.032	0.074
Phosphorus-Total (g/m3)	0.0	0.012	0.7	0.0	1	1.5	0.034	0.9	0.053	0.7	1	7.5	0.0	0.0435	0.047
Potassium-Dissolved(a/m3)	1 75	0.012	53	2	2.0	3.1	0.004	2 55	2.000	24	27	2.8	2 /	2.8	2.8
Reactive Phosphorus-Dissolved(g/m3)	0.004	0.004	0.034	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	2.7	0.004	2.0
Selenium-Dissolved(g/m3)	0.0002	0.0002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Silica-Reactive(g/m3 as SiO2)	16.2	25	33	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Silver-Dissolved(g/m3)	0.0001	0 0001	0.0001	0.0001	0 0001	0 0001	0.0001	0 0001	0 0001	0.0001	0 0001	0 0001	0 0001	0.0001	0 0001
Sodium-Dissolved(g/m3)	8	9.2	10.8	9.4	9.9	17.9	6.6	10.1	11.1	6.9	9.9	10.3	6.9	9.7	10.4
Strontium-Dissolved(g/m3)				0.0103	0.0139	0.0142	0.02	0.0245	0.029	0.0156	0.0167	0.0178	0.0158	0.01735	0.0189
Sulphate(g/m3)	3.4	5	44	5	5	7	6	15.5	61	5	6.5	42	5	8	46
Thallium-Dissolved(q/m3)				0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005	0.00005
Tin-Dissolved(q/m3)				0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
Total Kjeldahl Nitrogen (TKN)(g/m3)	0.1	0.15	1.19	0.1	0.1	0.28	0.1	0.205	0.47	0.11	0.115	0.12	0.12	0.235	0.42
Total Suspended Solids(g/m3)	3	3	197	3	3	10	3	6	64	3	3	3	3	12	53
Uranium-Dissolved(g/m3)				0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002
Weak Acid Dissociable (WAD) Cyanide(g/m3	0.001	0.002	0.002	0.002	0.002	0.003	0.001	0.0015	0.002	0.002	0.002	0.002	0.001	0.0015	0.002
Zinc-Dissolved(g/m3)	0.001	0.0019	0.0081	0.0011	0.0014	0.0022	0.001	0.00225	0.0073	0.001	0.00115	0.0019	0.001	0.0013	0.0067

Notes:

TB1e - no data available

Blank cells indicate parameter not tested

Sample number indicates max sample size for

individual parameters - Not all parameters

tested during each sample round

Figure E.1 Piper Plot – Gladstone Groundwater Quality (P79-d June 2018. GLD04 well series October 2020. All other bores September 2018). (Excludes GLD01b which is recorded as dry).

Figure E.2 Piper Plot – Gladstone surface water quality (TB5 September 2019. All other samples September 2017)

Figure E.3 Piper Plot – NRS groundwater quality (November 2019)

Figure E.4Piper Plot – NRS surface water quality (June 2019)

Figure E.5 Piper Plot – NRS surface water quality (September 2019)

Figure E.6

Piper plot – TSF3 water quality (April 2018)

Figure E.8

Piper plot – TSF3 water quality (shed spring vs. RU10)

Appendix F Surface water flow data
Contents:

- Table F.1
 Summary of Gladstone Stream Flow Gauging results (Opus, 2019)
- Table F.2
 Summary of NRS Stream Flow Gauging results (Opus, 2019)
- Table F.3
 Summary of TSF3 Stream Flow Gauging Results (Opus, 2019)
- Table F.4
 Summary of historic surface water flow data used in the assessment
- Figure F.1 Plan showing Gladstone baseflow data (TB4 June 2017, Ohinemuri June 2019 & January 2020)
- Figure F.2 Plan showing NRS tributary TB1 baseflow data

 Table F.1
 Summary of Gladstone Stream Flow Gauging results (Opus, 2019)

Water Body	February Flow (L/s)									
	2019 Water Level (mRL)	24/01/19	07/02/19	21/02/19	07/03/19	21/03/19	04/04/19	19/06/19	19/09/19	22/1/20
Tributary TB4 3 m upstream of twin culvert under access road	1087.04	0.017	0	Dry	Dry	0	0.05	0.006	2.6	Dry
Tributary TB5		-	-	-	Dry	Dry	Dry	Dry	3.5	Dry
Ohinemuri River OH11	1085.75	746	501	467	268 / 305.4*	357.5	574.2	438.4 / -*	2759.9	234.8
Ohinemuri River OH6	1084.65	-	-	-	-	367.7	598.5	421.9	2831.7	218.9
* upstream/dow	nstream of w	ater treatmer	nt plant disch	arge						

Table F.2 Summary of NRS Stream Flow Gauging results (Opus, 2019)

Water	Gauging	Flow (L/s)								
body	Location	24/01/19	07/02/19	21/02/19	07/03/19	21/03/19	04/04/19	19/06/19	19/09/19	22/01/20
TB1	WRSTB	2.5	2.1	1.9	1.8	1.4	2.1	1.8	8.2	1.3
	TB1B	-	-	-	-	0.53	1.3	0.48	64.0	0.38
	TB1F	3.4	3.0	2.6	2.2	2.0	3.2	2.3	70.5	1.6
	TB1A	4.9	3.1	2.7	2.0	1.8	3.3	2.2	84.8	1.6
TB1E	TB1E	Dry	Dry	Dry	Dry	Dry	Dry	Dry	-	-

Table F.3 Summary of TSF3 Stream Flow Gauging Results (Opus, 2019)

Water Body	Water Body Gauging Flow (L/s)									
	Location	24/01/19	07/02/19	21/02/19	06/03/19	20/03/19	03/04/19	18/06/19	16/09/19	21/01/20
Ruahorehore Tributary	RU10	-	-	-	0.38	0.15	0.2	0.08	35.9	0
	RU6	2.5	1.6	0.8	0.4	0.22	0.7	0.5	40.4	0
Ruahorehore	RU14	29.7	19.9	17.6	14.3	12.8	21.3	14.6	173.6	11.1
Stream	RU13	36.5	17.9	15.7	12.7	11.0	20.0	12.9	170.7	7.5
	RU11	34.7	13.7	15.9	13.9	12.9	19.6	15.4	-	7.1
	RU12	30.7	21.4	15.6	14.2	14.0	21.8	14.3	205.9	7.0
	RU7	29.8	14.8	15.2	12.2	10.4	20.4	15.5	219.4	8.5
	RU5	-	-	-	13.5	12.3	24.1	16.50	273.8	6.3
Shed Spring	RU15	-	-	31.7	37.5	38.1	55.2	39.9	446.3	27.3

 Table F.4
 Summary of historic surface water flow data used in the assessment

Water Body	Gauging Location	Flow (m³/sec)			
		24 & 25/02/2014	14/08/2015	17/12/2015	
Ohinemuri	16 (OC2)	0.31	-	-	
River (1)	15 (OH3)	0.31	-	-	
	11 (OH5)	0.37	-	-	
	12 (OH11)	0.45	-	-	
Ruahorehore	1 (RU10)	0.002	-	-	
Tributary (1)	2 (RU6)	0.002	-	-	
Ruahorehore	3 (RU7)	0.025	-	-	
Stream (1)	5 (RU3A)	0.028	-	-	
Shed Spring	1 ⁽²⁾ (upstream of Shed Spring)	0.028	0.31	0.013	
	2 ⁽²⁾ (upstream of Shed Spring)	-	0.27	0.019	
	9 ⁽¹⁾ (Tributary upstream of Shed Spring)	0.004	-	-	
	6 ⁽¹⁾ (Shed Spring)	0.003	-	-	
	10 ⁽¹⁾ / 3 ⁽²⁾ (RU15)	0.05	0.35	0.038	
(1) Hydrologic, 2014 (2) Hydrologic, 2015	, , ,	·	·	·	

Figure F.1 Plan showing Gladstone baseflow data (TB4 June 2017, Ohinemuri June 2019 & January 2020)

Figure F.2 Plan showing NRS tributary TB1 baseflow data

Appendix G

Gladstone Open Pit and Tailings Storage Facility technical assessment This appendix presents the methodology and results for technical assessment for excavation of the Gladstone Open Pit (GOP) and development as a Tailings Storage Facility (TSF).

All elevations are presented in metres reduced level (mRL) with reference to Waihi Mine datum, which is 1,000 metres below sea level.

Appendix G Contents

G.1 Assessment methodology

G.1.1 GOP and TSF groundwater assessment methodology

Groundwater modelling and simplistic groundwater catchment model for excavation of the GOP and development of a TSF, considering a situation where the shallow groundwater system is currently under-drained as a result of existing mine dewatering.

G.1.2 Gladstone vein dewatering assessment methodology

Groundwater modelling and empirical assessment for dewatering of the Gladstone vein system, considering a situation where the deep groundwater system southwest of the proposed GOP is not currently dewatered.

G.1.3 Surface water catchment assessment methodology

Simplistic surface water catchment model to predict changes in catchment area following excavation of the GOP.

G.1.4 Water quality assessment methodology

Simplistic contaminant mass mixing model to predict impacts to groundwater and surface water quality after development of the TSF.

G.2 Assessment results

G.2.1 GOP and TSF assessment results

G.2.2 Gladstone vein dewatering assessment results

G.2.3 Surface water catchment assessment results

G.2.4 Water quality assessment results

G.1 Assessment methodology

G.1.1 GOP and TSF groundwater assessment

Groundwater flow paths and discharges under current conditions, GOP excavation, operational TSF, TSF closure and long-term TSF were predicted utilising two methodologies: groundwater modelling and groundwater catchment assessments. This assessment considers a scenario where the shallow groundwater system is currently under-drained as a result of existing mine dewatering

GOP vein dewatering assessment is discussed in Section G.1.2.

G.1.1.1 Groundwater modelling methodology

Groundwater modelling was undertaken using GeoStudio 2021 SEEP/W finite element numerical modelling software. Two two-dimensional (2D) sections were developed to model cross sections through a north-south orientation and east-west orientation through the proposed GOP and TSF (Figure G.1). The model orientations were selected to understand how future mining works may impact shallow groundwater and surface water.

- North-south cross section: 1.1 km in length, considers shallow groundwater flow towards local tributaries (at TB4 and TB5) and the Gladstone wetland. The model was oriented through the deepest pit section, starting from Union Hill to the north, through to the watercourses and wetland south of the pit.
- East-west cross section: 1.4 km in length, considers shallow groundwater flow towards the Ohinemuri River. The model was oriented through the deepest pit section, starting from the Ohinemuri River to the east (near sampling location OH3), through to the Ohinemuri River to the west (near OH6). This model alignment also incorporates the locations where the pit shell intersects with the lowest elevations of the adjacent shallow groundwater systems, as well as an extensive unit of permeable sandy ignimbrite west of the pit.

The assessment was undertaken for the scenarios presented in Table G.1.

Table G.1 GOP and TSF assessment – model scenario summary

Model scenario	Description
Current conditions – steady state (Parent model for assessment scenarios)	Calibrated base model, representing the existing natural geology and hydrogeological setting which includes the shallow groundwater system being currently under-drained due to dewatering of the Favona portal infrastructure.
GOP excavation – steady state	The pit is excavated to the maximum depth of 1,005 mRL. Groundwater from the shallow system can flow to the pit through the pit walls
Operational TSF – steady state	The pit is backfilled with NAF and PAF rock to a minimum elevation of 1,060 mRL, and on the pit walls to a minimum width of 10 m at the crest. The rock backfill is amended with limestone and compacted in situ.
	A liner subgrade and geosynthetic liner are placed on top of the backfill. The TSF drainage system is located beneath the geosynthetic liner at the base of the tailings. Emplacement of tailings to a maximum of 1,103 mRL. Tailings pond level set to 1,103 mRL.
	Shallow groundwater system remains under-drained due to Favona dewatering.
TSF closure – steady state	The tailings pond has been drained and the tailings are covered with a capping layer comprising a minimum 1 m thickness of NAF rockfill. The TSF drainage system remains operational.
	Rewatering of the deep groundwater system has occurred following the end of underground mining operations, therefore the shallow groundwater system is no longer underdrained.
	Groundwater pressure within the andesite set to 1,106 mRL to represent the influence of Martha pit lake (proposed level of 1,104 mRL allowing for a degree of water table increase within underground workings).
Long term TSF – steady state	Tailings are covered with a NAF rockfill capping layer between 1,104 – 1,107 mRL contoured towards the southern pit boundary. The TSF drainage system is no longer operational. Groundwater pressure within the andesite set to 1,106 mRL to represent influence of Martha
	pit lake (proposed level of 1,104 mRL allowing for a degree of water table increase within underground workings).

The 2D groundwater model cross sections were used to predict groundwater levels, flow paths and fluxes:

- 1. Groundwater modelling
 - a. Predicted groundwater flow across the pit boundary, broken down into:
 - i. groundwater predicted to discharge to surface water receiving environments during current conditions and the full life cycle of the GOP and TSF.
 - ii. groundwater flow from the shallow groundwater system into the pit during GOP excavation.
 - iii. groundwater flow predicted to discharge to the deep groundwater system during current conditions and the full life cycle of the GOP and TSF.
 - b. Predicted groundwater flow to surface water receiving environments, including the breakdown of flow predicted to have interacted with tailings or rock backfill of the TSF.
 - c. Predicted changes in groundwater levels.
 - d. Predicted tailings and groundwater flow to, and total discharge from, the TSF drainage system proposed beneath the geosynthetic liner at the base of the tailings.

N:\NZ\Christchurch\Projects\51\12526951\GIS\Maps\Deliverables\12552081\12552081_Z006_GladstoneCrossSectionLocations.mxd

© 2021. Whilst every care has been taken to prepare this map, GHD (and LINZ, ESRI, Oceana Gold Limited, EGL) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: Aerial imagery - LINZ; General topo - LINZ; Bore locations - OGL. Created by irprice

Level 3, 138 Victoria Street, PO Box 13 468, Christchurch 8141, New Zealand T 64 3 378 0900 F 64 3 378 8001 E chcmail@ghd.com W www.ghd.com

Oceana Gold Limited

Gladstone cross-section locations (N-S and W-E)

Job Number | 12552081 Revision Date

0 13 Dec 2021

Figure G1

The 2D groundwater model cross sections were used to predict groundwater levels, flow paths and fluxes as follows:

Groundwater flow scaling for current conditions and GOP excavation scenario

For the purposes of estimating groundwater discharges across the pit boundary, which is extracted from the groundwater models on a per unit metre basis in the four directions modelled (north, east, south and west), these fluxes have been scaled up to represent the full water balance of the pit. These fluxes were scaled up using the adopted pit perimeter sections presented in Figure G.2. The justification for each adopted section is presented in Table G.2.

While providing appropriate analysis of change in water levels, to provide balanced flow estimates the circular the area represented by each model required further scaling (flow scaling) to accommodate the circular nature of Gladstone Hill and the proposed GOP. This change addresses the inconsistencies in simulating radial discharge using a cross sectional model approach.

To determine the degree of scaling required the following was undertaken:

- Modified long-term cross section models were developed including NAF rockfill above the tailings to match the existing landform. A closure cap infiltration rate of 1x10-8 m/s (AECOM, 2020) was applied to these models.
- The total modelled discharge from the pit to shallow groundwater was determined as the sum of the discharge to each perimeter area (each determined by factoring the cross section model discharge by the pit perimeter lengths detailed in Table G.2).
- Total recharge to the pit area was estimated by applying the adopted recharge rate (1x10⁻⁸ m/s) and factoring it by the total pit area.
- The scaling factor was determined by dividing the total recharge to the pit area by the total modelled discharge.

The scaling factor was applied to all estimates of flow from the model area, including the simulation of current conditions.

Groundwater flow scaling for TSF discharges

For the purposes of estimating total groundwater discharge through the base of the pit and towards the TSF drainage system for the operational TSF and TSF closure scenarios, the flow results from each cross-section were scaled up using the average dimensions of the TSF:

- An average of the following:
 - North-south model discharge flux was multiplied by 520 m (dimension of TSF in east-west direction)
 - East-west model discharge flux was multiplied by 262 m (dimension of TSF in north-south direction)

Due to the influence of greater deep groundwater pressures on groundwater flows and TSF discharges for the TSF closure scenario, which considers complete cessation of TSF drainage after rewatering of the deep groundwater system, groundwater flows were assessed differently from the other TSF scenarios. The methodology for the long-term TSF scenario comprised comparison of results from the two cross section models. The modelled lowest point of groundwater discharge from the pit, that could accommodate all groundwater discharge from the TSF, was adopted as the preferential location for water discharge from the pit. The cross section representing this discharge was scaled as per the TSF dimensions provided above.

Scaling of groundwater flow to surface water bodies during all GOP and TSF scenarios

Total groundwater discharge to each surface water receiving environment from each model section was multiplied by the length of the water body anticipated to be receiving groundwater discharges from the full modelled area during all model scenarios. The following lengths were adopted:

- Gladstone wetland / Ohinemuri tributary (TB4) 280 m
- Ohinemuri tributary (TB5) 230 m
- Ohinemuri River east of Gladstone (OH3) 247 m
- Ohinemuri River west of Gladstone (OH6) 342 m

 Table G.2
 Gladstone pit perimeter section lengths for scaling flux across the pit boundary

Pit section	Measured pit section perimeter length (m)	Adopted pit section justification
North	380	Includes shallow aquifer units of similar thickness, and regions of inferred andesite outcrop, from the north-western side of the pit to approximate topographic divide on north-eastern side of the pit.
East	247	Includes shallow aquifer units of similar thickness between the two approximate topographic divides on the north-eastern and south-eastern sides of the pit.
South	425	Includes shallow aquifer units of similar thickness between the two approximate topographic divides between the south-eastern side of the pit and Winner Hill on the south-western side of the pit.
West	510	Incorporates relatively thick shallow aquifer units on the south-western side of the pit between elevated Winner Hill and where andesite is indicated to outcrop on the north-western side of the pit.

Figure G.2 Adopted perimeter sections for scaling flux across the pit boundary

G.1.1.2 Groundwater catchment methodology

To compare the results of groundwater modelling, a comparative assessment was undertaken for changing groundwater recharge catchment areas. A groundwater recharge catchment area for each surface water body was defined using conceptual understanding, with flow paths determined from groundwater modelling and topographic contours. The catchment areas change during each scenario assessed due to changing groundwater levels and groundwater flow paths. Following rewatering of the deep groundwater system and cessation of TSF drainage

assumed for the long-term TSF scenario, recharge to each groundwater catchment will no longer be solely from rainfall recharge. Therefore, this scenario has been excluded from the catchment calculations assessment.

The adopted catchment areas for the assessed scenarios are presented in Table G.3.

Groundwater	Groundwater catchment area (m²) ¹					
catchment area	Current conditions	GOP Excavation	Operational TSF	TSF Closure		
Gladstone Wetland / Ohinemuri tributary (TB4)	33,654	26,129	26,129	62,084		
Ohinemuri tributary (TB5)	0	0	0	0		
Ohinemuri River east of Gladstone (OH3) ²	141,814	125,274	125,274	155,916		
Ohinemuri River west of Gladstone (OH6) ²	70,673	57,035	57,035	65,683		
1. Catchment areas delineated by the interpreted groundwater recharge areas						

 Table G.3
 Gladstone groundwater catchment areas

2. Constrained to the area between the Gladstone Open Pit and Ohinemuri River

G.1.1.3 Groundwater model set-up

Each SEEP/W section was initially constructed to represent current groundwater conditions, with calibration achieved using site data, including geology within the OGNZL Leapfrog model (2021) and bore logs, as well as permeability and water level data from monitoring bores and recorded river and wetland water levels and flow. The model structure, materials and boundary conditions were then modified to represent the GOP and TSF scenarios. Annotated SEEP/W sections are presented in Figure G.3 and Figure G.4. Model set up information is provided in Table G.4 and Table G.5.

Bore logs, groundwater levels and permeability test results from monitoring bores are presented in Appendix B, Appendix C and Appendix D, respectively.

© 2021. Whilst every care has been taken to prepare this map, GHD make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tor or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason.

Data source: GHD. Created by:jrprice

Data source: GHD. Created by:jrprice

Table G.4

Gladstone Pit north - south model section parameters and boundary conditions

Parameter / boundary	Adopted condition	Justification	Model scenario			
Rainfall recharge	Water flux (potential seepage face review) – 9 x 10 ⁻¹⁰ m/s	1.3 % of rainfall. Considered appropriate given low permeability materials and gradient of hillside.	All model scenarios			
Gladstone wetland	Water total head – 1,090 mRL	Elevation from topography and leapfrog model (OGNZL geological model, 2021)				
Ohinemuri tributary north of Gladstone Hill (TB5)	Potential seepage face review – 1,106 mRL	Elevation taken from topography and leapfrog model (OGNZL geological model, 2021)				
Andesite underdrainage	Base of model: Water rate – potential seepage face review	Shallow system is underdrained due to existing below ground workings	Current conditions, GOP excavation and operational TSF			
Pit dewatering	Interface between pit and adjacent shallow units: Water rate – potential seepage face review	Shallow groundwater discharge into the pit will be removed through pit dewatering	GOP excavation			
Rock backfill	Kx 1 x 10 ⁻⁵ m/s Kx/Ky 0.1 VWC – Sandy loam	Considered appropriate for rock backfill after placement, amendment with limestone and compaction.	Operational TSF, TSF closure and long-term TSF			
Liner subgrade	Kx 1 x 10 ⁻⁵ m/s Kx/Ky 1.0 VWC - sand	Sub-20 mm crushed and screened high quality rock from mining operations				
Geosynthetic liner	Kx 1 x 10 ⁻¹⁰ m/s Kx/Ky 1.0 VWC – clayey silt	Expected seepage rate approximately 5x10 ⁻⁹ – 3.5x10 ⁻⁸ m/s depending on hydraulic gradient across the liner				
TSF drainage	Water rate – potential seepage face review	TSF drainage system beneath the geosynthetic liner at the base of the tailings	Operational TSF and TSF closure			
Tailings	Kx 1 x 10 ⁻⁷ m/s Kx/Ky 0.2 VWC – sandy silt (coarse tailings)	Hydraulic conductivity and VWC based on EGL unconsolidated tailings description (email communication 28/02/2019 (EGL 2019b))	Operational TSF			
Operational tailings pond	Water total head at top of tailings – 1,103 mRL	Max. tailings emplacement height				
Tailings	Kx 1 x 10 ⁻⁸ m/s Kx/Ky 0.5 VWC – sandy silt (coarse tailings)	Hydraulic conductivity and VWC based on EGL consolidated tailings description (email communication 28/02/2019 (EGL 2019b))	TSF closure			
Tailings cap infiltration	Water flux – 1 x 10 ⁻⁸ m/s	5-year average cap infiltration rate (AECOM, 2020)	TSF closure and long-term TSF			
Tailings cover (rockfill)	Kx 1 x 10 ⁻⁵ m/s Kx/Ky 0.1 VWC – Sandy loam	Considered appropriate for rock after placement, amendment with limestone and compaction.				
Martha pit lake water pressure within andesite	Water total head – 1,106 mRL	Proposed Martha Pit Lake level (1,104 mRL) after rewatering of deep groundwater system. An additional 2 m of water head is added to allow for influence of groundwater recharge between the Martha and Gladstone workings.				
Kx = horizontal hydraulic conductivity. Ky = vertical hydraulic conductivity.						

VWC = Volumetric water content function (SEEP/W 2012 database)

Parameter / boundary	Adopted condition	Justification	Model scenario				
Rainfall recharge	Gladstone Hill, Winner Hill and south of pit: Water flux (potential seepage face review) – 9 x 10 ⁻¹⁰ m/s	Calibrated to 1.3 % rainfall. Considered appropriate given low permeability materials and gradient of hillside.	All model scenarios				
	East and west of pit: Water flux (potential seepage face review) – 3 x 10 ⁻⁸ m/s	Calibrated to 45% rainfall. Considered appropriate given higher permeability materials and lower slope gradients.	-				
Ohinemuri River (OH3)	Water total head – 1,092.85 mRL	Surveyed elevation close to OH3 sample point (08/08/2017)					
Ohinemuri River (OH6)	Water total head – 1,084.65 mRL	Surveyed elevation close to OH6 sample point (21/02/2019)					
Andesite underdrainage	Base of Model: Water rate – potential seepage face review	Shallow system is underdrained due to existing below ground workings	Current conditions, GOP excavation and operational TSF				
Pit dewatering	Interface between pit and adjacent shallow units: Water rate – potential seepage face review	Shallow groundwater discharge into the pit will be removed through pit dewatering	GOP excavation				
Rock backfill	Kx 1 x 10 ⁻⁵ m/s Kx/Ky 0.1 VWC – Sandy loam	10-5 m/s Kx/Ky 0.1Considered appropriate for rock backfill after placement, amendment with limestone and compaction.					
Liner subgrade	Kx 1 x 10 ⁻⁵ m/s Kx/Ky 1.0 VWC - sand	Sub-20 mm crushed and screened high quality rock from mining operations	-				
Geosynthetic liner	Kx 1 x 10 ⁻¹⁰ m/s Kx/Ky 1.0 VWC – clayey silt	Expected seepage rate approximately 5x10 ⁻⁹ – 3.5x10 ⁻⁸ m/s depending on hydraulic gradient across the liner	-				
TSF drainage	Water rate – potential seepage face review	TSF drainage system beneath the geosynthetic liner at the base of the tailings	Operational TSF and TSF closure				
Tailings	Kx 1 x 10 ⁻⁷ m/s Kx/Ky 0.2 VWC – sandy silt (coarse tailings)	Hydraulic conductivity and VWC based on EGL unconsolidated tailings description (email communication 28/02/2019 (EGL 2019b))	Operational TSF				
Operational tailings pond	Water total head at top of tailings – 1,103 mRL	Max. tailings emplacement height	-				
Tailings	Kx 1 x 10 ⁻⁸ m/s Kx/Ky 0.5 VWC – sandy silt (coarse tailings)	Hydraulic conductivity and VWC based on EGL consolidated tailings description (email communication 28/02/2019 (EGL 2019b))	TSF closure				
Tailings cap infiltration	Water flux – 1 x 10 ⁻⁸ m/s	5-year average cap infiltration rate (AECOM, 2020)	TSF closure and long-term TSF				
Tailings cover (rockfill)	Kx 1 x 10 ⁻⁵ m/s Kx/Ky 0.1 VWC – Sandy loam	Considered appropriate for rock after placement, amendment with limestone and compaction.					
Martha pit lake water pressure water pressure	Water total head – 1,106 mRL	Proposed water level of Martha Pit Lake (1,104 mRL) after rewatering of the deep groundwater system	-				
Kx = horizontal hydraulie VWC = Volumetric wate	Kx = horizontal hydraulic conductivity. Ky = vertical hydraulic conductivity. VWC = Volumetric water content function (SEEP/W 2012 database)						

Table G.5	Gladstone Pit west – east model section parameters and boundary conditions

G.1.1.4 Groundwater model calibration

The two SEEP/W model cross sections that represent the current conditions scenario were calibrated to measured groundwater levels and vertical hydraulic gradients. To achieve model calibration, and in line with the conceptual site understanding, hydraulic conductivity and anisotropy of geological units were iteratively adjusted within reasonable ranges based on field investigation data, as well as recharge rates across the ground surface. Additionally, observed groundwater discharge locations and flow gauging results were taken into consideration. The calibrated anisotropy and hydraulic conductivity values for each geological unit are presented in Table G.6. The measured and modelled groundwater levels after calibration are presented in Table G.7.

Unit	Adopted volumetric water content function ⁽¹⁾	Calibrated anisotropy (Ky/Kx)	Calibrated hydraulic conductivity (m/s) ⁽²⁾	Justification
Ash/Regolith	Clayey silt	0.5	6.0 x 10 ⁻⁶	P68s and P61s hydraulic tests ⁽³⁾ . P68s
		(N, E, W)	(N, E, W)	
		1.0 (S)	1.5 x 10 ⁻⁸ (S)	GLD01 hydraulic test and water level
Rhyolitic Tuff (RT)	Clayey silt	0.5 (N, E, W)	2.7 x 10 ⁻⁷ (N, E, W)	P79i hydraulic test. P79s and P68s ⁽³⁾ water levels
		0.1 (S)	5.5 x 10 ⁻⁹ (S)	GLD01a hydraulic test and water level
Sandy Ignimbrite	Silty sand	0.5	1.0 x 10 ⁻⁵	P79s and P68d ⁽³⁾ hydraulic tests and water levels
Volcaniclastic	Silty sand	0.3	1.0 x 10 ⁻⁶	Shallow groundwater system water levels. Similar properties to dacite.
Hydrothermal Breccia	Clayey silt	0.1	5.0 x 10 ⁻¹⁰	Shallow groundwater system water levels
Dacite	Sandy clayey silt	0.1 (S)	5.0 x 10 ⁻⁸ (S)	GLD03 and GLD03a hydraulic tests and water levels
		0.1 (E)	3 x 10 ⁻⁶ (E)	Favona wells hydraulic testing ⁽⁴⁾
Weathered Andesite	Silty sand	0.1	5 x 10 ⁻⁹	Shallow groundwater system water levels. P61 hydraulic test ⁽³⁾
Andesite	Silty sand	1.0 (E, W)	4.2 x 10 ⁻⁷	Upper end of recorded range away from faults/crush zones $(1 \times 10^{-8} - 1 \times 10^{-5} \text{ m/s})^{(3)}$
		2.0 (N, S)		Anisotropy reflects expected fracture alignment associated with Gladstone vein.

Table G.6 Gladstone Pit calibrated hydrogeological parameters

1. SEEP 2012 materials database

2. N, E, S, W refer to geology on different sides of the pit where material properties differ.

3. URS, 2003. Favona Underground Mine. Assessment of Groundwater Issues.

4. Geomean shallow dacite hydraulic conductivity from hydraulic testing by GHD in 2017 in OGNZL bores P87 & P89 and GLD bores FVN01 and FVN02 (installed by GHD in 2017).

Table G.7 Gladstone Pit model calibration target groundwater levels (current conditions scenario)

Piezometer	Target level (mRL)	Modelled level (mRL)	Calibration residual (m)			
North-south model						
GLD01	1123.63 ⁽¹⁾	1123.68	+0.05			
GLD01a	1123.38 ⁽¹⁾	1123.38	0.0			
GLD01b	Dry (1096.0) ⁽¹⁾	1095.63	NA			
GLD03	1109.15 ⁽¹⁾	1108.98	-0.17			
GLD03a	1105.43 ⁽¹⁾	1105.33	-0.10			
West-east model						
P79s	1093.1 – 1100.6 ⁽²⁾	1094.42	Calibrated to lower end of range for summer level			
P68s	1086.55 ⁽³⁾	1085.87	-0.7 (summer level likely to be lower than target level).			

1. Water levels recorded 20/3/2018

2. Range of values recorded 2018 - 2020

3. Recorded level date unknown. Assumed November 2001 following monitoring well installation (URS, 2003).

G.1.2 Gladstone vein dewatering assessment

G.1.2.1 Groundwater modelling methodology

Groundwater modelling was undertaken using GeoStudio 2021 SEEP/W finite element numerical modelling software. One two-dimensional (2D) section was developed to model a cross section perpendicular to the strike of the Gladstone vein system where it passes beneath the Ohinemuri River southwest of the proposed GOP (Figure G.5). The assessment considers a situation where the deep groundwater southwest of the proposed GOP is not currently dewatered. The model was used to undertake an assessment of groundwater drawdown of the water table, and within the andesite of the deep groundwater system, as well as the potential for loss of surface water flow from the Ohinemuri River (OH6). The model is 950 m in length, orientated northwest-southeast perpendicular to the Gladstone vein system along the stretch of the Ohinemuri River southwest of the proposed GOP

The model was set up to represent current conditions and used to assess the influence on groundwater and surface water as per the following scenarios:

- Current conditions: To represent upwards vertical hydraulic gradients between the deep and shallow groundwater systems at the location of Ohinemuri River monitoring location OH6 and nearby GLD04 well series.
- Gladstone vein dewatering: To predict groundwater drawdown within the shallow and deep groundwater systems and potential changes in Ohinemuri River flow in response to dewatering the Gladstone vein system to a maximum depth of 1,005 mRL, should the groundwater levels assuming a strong hydraulic connection along the vein system between the GOP and the Ohinemuri River southwest of the pit (OH6).

Ohinemuri River scaling

For the purposes of estimating the change in Ohinemuri River flow during the Gladstone vein dewatering scenario it was assumed that the river was located at the surface across the full length of the 950 m model section. As the results are extracted from the model on a per unit metre basis, the results were multiplied by 15 m to represent the width of the Ohinemuri River.

G.1.2.2 Groundwater inflow to GOP methodology

Existing data recorded during mine dewatering of the Favona system was used to undertake an empirical assessment to predict groundwater inflow rates from the deep groundwater system during excavation of the GOP. This assessment considered a scenario where the deep groundwater system southwest of the proposed GOP is not currently dewatered as a result of mine dewatering. As this assessment is supported by existing data the results are presented directly within the main body of the report and not with this technical appendix.

G.1.2.3 Groundwater model set up

Development of the steady-state cross-sectional numerical model (SEEP/W) representing existing shallow and deep groundwater systems and the Gladstone vein system. The model is orientated perpendicular to the strike of the Gladstone vein system where it passes beneath the Ohinemuri River southwest of the proposed GOP. The model was used to predict changes in groundwater levels and surface water depletion of the Ohinemuri River, considering a scenario where the deep groundwater system is not currently dewatered as a result of current mine dewatering.

The geology of the SEEP/W model was sourced from the OGNZL leapfrog model (2021), with groundwater conditions reflective of measured within the GLD04 well series, and a surveyed level of the Ohinemuri River. The models were then modified to represent dewatering of the vein system to an elevation of 1,005 mRL during the GOP excavation.

An annotated SEEP/W section is presented in Figure G.5. Model set up information is provided in Table G.8 and Table G.9.

Boundary condition	Adopted condition	Justification	Model scenario
Ohinemuri River	Water total head – 1,084.65 mRL	Surveyed elevation close to OH6 sample point (21/02/2019)	Current conditions and vein dewatering scenarios
Andesite groundwater level	Water total head – 1085.5 mRL	Groundwater level recorded in GLD04d (October 2020)	
Gladstone dewatering	Water pressure head – 0 m	Set at 1,005 mRL within vein - assumes strong hydraulic connection along the vein system between GOP and Ohinemuri River to the southwest.	Vein dewatering scenario

 Table G.8
 Gladstone vein dewatering – model section perpendicular to vein boundary conditions

adopted hydrogeological parameter

Unit	Hydraulic conductivity (m/s)	Anisotropy	Justification		
Ash/Regolith	6.0 x 10 ⁻⁶	0.5	Calibrated in GOP and TSF model		
Rhyolitic Tuff (RT)	2.7 x 10 ⁻⁷	0.5	assessment (G.1.1.4)		
Sandy ignimbrite	1.0 x 10 ⁻⁵	0.5			
Weathered andesite	5 x 10 ⁻⁹	0.1			
Andesite	4.2 x 10 ⁻⁷	1.0	Recorded range away from faults/crush zones 1 x $10^{-8} - 1 x 10^{-5} m/s^{(1)}$		
Fractured Andesite	4.2 x 10 ⁻⁷	2.0	Anisotropy reflects expected fracture alignment associated with Gladstone vein.		
Gladstone Vein	1 x 10 ⁻⁵	1.0	Fault / crush zone ⁽¹⁾		
1. URS. 2003. Favona Underground Mine. Assessment of Groundwater Issues.					

© 2021. Whilst every care has been taken to prepare this map, GHD (and LINZ, ESR.) Oceana Gold Limited, EGL) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: Aerial imagery - LINZ; General topo - LINZ; Bore locations - OGL. Created by ipprice

Gladstone vein dewatering model cross-section location Revision Date

Job Number | 12552081 0 13 Dec 2021

Figure G.5

Figure G.6 Gladstone vein dewatering – SEEP/W model cross section perpendicular to vein (NE - SW in Figure G.5)

G.1.3 Surface water catchment assessment methodology

Surface water catchment calculations were undertaken to understand the relative potential loss of contributions (including interflow) to flow in the Ohinemuri River and local tributaries.

Figure G.7 presents the existing surface water catchment areas within which the proposed Gladstone Pit is located. As the summit of Gladstone Hill forms a high point in the central eastern area of the proposed pit, stormwater runoff and interflow are separated between the four water bodies defined for the purposes of this assessment. This allows assessment for two separate areas of the Ohinemuri River (OH3 and OH6), as well as the Gladstone wetland and intermittent Ohinemuri tributaries TB4 and TB5.

Changes in catchment area due to excavation of the proposed GOP and contouring of the tailings capping layer have been used to predict the reduction in stormwater runoff and interflow to each surface water catchment.

The surface water catchments for four key areas (OH3, OH6, TB5 and TB4) were estimated based on topographic contours, and design of the tailings capping layer to direct all runoff and interflow towards the Gladstone wetland and TB4 catchment south of the pit.

G.1.4 Water quality assessment methodology

Water quality assessment is not required for the GOP excavation or operational and TSF closure scenarios, as there are no predicted discharges to the environment.

After the TSF drainage system is no longer operation (long-term TSF scenario), discharge of groundwater which has interacted with the backfilled rock and tailings porewater is predicted to occur to the shallow groundwater adjacent to the pit.

An assessment was undertaken to predict receiving water quality within the Ohinemuri River (OH6), which utilised the following information:

- AECOM results (2021a) from geochemical equilibrium modelling to generate a groundwater quality equilibrated for mineral saturation for the TSF discharge.
- Existing groundwater quality adopted from the concentrations measured in a groundwater sample from piezometer GLD04s.
- Existing Ohinemuri River water quality adopted from the median concentrations measured in samples collected from OH6 (2017 – 2020).
- Predicted groundwater discharge to the Ohinemuri River (derived from groundwater modelling results).
- Ohinemuri River: Flow rates from the FRENDRUPS flow gauge station. The median flow rate (63,200 m³/day) from available data recorded between 1 October 2017 and 30 April 2020 was applied.

Figure G.7 Surface water catchments that intersect with the proposed Gladstone Pit

G.2 Assessment results

G.2.1 GOP and TSF assessment results

Current conditions

The predicted groundwater discharges to each of the surface water bodies within the calibrated current conditions cross sectional groundwater models are presented in Table G.10.

 Table G.10
 Predicted groundwater discharge to surface water bodies during current conditions (SEEP/W)

Surface water body	Estimated groundwater discharge to surface water body (m³/day)
Gladstone Wetland / Ohinemuri tributary (TB4)	1.1
Ohinemuri tributary (TB5)	0
Ohinemuri River east of Gladstone (OH3)	49
Ohinemuri River west of Gladstone (OH6)	215

GOP excavation

The groundwater discharges that are predicted to each of the surface water bodies during GOP excavation are presented in Table G.11. The results have been estimated using two different methods, groundwater modelling (G.1.1.1) and groundwater catchment (G.1.1.2) assessments.

Surface water body	Estimated groundwater discharge to surface water body (m³/day) (SEEP/W)	Percentage change in groundwater discharge from current conditions (SEEP/W)	Percentage change in groundwater catchment
Gladstone Wetland / Ohinemuri tributary (TB4)	0.7	-33%	-22%
Ohinemuri tributary (TB5)	0	0%	0%
Ohinemuri River east of Gladstone (OH3)	49	<-1%	-12%
Ohinemuri River west of Gladstone (OH6)	157	-27%	-19%

 Table G.11
 Predicted groundwater discharge to surface water bodies during GOP excavation

The predicted groundwater discharge into the pit from the shallow groundwater system during GOP excavation is presented in Table G.12.

The predicted groundwater drawdown from current conditions and groundwater zone of influence during GOP excavation are presented in Table G.13. Predicted shallow groundwater drawdown during GOP excavation, and the predicted shallow groundwater table during all assessment scenarios, are presented in Figure G.8 and Figure G.9.

Table G.12 Estimated inflows to GOP from shallow groundwater system during GOP excavation (SEEP/W)

Pit section	Pit inflow		
	Per unit metre (m³/s)	Total pit section (m3/day)	
North	Negligible		
East	7.2 x 10 ⁻⁷	8.8	
South	Negligible		
West	Negligible		

Table G.13 Predicted shallow groundwater table drawdown at the edge of the pit and drawdown zone of influence during GOP excavation (SEEP/W)

Orientation from Pit	Groundwater drawdown at edge of pit (m)	Zone of influence (m)*
North	2.9	56
East	6.1	155
South	7.9	288
West	5.9	212
* Where drawdown > 0.5 m		

Figure G.8 Predicted shallow groundwater drawdown from current conditions during GOP excavation scenario (SEEP/W)

Figure G.9 Current and predicted groundwater water table during current conditions, GOP excavation and TSF scenarios (SEEP/W)

Operational TSF, TSF Closure and Long-term TSF

Groundwater discharges to each of the surface water bodies from the Gladstone Pit under current conditions and from the TSF during each TSF scenario are presented in Table G.14. The results have been estimated using the groundwater modelling methodology (G.1.1.1).

The predicted changes in groundwater levels and the predicted groundwater zone of influence after development of the TSF are presented in Table G.15. The predicted shallow groundwater table during all assessment scenarios, are presented in Figure G.9.

 Table G.14
 Predicted groundwater discharge from the pit area to surface water receiving environments under current conditions and after development of the TSF (SEEP/W)

Pit section	Estimated groundwater discharge to surface water from proposed pit area (current conditions) and from the TSF (TSF scenarios) (m³/day)					
	Current scenario	Operational TSF TSF closure Long-term TSF				
North (TB5)	0	0	0	0		
East (OH3)	0	0	0	0		
South (TB4)	0	0	0	0		
West (OH6)	3.8	0	0	64.8 total (4.5 - Tailings porewater)		
Total	3.8	0	0	64.8		

 Table G.15
 Predicted change in shallow groundwater level at the edge of the pit compared to current conditions, and zone of influence, after development of the TSF (SEEP/W).

Orientation	Operational TSF		TSF closure		Long-term TSF	
from Pit	Groundwater drawdown at edge of pit (m)	Zone of influence (m)*	Groundwater drawdown at edge of pit (m)	Zone of influence (m)*	Groundwater drawdown at edge of pit (m)	Zone of influence (m)*
North	2.9	56	2.9	36	2.4	28
East	6.1	155	5.9	120	5.3	99
South	7.9	288	7.9	88	7.2	69
West	5.9	212	5.1	124	-2.1	-
* Where drawdown > 0.5 m						

The predicted groundwater discharges to each of the surface water bodies after development to a tailings storage facility are presented in Table G.16, Table G.17 and Table G.18.

Table G.16 Predicted groundwater discharge to surface water bodies during operational TSF scenario

Surface water body	Estimated groundwater discharge to surface water body (m³/day) (SEEP/W)	Percentage change in groundwater discharge from current conditions (SEEP/W)	Percentage change in groundwater catchment
Gladstone Wetland / Ohinemuri tributary (TB4)	0.7	-33%	-22%
Ohinemuri tributary (TB5)	0	0%	0%
Ohinemuri River east of Gladstone (OH3)	49	-<1%	-12%
Ohinemuri River west of Gladstone (OH6)	157	-27%	-19%

Table G.17 Predicted groundwater discharge to surface water bodies during TSF closure scenario

Surface water body	Estimated groundwater discharge to surface water body (m³/day) (SEEP/W)	Percentage change in groundwater discharge from current conditions (SEEP/W)	Percentage change in groundwater catchment
Gladstone Wetland / Ohinemuri tributary (TB4)	2.7	+156%	+84%
Ohinemuri tributary (TB5)	0	0%	0%
Ohinemuri River east of Gladstone (OH3)	57	+15%	+10%
Ohinemuri River west of Gladstone (OH6)	211	-2%	-7%

 Table G.18
 Predicted groundwater discharge to surface water bodies during long-term TSF scenario

Surface water body	Estimated groundwater discharge to surface water body (m³/day) (SEEP/W)	Percentage change in groundwater discharge from current conditions (SEEP/W)		
Gladstone Wetland / Ohinemuri tributary (TB4)	3.2	+197		
Ohinemuri tributary (TB5)	5	NA*		
Ohinemuri River east of Gladstone (OH3)	57	+15%		
Ohinemuri River west of Gladstone (OH6)	314	+46%		
* Calculation not undertaken as no groundwater baseflow predicted during current conditions				

The predicted flux of tailings porewater to the deep groundwater system, and discharge through the drainage system installed beneath the geosynthetic liner at the base of the tailings during the operational TSF and TSF closure scenarios is presented in Table G.19.

 Table G.19
 Predicted flux to the deep groundwater system and TSF drainage system during operational TSF and TSF closure scenarios (SEEP/W)

Receiving environment	Flux (m³/day)			
	Operational TSF	TSF Closure		
Deep groundwater system	187 (tailings porewater)	0		
TSF drainage system	0	58 (tailings porewater) 1,194 (deep groundwater)		
Total	187	1,252		

Sensitivity Analysis

Sensitivity analysis has been undertaken to inform an uncertainty assessment. This provides a range of results which may be realised following development of the GOP as a TSF, and the sensitivity of the assessment results to variations in parameter values.

The sensitivity analysis has been undertaken for the two Geostudio 2021 SEEP/W cross section models radial from Gladstone Hill for the TSF closure scenario. The following parameters were assessed:

- Hydraulic conductivity of the geosynthetic liner (Table G.20)
- Tailings cap infiltration rate (Table G.21)

 Table G.20
 Sensitivity analysis of TSF Closure model scenario – hydraulic conductivity of the geosynthetic liner (SEEP/W)

Flux to TSF drainage	Irainage Hydraulic conductivity Base mode reduced – 5x10 ⁻¹¹ m/s		Hydraulic conductivity increased – 5x10 ⁻¹⁰ m/s
Tailings porewater	54	58	59
Groundwater	1193	1194	1192
Total drain discharge	1247	1252	1250

Tahlo G 21	Sensitivity analysis of TSE Closure model scenario - TSE capping layer infiltration rate (SEEP/W/	۱
Table G.21	Sensitivity analysis of 13F Closure model scenario – 13F capping layer minitation rate (SEEF/W)	1

Flux to TSF drainage Infiltration rate reduced – 9x10 ⁻⁹ m/s		Base model – 1x10 ⁻⁸ m/s	Infiltration rate increased – 2x10 ⁻⁸ m/s	
Tailings porewater	56	58	60	
Groundwater	1183	1194	1220	
Total drain discharge	1239	1252	1280	

The results of the sensitivity analysis indicate that the flux of tailings porewater and groundwater to the TSF drainage system beneath the geosynthetic liner has low sensitivity to the hydraulic conductivity of the liner, and to the infiltration rate of the TSF capping layer. It is also noted that altering these parameters did not impact the groundwater flow regime outside of the TSF, with no tailings or rock backfill impacted porewater predicted to discharge to the shallow groundwater system or the surface water receiving environment.

G.2.2 Gladstone vein dewatering assessment results

The predicted groundwater table during current conditions and in the Gladstone vein dewatering scenario is presented in Figure G.10. The predicted unsaturated zone within the andesite (where pore-water pressure is less than zero Kpa) is presented in Figure G.11, and Table G.22.

Figure G.10 Current and predicted groundwater table during current conditions and Gladstone vein dewatering (SEEP/W)

Figure G.11 Predicted unsaturated zone (pore water pressure less than zero kPa) within deep andesite in Gladstone vein dewatering scenario (SEEP/W)

The predicted extent of the unsaturated zone within the andesite from the centre of the vein system is presented in Table G.22. The predicted change in Ohinemuri River flow in the Gladstone vein dewatering scenario is presented in Table G.23. The predicted rate of groundwater inflow per 1 m section of the vein is $1.25 \times 10^{-4} \text{ m}^3/\text{sec}$ (10.8 m³/day).

 Table G.22
 Predicted extent of unsaturated andesite from the centre of the Gladstone vein system (modelled at distance 471 m)

Orientation from Gladstone Vein system	Predicted extent of unsaturated andesite within deep groundwater system (m)*		
Northwest	83 (with additional unsaturated area between 183 – 202)		
Southeast	228		
* Where pore water pressure is less than zero			

Table G.23 Predicted change in Ohinemuri River flow compared to current conditions in Gladstone vein dewatering scenario

Location	Predicted change in Ohinemuri River flow (m³/day)	
Ohinemuri River	-1.5	

G.2.3 Surface water catchment assessment results

The current and predicted surface water catchment areas during all assessment scenarios for TB5, OH3 and OH6 are presented in Table G.24. The current and predicted surface water catchment areas during each assessment phase for TB4 are presented in Table G.25.

Table G.24Results of GOP excavation and development as a TSF impact on surface water catchment areas for TB5, OH6 and
OH3

Surface water catchment	Surface water catchment ar	Percentage reduction	
	Current conditions	ent conditions All GOP excavation and TSF scenarios	
Ohinemuri Tributary (TB5)	48.8	41.0	16%
Ohinemuri River west of Gladstone (OH6)	5.9	4.7	20%
Ohinemuri River east of Gladstone (OH3)	24.4	19.5	20%

 Table G.25
 Results of GOP excavation and development as a TSF impact on surface water catchment areas for TB4

Surface water catchment	TB4 Surface water catchment area (ha)	Percentage change from current conditions
Current scenario	18.6	-
GOP Excavation / Operational TSF	13.8	-26%
TSF Closure / Long-term TSF	32.5	+74%

G.2.4 Water quality assessment results

All groundwater that discharges into the GOP during excavation, and any surface water runoff within the pit, will be treated at the water treatment plant prior to discharge to the Ohinemuri River. There are therefore no notable water quality effects to the receiving environment predicted during GOP excavation.

The TSF drainage system is predicted to provide a high degree of hydraulic containment of the tailings porewater during the operational TSF and TSF closure scenarios, with seepage through the backfilled rock and tailings not predicted to migrate to the shallow groundwater system or the surface water receiving environment. While discharge of tailings impacted porewater to the deep groundwater system is predicted to occur prior to rewatering of the deep system, this discharge is predicted to migrate towards other mine dewatering systems that control deep groundwater flow directions. There are therefore no notable water quality effects to the receiving environment predicted during the operational TSF and TSF closure scenarios.

After an improvement in water quality is observed within the discharge from the TSF drainage system, operation of the drainage will be discontinued (long-term TSF scenario). The water quality assessment has therefore assessed the potential impact of tailings porewater discharge on shallow groundwater and the surface water receiving environment.

As presented in Table G.14, approximately 4.5 m3/day of tailings porewater is predicted to discharge west to the Ohinemuri (OH6) catchment in the long-term TSF scenario. Table G.26 presents the predicted water quality of the total groundwater discharge (64.8 m³/day) to this groundwater catchment from the TSF, and subsequent mixing within the Ohinemuri River.

Parameter	Existing shallow groundwater quality (GLD04s)	Predicted values after equilibration of TSF discharge with shallow groundwater	Existing Ohinemuri River quality (OH6 median)	Predicted values after mixing with Ohinemuri River	Receiving water quality criteria
рН	6.8	7.7	7.1	-	6.5 – 9.0
AI	0.088	0.07	0.016	0.016	
As	0.001	0.0012	0.0010	0.0010	0.19
Ва	0.14	0.109	0.038	0.038	
Total Alkalinity	65	42	15.4	15.6	
Са	10.5	79	43.5	43.8	
Cd	<0.00005	0.0001	<0.00005	<0.00005	0.0003
CI	9	11	16.4	16.4	
Со	0.017	0.04	0.0009	0.0011	
Cr	<0.0005	<0.0005	<0.00050	<0.00050	0.01
Cu	0.0014	0.0008	0.0005	0.00050	0.003
Fe	0.03	2.2	0.09	0.098	1
Hg	<0.00008*	0.00011	<0.00008*	<0.00008*	0.000012
К	3.5	6	3.6	3.6	
Mg	2.8	12	3.1	3.1	
Mn	0.43	1.5	0.019	0.024	2
Na	24	27	17.1	17.2	
Ni	0.0089	0.007	0.0005	0.00053	0.04
Pb	<0.0001	<0.0001	<0.0001	<0.0001	0.0004

Table G.26	Predicted receiving water quality in the long-term TSF scenario (values in mg/L)
------------	--

Parameter	Existing shallow groundwater quality (GLD04s)	Predicted values after equilibration of TSF discharge with shallow groundwater	Existing Ohinemuri River quality (OH6 median)	Predicted values after mixing with Ohinemuri River	Receiving water quality criteria
SO4	17	263	148	149.0	
Sb	0.0002	0.0007	0.00055	0.00055	0.03
Se	<0.001	<0.001	<0.001	<0.001	0.02
Zn	0.13	0.12	0.0024	0.0028	0.027
<i>Notes:</i> Receiving water quali	ty criteria values for hard	ness 20 g/m³ CaCO₃			

Values in $\ensuremath{\textbf{bold}}$ indicate an exceedance of the receiving water quality criteria

* The mercury (Hg) criterion is lower than available laboratory detection limits

Appendix H Northern Rock Stack Technical Assessment

This appendix presents the methodology and results for technical assessment of the proposed Northern Rock Stack (NRS). All elevations are presented in metres reduced level (mRL) with reference to Waihi Mine datum, which is 1,000 metres below sea level.

H.1 Assessment methodology

H.1.1 Groundwater flow assessment

Groundwater flow from upgradient of the NRS footprint under existing conditions has been estimated using Darcy's Law analytical solution¹:

$$Q = AKi$$

Where:

Q = Volumetric groundwater flow rate (m^3/day)

A = Cross sectional area of groundwater flow (m^2)

K = Saturated hydraulic conductivity (m/day)

i = Groundwater hydraulic gradient (dimensionless)

The following inputs were adopted for assessment using Darcy's Law:

- 25 m average shallow aquifer thickness based on geology encountered during drilling.
- 557 m approximate length of NRS perpendicular to groundwater flow.
- 6 x 10⁻⁶ m/s shallow aquifer hydraulic conductivity, based on hydraulic testing undertaken in monitoring wells.
- 0.1 hydraulic gradient at base of Rhyolite Dome east of proposed NRS.
- Total groundwater flow to the Ohinemuri River has been calculated by including the additional recharge expected across the alluvial flats; multiplying the recharge rate 2x10⁻⁸ m/s (30% of rainfall) by the approximate footprint area of the NRS (260,000 m²).

H.1.2 Construction dewatering assessment

Groundwater is anticipated to be intercepted by the uphill diversion drains at the south-eastern boundary of the NRS, approximately between chainage 400 – 630. Construction of the drains will involve excavation of rhyolite rock in this area, with dewatering likely to be required where the design invert levels of the uphill diversion drain are below the existing groundwater table. Initial groundwater inflow rates and groundwater drawdown distance of influence have been estimated using the Sichardt analytical solutions²:

$$L = C (H - h)\sqrt{k}$$

Where:

```
L = Distance of influence (m)
```

C = Empirical calibration factor (1750 for planar flow cases)

H-h = Target drawdown in excavation (m)

k = Saturated hydraulic conductivity (m/sec)

$$Q = \frac{Kx \left(H^2 - h^2\right)}{L}$$

Where:

Q = Volumetric groundwater inflow to excavation (m³/sec)

x = Length of slot (trench) (m)

- The following inputs were adopted for assessment using the Sichardt solution:
- 2 m of groundwater drawdown at the location of the excavation/drain invert.
- 230 m section (length of trench) along which dewatering is anticipated.
- 1 x 10⁻⁷ m/s 1 x 10⁻⁵ m/s range of rhyolite hydraulic conductivity, based on hydraulic testing undertaken in monitoring wells.

¹ Darcy, H. 1856. Les fontaines publiques de la vile de Dijon. Paris:Dalmont.

² Preene, M., Robers, T.O.L., Powrie, W. 2016. Groundwater control: design and practice, second edition. CIRIA, C750. London, 2016.
H.1.3 NRS assessment

Flow paths of infiltrating rock stack recharge, rates of leachate capture and seepage through the Zone A liner, rates of sub-soil drain capture and migration of groundwater and leachate seepage beneath the NRS were predicted using groundwater modelling for NRS operation and closure.

Groundwater modelling was undertaken using GeoStudio 2021 SEEP/W finite element numerical modelling software. A two-dimensional (2D) section was developed to model a cross section through an approximately eastwest orientation through the proposed NRS. The model orientation was selected to represent the average distance between leachate collection drains and sub-soil drains allowing estimation of the average pressure head generated by a build-up of leachate on the liner and resulting leachate seepage and capture. The model considered a 467 m cross section of the proposed rock stack across an area where existing ground level slopes from the base of the elevated rhyolite dome in the east, with topography reducing to the west. An annotated plan view diagram of the location and orientation of the cross section is presented in Figure H.1.

The NRS assessment was undertaken for the scenarios presented in Table H.1.

Scenario	Description
NRS Operation (steady state)	Rock stack to maximum elevation 1,173 mRL placed on Zone A liner. Rainfall recharge applied to exposed rock stack. Rainfall recharge rate for Zone F representative of overlying Zone G & H capping layer. Leachate collection drains located on top of Zone A liner surrounded by Zone F material, and sub-soil drains located beneath the liner.
	Groundwater flow east to west, with groundwater levels approximating existing conditions.
NRS Closure (steady state)	Rock stack and Zone F to maximum elevation of 1,146 mRL. Rainfall recharge rate for Zone F representative of overlying Zone G & H capping layer.
	Leachate collection drains located on top of Zone A liner surrounded by Zone F material, and sub-soil drains located beneath the liner.
	Groundwater flow east to west, with groundwater levels approximating existing conditions.

 Table H.1
 NRS assessment – model scenario summary

Zone A: A 0.75 m thick low permeability soil liner at the base of the rock stack.

Zone F: A 1.5 m minimum thickness layer separating the rock from the capping layer. This material forms a drainage layer and is a permeable slightly silty, sandy gravel PAF material.

The 2D groundwater model was used to predict:

- Leachate flux to leachate collection drains.
- Seepage rate of leachate through the Zone A liner.
- Leachate and groundwater flow to sub-soil drains.
- Leachate and groundwater migration within the shallow aquifer west of the NRS.

As the results are extracted from the groundwater model on a per unit metre basis, they were scaled up to represent the whole NRS. Results from the model section were therefore multiplied by 557 m (approximate width of NRS perpendicular to groundwater flow).

The SEEP/W model was structured using EGL design drawings (EGL, 2025a) to represent conditions after construction of the NRS. Site data, including geology, permeability and water levels from monitoring wells was utilised to model the shallow groundwater system. Bore logs, groundwater levels and permeability test results from monitoring bores are presented in Appendix B, Appendix C and Appendix D, respectively. Annotated SEEP/W sections are presented in Figure H.2. Model set up information is provided in Table H.2. The adopted hydrogeological properties are presented in Table H.3.

Figure H.1 Annotated plan view of east-west NRS model section (modified from OGNZL Project description, 2021)

Figure H.2 Annotated NRS east-west SEEP/W model cross section

Table H.2 NRS model set-up

Boundary type	Adopted boundary condition	Justification	Model scenario	
Rainfall recharge	Two recharge rates applied to rock stack: Water flux $- 2 \times 10^{-8}$ & 3 x 10^{-8} m/s	30 & 50 % of average rainfall at the site (2,110 mm/year ³)	NRS operation	
Infiltration through capping layer	Applied to surface of Zone F: Water flux – 1 x 10^{-8} m/s	5-year average cap infiltration rate ⁴ for Zones G & H	NRS operation & closure	
Upgradient groundwater boundary (east)	Constant Head – 1,115 mRL	Based on piezometric groundwater contours		
Downgradient groundwater boundary (west)	Constant Head – 1,100 mRL	(Appendix C).		
Leachate collection drains	Water Rate – potential seepage face review	Removal of leachate through collection drains		
Sub-soil collection drains	Water Rate – potential seepage face review	Removal of groundwater through sub-soil drains		

 Table H.3
 NRS model adopted hydrogeological material parameters

Geological unit	Hydraulic conductivity (m/s)	Anisotropy (Ky/Kx)	Volumetric water content and hydraulic conductivity function ⁽¹⁾	Hydraulic conductivity justification
Shallow aquifer	6 x 10 ⁻⁶	0.5	Silty sand	Geomean of hydraulic test results in shallow aquifer piezometers
Zone A liner	1 x 10 ⁻⁸	1.0	Clayey silt	As per design specification
Zone F drainage layer	1 x 10 ⁻⁴	1.0	Uniform sand	Considered appropriate for Zone F materials
Rock stack	1 x 10 ⁻⁵	0.5	Silty sand	Considered appropriate for rock stack materials
1 SEEP 2012 materials	database	·	·	•

H.1.4 Water quality assessment

Seepage of leachate through the Zone A liner to the underlying groundwater is predicted to occur. A mixing assessment has been undertaken to predict the impact this may have on the water quality of groundwater, as well as the receiving water quality of the Ohinemuri River. This assessment utilised the following information:

- AECOM results (2021b) of geochemical equilibrium modelling to generate a groundwater quality equilibrated for NRS leachate through the Zone A liner and mineral saturation in the NRS closure scenario.
- Existing Ohinemuri River water quality adopted from the median sample concentrations at OH3 (2017 2020; for parameters not analysed during this period, older sample data was used to inform median concentrations).
- Existing groundwater quality adopted from the median sample concentrations collected from DH05a (2017 2020).
- Predicted leachate discharge to groundwater and predicted migration of leachate to the Ohinemuri River (derived from groundwater modelling results).
- Ohinemuri River: Flow rates from the FRENDRUPS flow gauge station. The median flow rate (63,212 m³/day) from available data recorded between 1 October 2017 and 30 April 2020 was applied.

³ NIWA, 2019. Climate data obtained from Waihi, Station Agent No. 1550.

⁴ AECOM, 2020. Infiltration rates provided for TSF1A embankment slope. Email communication provided by AECOM, 27 July 2020.

H.2 NRS assessment results

H.2.1 Groundwater flow assessment results

Shallow groundwater flow upgradient of the NRS site is predicted to be approximately 722 m³/day. Additional recharge across the alluvial flats under existing conditions is estimated at approximately 449 m³/day, with a predicted total groundwater discharge to the Ohinemuri River of approximately 1,171 m³/day.

H.2.2 Construction dewatering assessment results

Construction of uphill stormwater diversion drains will involve excavation of rhyolite rock at the south-eastern extent of the NRS. Interception of groundwater is anticipated, with estimated initial groundwater inflow rates and distance of influence of groundwater drawdown presented in Table H.4. The inflow rates determined assume that the full length of excavation required will be undertaken at the same time, however it is considered likely that the excavation will be progressively advanced. Groundwater inflow rates are also predicted to reduce over time as groundwater levels and gradients towards the uphill diversion drains reduce as the system equilibrates to the change in conditions.

Table H.4	NRS groundwater inflow rates and distance of influence of dewatering for uphill diversion drain construction
-----------	--

Uphill Diversion Drain Groundwater Assessment	Result range
Initial groundwater inflow rate (m ³ /day)	7 - 70
Distance of influence of dewatering (m)	1 – 11

H.2.3 NRS assessment results

The predicted rock stack leachate captured by leachate collection drains seepage through the Zone A liner are presented in Table H.5. The predicted leachate and groundwater captured in the sub-soil drains is presented in Table H.6. The predicted groundwater and leachate flow within the groundwater system to the Ohinemuri River is presented in Table H.7.

Table H.5 Predicted leachate capture and leachate seepage through zone A liner

Infiltration conditions	Leachate captured by leachate collection drains (m3/day)	Leachate seepage through Zone A liner (m³/day)
NRS operation		
30% rainfall	29	413
50% rainfall	109	605
NRS closure		
5-year average cap infiltration (369 mm/year)	2	262

Table H.6 Pr

Predicted groundwater and leachate captured in sub-soil drains

Infiltration conditions	Groundwater captured by sub-soil drains (m³/day	Leachate captured by sub- soil drains (m³/day)	Total sub-soil drains capture (m³/day)
NRS operation			
30% rainfall	744	342	1087
50% rainfall	736	508	1244
NRS closure			
5-year average cap infiltration (369 mm/year) ²	751	212	963

Table H.7 Predicted leachate flow to Ohinemuri River within groundwater

Infiltration conditions	Leachate flow to Ohinemuri River (m ³ /day)
Operational scenario	
30% rainfall	71
50% rainfall	97
Closure scenario	
5-year average cap infiltration (369 mm/year) ²	49

H.2.4 Water quality assessment results

As presented in Table H.5, approximately 262 m³/day of rock stack leachate is predicted to seep through the Zone A liner in the NRS closure scenario. A large proportion of this leachate is then predicted to be captured by the subsoil drains (Table H.6), with the remaining 49 m³/day then anticipated to flow west towards the Ohinemuri River within the shallow groundwater system (Table H.7).

Table H.8 presents the predicted water quality beneath the NRS following mixing and equilibration of the groundwater with leachate seepage through the Zone A liner in the NRS closure scenario, and the predicted water quality following mixing with the Ohinemuri River.

Parameter	Existing shallow groundwater quality (DH05a median)	Predicted values after equilibration of NRS leachate with shallow groundwater	Existing Ohinemuri River quality (OH3 median)	Predicted values after mixing with Ohinemuri River	Receiving water quality criteria
рН	6.5	7.4	7.2	-	
AI	0.003	0.011	0.013	0.013	
As	0.0096	<0.001	<0.0010	<0.0010	0.19
Ва	0.67	0.02	0.027	0.027	
Са	2.7	116.0	3.1	3.6	
Cd	<0.00005	0.000010	<0.00005	<0.000050	0.0003
Со	0.041	0.020	<0.00020	0.00028	
Cr	<0.0005	<0.0005	<0.0005	<0.00050	0.01
Cu	<0.0005	0.000060	<0.0005	<0.00050	0.003
Fe	6.8	21.0	0.10	0.19	1
Hg	<0.00008*	<0.00008*	<0.00008*	<0.00008*	0.000012
К	2.3	3.0	2.0	2.0	
Mg	1.2	28.0	1.9	2.0	
Mn	1.5	4.0	0.010	0.027	2
Na	9.9	11.0	9.2	9.2	
Ni	0.0051	<0.003	<0.0005	<0.00051	0.04
Pb	0.00016	<0.0001	<0.0001	<0.0001	0.0004
SO4	5.0	338.0	5.0	6.4	

 Table H.8
 Predicted receiving water quality in the NRS closure scenario (values in mg/L)

Parameter	Existing shallow groundwater quality (DH05a median)	Predicted values after equilibration of NRS leachate with shallow groundwater	Existing Ohinemuri River quality (OH3 median)	Predicted values after mixing with Ohinemuri River	Receiving water quality criteria
Sb	<0.0002	0.00030	<0.0002	<0.00020	0.03
Se	<0.001	<0.001	<0.0002	<0.00020	0.02
Zn	0.016	<0.003	0.0019	0.0019	0.027
Notes:	·	·			
Receiving water quali	ty criteria values for hardı	ness 20 g/m³ CaCO₃			
Values in bold indicate an exceedance of the receiving water guality criteria					

* The mercury (Hg) criterion is lower than available laboratory detection limits

H.3 NRS assessment sensitivity analysis

Sensitivity analysis has been undertaken for a number of parameters to inform an uncertainty assessment of the groundwater modelling used for the NRS assessment. This provides a range of results which may be realised for the NRS, and the sensitivity of the assessment results to variations in parameter values. The sensitivity analysis has been undertaken using the Geostudio 2021 SEEP/W cross section model for the NRS Closure scenario as a base model. The parameters assessed are presented in Table H.9.

Sensitivity parameter	Initial base model parameter value	Modified parameter value
Rock stack hydraulic	Silty sand ¹	Silty sand with AEV ² reduced (see Figure H.3)
conductivity function (AEV)		Silty sand with AEV ² increased (see Figure H.3)
Aquifer hydraulic conductivity	Silty sand ¹	Sand ¹ (see Figure H.4)
function		Clayey Silt ¹ (see Figure H.4)
Zone A liner hydraulic	Clayey silt	Sandy clayey silt ¹ (see Figure H.5)
conductivity function		Clayey silt (fine tailings) ¹ (see Figure H.5)
Rock stack hydraulic	1 x 10 ⁻⁶ m/s	1 x 10 ⁻⁵ m/s
conductivity		1 x 10 ⁻⁷ m/s
Aquifer hydraulic conductivity	6 x 10 ⁻⁶ m/s	6 x 10 ⁻⁵ m/s
		6 x 10 ⁻⁷ m/s
Zone A liner hydraulic	1 x 10 ⁻⁸ m/s	1 x 10 ⁻⁷ m/s
conductivity		1 x 10 ⁻⁹ m/s
Groundwater table elevation	Upgradient groundwater boundary	Upgradient groundwater boundary – 1,114 mRL
	– 1,115 mRL	Downgradient groundwater boundary – 1,099 mRL
	boundary – 1,100 mRL	Upgradient groundwater boundary – 1,116 mRL
		Downgradient groundwater boundary – 1,101 mRL

	a			~	
Table H.9	Sensitivity	analysis	for NRS	Closure	scenario

1. SEEP/W 2012 Database

2. AEV = Air entry value (minimum matrix suction at which point air enters the pores and saturation reduces)

2. AECOM 2020. Infiltration rates provided for TSF1A embankment slope. Email communication provided by AECOM, 27 July 2020.

The groundwater model sensitivity analysis results have been assessed by comparing the predicted rock stack leachate seepage rates through the Zone A liner and the predicted leachate capture at the leachate collection drains. The results are presented in Figure H.6. Increased leachate capture at the leachate collection drains is

largely controlled by the potential for perching on the Zone A liner, which promotes greater saturation and horizontal flow towards the leachate drains.

The modelled results have greatest sensitivity to hydraulic conductivity of the Zone A liner, with leachate capture increasing from 2 m³/day to 177 m³/day when the hydraulic conductivity is reduced by one order of magnitude, causing perching of leachate on the liner. To a lesser degree, reducing the hydraulic conductivity of the shallow aquifer also results in an increase in the predicted leachate captured at the leachate drains, as a result of reducing the vertical hydraulic gradient across the liner.

The results demonstrate moderate sensitivity to altering the hydraulic conductivity function of the shallow aquifer and the Zone A liner. By reducing the AEV, this increases the pore sizes and reduces the hydraulic conductivity of these materials.

Although the sensitivity analysis results indicate relatively low sensitivity to changes in groundwater level beneath the rock stack, the results indicate that the closer the groundwater table is to the Zone A liner, the more leachate is predicted to be captured. This is because higher groundwater levels reduce the vertical hydraulic gradient across the Zone A liner.

The sensitivity analysis results indicate low sensitivity to the rock stack parameters assessed.

Figure H.3 Rock stack hydraulic conductivity function sensitivity analysis – Silty sand SEEP/W database (blue) with AEV increased (red) and reduced (green).

Figure H.4 Shallow Aquifer hydraulic conductivity function sensitivity analysis – clayey silt (red), sand (blue) and silty sand (green).

Figure H.5 Zone A liner hydraulic conductivity function sensitivity analysis – clayey silt (red), sandy clayey silt (blue) and silty clay (fine tailings) (green).

Figure H.6 NRS sensitivity analysis results

Appendix I TSF3 Technical assessment

This appendix presents the methodology and results for technical assessment of the proposed TSF3. All elevations are presented in metres reduced level (mRL) with reference to Waihi Mine datum, which is 1,000 metres below sea level.

I.1 Introduction

This technical appendix provides the details of the TSF3 analysis presented in Section 5.5 of the Waihi North Groundwater Assessment report.

The outline of this appendix is as follows:

- I.2 Assessment methodology (model set up, calibration, scenarios)
- I.3 Analysis results
- I.4 Water quality assessment
- I.5 Sensitivity testing

I.2 Groundwater modelling methodology

The rationale for the model set up is described in Section 5.4 of the Groundwater Assessment report. This section describes the physical model set up, how calibration was achieved, and the scenarios applied.

I.2.1 Cross-section 1 (SEEP/W)

Base model set up

The base model comprised a steady-state 2D cross-sectional model using Geostudio 2019 R2 SEEP/W. The section length was 2.1 km, starting from the rhyolite hills north of the TSF3 site through to the Ruahorehore Stream south of the TSF3 embankment toe (See Figure I.1 and Figure I.2). The cross-section was aligned in the direction of dominant groundwater flow of the primary (deeper) aquifer and through the paleogully infilled with sensitive tuff, which will be excavated to approximately 20 m below ground level. The undercut will require dewatering to this depth and will be backfilled during the foundation works phase.

For consistency with the Waihi North TSF3 geotechnical assessment, the geology represented in the hydrogeological model was provided as a direct export from the EGL Geostudio SLOPE/W ground model (as reported in the EGL TSF3 technical report (EGL, 2021)). Minor edits to the geology were made for the groundwater assessment, including merging regions of the same or hydraulically similar materials; applying a single surface material to represent alluvium, ash and colluvium given the limited surficial geological information (i.e. upper 2 m); and creating a separate "hard rock" rhyolite region under the northern hills to reflect the rhyolite ridge, where site-specific groundwater and geological information was limited.

Parameters and boundary condition calibration

Through an iterative process, the input values for the final base model were derived by applying values from within measured ranges of parameters such as rainfall and hydraulic conductivity for each geological unit. The input values were varied in order to achieve base model calibration, focusing on:

- A horizontal hydraulic gradient in the primary (deeper) groundwater system beneath the TSF3 site consistent with that measured during site investigations (Appendix C)
- Downward vertical gradients at the northern edge of the TSF3 site, and upward gradients at the embankment toe, whilst achieving minimal flow to the Ruahorehore Stream (i.e. interflow only).

To achieve this, the following boundary conditions (Table I.1) were applied in conjunction with the hydraulic parameters provided in Table I.2:

- 740 mm/year (35% average annual rainfall) to groundwater at the valley ridges.
- 11 mm/year (0.5%) within the TSF3 valley.
- No recharge in the lower valley floor, where upward vertical gradients are present and surface ponding occurs.
- Constant head boundaries at either end of the model to achieve artesian conditions at depth below the toe of the TSF3 valley.

Figure I.1 TSF3 Cross-section 1 alignment showing relevant monitoring locations for calibration

TSF3 Cross-section 1 SEEP/W model set-up with close up of undercut and key monitoring locations

Boundary type	Adopted boundary conditions	Justification
Rainfall recharge	 Water flux - potential seepage face review: Upper catchment: 2 x 10⁻³ m/d (35% average annual rainfall) Lower catchment: 3 x 10⁻⁵ m/d (0.5% average annual rainfall) Lower catchment, artesian conditions: 0 m/d 	Values adjusted to achieve sufficient flow through the aquifer and artesian conditions in the lower TSF3 valley, where adopted rainfall = 2,110 mm/year ⁵ These values are considered appropriate where recharge is inferred to occur across the upper catchment (rhyolite ridge) where downward gradients occur, versus the lower valley where very low permeability surface cover is present and surface ponding occurs.
Upgradient groundwater boundary (north)	Constant Head – 1,117 mRL	Values were derived by calibration in conjunction with rainfall, to achieve measured
Downgradient groundwater boundary (southeast)	Constant Head – 1,104 mRL	and low stream flow.
Ruahorehore Stream	Water rate – potential seepage face review set to 1,108 m RL	Set to the elevation measured during the January 2019 stream survey (Appendix F).

Table I.1 TSF3 base model set-up

⁵ NIWA, 2019. Climate data obtained from Waihi, Station Agent No. 1550.

Table I.2 TSF3 base model adopted material parameters

Geological unit *	К _н (m/s)	Measured K v	/alues**	Anisotropy	VWC and K
		Geomean	Range	(Кv/Кн)	function#
Ash/alluvium/colluvium	9.3 x 10 ⁻⁸	4.5 x 10 ⁻⁸	3.2 x 10 ⁻⁹ to 8.5 x 10 ⁻⁷	1	Sandy Loam
Rhyolite Lava Flow (CW-MW)	5.8 x 10 ⁻⁷	1.3 x 10 ⁻⁷	1.2 x 10 ⁻⁹ to 1.0 x 10 ⁻⁴	1	Sandy silt
Rhyolite Lava Flow (MW-SW)	1.2 x 10 ⁻⁵	5.0 x 10 ⁻⁶	1.0 x 10 ⁻⁸ to 1.0 x 10 ⁻⁴	1	Sandy silt
Rhyolite Rock	1.3 x 10⁻⁵	No data. Value Lava Flow and downgradient	e calibrated based on SW d adjusted to achieve artesian conditions	1	Sandy silt
Rhyolite Lava Froth Flow	6.3 x 10 ⁻⁶	No data. Value CW Lava Flow achieve downg conditions	e calibrated based on SW- values and adjusted to gradient artesian	1	Sand
Rhyolite Lava Froth pulse	1.2 x 10 ⁻⁷	2.8 x 10 ⁻⁷	3.2 x 10 ⁻⁹ to 2.4 x 10 ⁻⁵	1	Sandy silt
Rhyolite Porphyritic Tuff	1.2 x 10 ⁻⁵	No data. Value calibrated based on tuff values and adjusted to achieve groundwater level calibration.		1	Silty Sand
Rhyolite Redeposited Tuff	1.1 x 10 ⁻⁶	2.2 x 10 ⁻⁶ 3.2 x 10 ⁻⁹ to 1.0 x 10 ⁻⁴		0.01	Silty Sand
Rhyolite Tuff - Unit at DH14/AP01/AP05	2.3 x 10 ⁻⁶	1.6 x 10 ⁻⁶	2.4 x 10 ⁻⁷ to 1.5 x 10 ⁻⁵	0.01	Silty Sand
Rhyolite Tuff - all other locations	1.0 x 10 ⁻⁷	1.6 x 10⁻ ⁸	5.7 x 10 ⁻¹⁰ to 6.5 x 10 ⁻⁶	0.1	Sandy silt

 * Geological units are colour coded as per the SEEP/W cross section

** Permeability values are from the results provided in Appendix D and CPT dissipation testing by EGL (2018).

[#] VWC = Volumetric water content function (SEEP/W 2012 materials database)

Base model calibration

The results of base model calibration is presented in Table I.3 to

Table I.5. The relationship between the measured and modelled results are presented in Figure I.3.

Table I.3 Calibrated horizontal gradient across the TSF3 site

Well ID	Location	Total head	
		Modelled value:	Measured (Feb-Mar 2018):
AP11a	Upgradient (ridge)	1,114.3 m RL	1,115.0 m RL
AP04a	Down gradient (near RU07)	1,108.5 m RL	1,109.5 m RL
	ΔΗ	-5.5 m	-5.5 m

Table I.4 Calibrated stream baseflow

Stream baseflow (RU07)	Modelled value	Measured (Feb-Mar 2018):	
Stream length ⁽¹⁾	350 m		
Baseflow (per meter stream length)	0.002 m ³ /d -0.4 to 0.2 m ³ /d $^{(2)}$		
Baseflow along 350 m stream length	0.01 L/s	-1.5 to 0.7 L/s	
Regime	Neutral ⁽³⁾	Neutral to losing	

1 Between RU07 and upstream gauging location RU12.

2 Measured values from baseflow monitoring between RU12 and RU07 in February 2019. The range of values provided represents the range of error.

3 The results indicate only very slightly gaining, but are considered within the magnitude of the model and error to be neutral.

Table I.5 Calibrated groundwater levels and well pair vertical gradients

Wells (screen depth)	Groundwater Level (mRL unless otherwise noted)	Modelled value	Measured (Feb-Mar 2018)
Northern Ridge	Deep	1,115.88	-
ΔΗ	Downward gradient	down	n/a
AP11 well pair			
AP11 (3-5 m)	Water table - <u>in m bgl</u> *	3.9	4.9
AP11a (17-20 m)	Deep well	1,114.33	1,114.89
ΔΗ	Downward gradient	down	n/a
AP08 / DH12 well pair			
AP08 (2.5 - 5.5 m)	Shallow well	1,113.90	1,114.11
DH12 (20-21 m)	Deep well	1,113.24	1,113.20
ΔΗ	Downward gradient	-0.7	-0.9
AP06 well pair			
AP06 (3-5 m)	Shallow well GWL	1,112.94	1,113.05
AP06a (21 - 24 m)	Deep well GWL	1,112.40	1,112.67
ΔΗ	Downward gradient	-0.5	-0.4
AP02 well pair			
AP02 (3-5 m)	Shallow well GWL	1,110.35	1,111.47
AP02a (27-30 m)	Deep well GWL	1,111.21	1,112.17
ΔΗ	Upward gradient	+0.9	+0.7
AP1a well pair			
AP01 (3-5 m)	Shallow well GWL	1,109.20	1,110.23
AP01a (37-40 m)	Deep well GWL	1,109.91	1,110.45
ΔΗ	Upward gradient	+0.7	+0.2
AP04 well pair			
AP04 (4-6 m)	Shallow well GWL	1,108.56	1,109.40
AP04a (27-30 m)	Deep well GWL	1,108.62	1,109.47
ΔΗ	Upward gradient	+0.1	+0.1
	Groundwater levels R ² =	0.98 (refer to Figure	e I.3)
	Vertical $\Delta H R^2$ =	0.88 (refer to Figure	91.3)

* The cross section does not fully align with the AP11 well pair, which is elevated in comparison to the cross section at this location. The AP11 well water levels are perched at this location, with the base of the shallow well located above the measured deeper wells water level. Further, the corresponding water level elevations at the shallow well exceed the model ground surface at this location. Calibration at this location focused on the primary aquifer (deeper well AP11a), and a water table within 5 mbgl (as measured).

Figure I.3 Goodness of fit – Cross-section 1 (SEEP/W) base model

Scenarios

Multiple scenarios were assessed from the Cross-section 1 base model. These were split into two different model types:

- Steady-state (Table I.6): Full TSF3 construction from foundation works to post-closure. This model provides
 outputs for predicting:
 - Tailings porewater leakage rates.
 - Embankment leakage rates.
 - Changes in groundwater recharge, levels and flow associated with TSF3 construction.
 - Changes to surface water flow and levels.

The recharge input provided relates to average annual recharge. The daily outputs provided for these analyses are therefore based on average annual recharge, rather than transient or seasonal variations.

The scenarios assessed using this model are summarised in Table I.6. Scenarios 3-5 were developed on the basis that the tailings permeability will change over the life of the facility, and changes to drains will occur. Tailings toward the base of TSF3 are expected to have a lower permeability than the material at surface, consistent with a silty clay-type material. On disposal, the mine tailings will consolidate, releasing porewater to decant. This is expected to reduce the permeability of tailings throughout the operational period of the facility.

The following drains are proposed to intercept discharges from TSF3 (Figure I.4):

- Leachate drains in the embankment above the Zone A pad. These are expected to intercept embankment infiltration and tailings pore water beneath the embankment.
- Sub-soil and toe drains (beneath the Zone A liner) are intended to intercept leachate that infiltrates through the soil liner and embankment.

Over time, drains may become crushed during consolidation, or become filled with fines and fail to adequately capture leachate seepage. If this occurs where groundwater conditions are not artesian, seepage will percolate downwards until groundwater is encountered. Tailings toward the base of TSF3 are expected to have a lower permeability than at the top, and consistent with a silty clay-type material. To some extent, this will limit the potential discharge through any liner defects.

The uphill diversion drain is interpreted to not intercept groundwater (or perched water only). No analysis has been carried out for this drain.

An additional model was developed to understand the influence of Zone B within the shear key, which is only present for half of the embankment width. The location of Zone B is presented in Figure I.5.

 Transient (Table I.10): Construction dewatering only. The timeframes for each scenario were provided by EGL (pers.comm. EGL, email dated 10 June 2020). This transient model allows for more refined outputs for predicting groundwater inflows and ZOI. It is noted that the thickness of the sensitive tuff for removal along the cross-section alignment is only present to 15 m bgl. The added material properties and boundary conditions for these scenarios are in Table I.8 and Table I.9. The constant head boundaries, recharge and material properties remain as per the base model unless provided below.

Table I.6 Summary of steady state model scenarios for Cross-section 1 (all stages of TSF3 construction)

Scenario	Stage of work	Description
1 (Parent for Scenario 2)	Ruahorehore Stream Diversion	The calibrated base model was updated to relocate the Ruahorehore Stream approximately 40 m to the south and the surface alluvium replaced with Zone A material. This formed the base model for the following scenarios.
2 (Parent for Scenario 3)	Construction dewatering	Construction dewatering as a parent model for the proposed starter embankment. Included fully dewatered excavation of the sensitive tuff to 15 m depth without backfill.
3 (Parent for Scenario 4)	Starter Embankment (1,135 mRL)	Scenario 3 considers completed foundations works with tailings placed to the full height of the starter rock embankment (1,135 mRL). The HDPE liner is emplaced to 1,135 mRL and all drains are assumed to be operational. The tailings at this stage of construction have the least amount of consolidation and
4 (Parent for Scenario 5)	Operational to closure (1,155 m RL)	therefore the greatest applied K_V of all scenarios. Embankment height and tailings increased to 1,155 m RL. A lower tailings K_V was applied to represent the modelled tailings consolidation by EGL (see Table I.9).
5	Long-term / Post closure (1,155 m RL)	As per Scenario 4, with further decreased tailings K_V to represent 90% tailings consolidation. In this scenario, drains are removed from the analysis to simulate potential drain failure, except for the downstream toe drain which remained operational within the scenario.

Figure I.4 TSF3 Cross-section 1 SEEP/W model set-up with close up of drains beneath the embankment

Figure I.5 TSF3 Cross-section 1 SEEP/W model set-up with close up of undercut and key monitoring locations

 Table I.7
 Summary of transient model scenarios for Cross-section 1 (construction dewatering)

Scenario	Stage of work	Days	Description	
2A (Parent for 2B)	Partial excavation	0 - 30	Removal of surficial alluvium down to sensitive tuff, and includes excavations for the cut off and toe drains, and shear key.	
2B (Parent for 2C)	Full excavation	30 - 75	Removal of sensitive tuff to maximum depth present in model (15 m). Assumes no inflow mitigation (such as piling).	
Scenario 2C (75-120 d)	Partial backfilled	75 - 120	Backfill to original sensitive tuff surface, using NAF structural backfill (to be subsequently overlain by the Zone A soil liner).	
* As discussed in the Rationale (Section 5.4.2) of the main report, additional analyses were run to provide a range of potential effects. Refer to appendix sections 1.2.2 and 1.2.3.				

Table I.8 Boundary conditions for TSF3 model scenarios (where different from Table I.1)

Boundary type	Scenario/s applied to	Adopted boundary conditions	Justification
Construction dewatering	2 (steady state) 2a-c (transient)	Water rate – potential seepage face review set 0 m³/day	Removal of water from model where dewatering required. Applied to excavations: sensitive tuff, cut off drain, toe drain, shear key.
Recharge to tailings	3-5	Water flux – potential seepage face review: $3 \times 10^{-3} \text{ m/day}$	Sufficiently large value (70% of rainfall) applied to achieve saturation at tailings surface.
HDPE liner leakage	3-5	Water flux - 1.7 x 10 ⁻⁵ m/d	Upper limit as provided by EGL (2019b). Refer to Section 5.5.2 of the main report.

Boundary type	Scenario/s applied to	Adopted boundary conditions	Justification
Drains 3 and 4		Water rate – potential seepage face review set 0 m ³ /day. Applied to drains: sub soils, upstream cut off, initial and downstream toe)	Removal of leachate and embankment rock infiltration through drains. Locations of drains adopted from EGL (2021).
		Water total head – 1,108.5 m RL. Leachate collection sump drain	Gravity outlet, as per EGL design.
	5	Water rate – potential seepage face review set 0 m³/day Applied only to downstream toe drain.	Assumes multiple drain failure for long-term scenario.
Embankment rock infiltration	3	Water flux – potential seepage face review: 2 x 10 ⁻³ m/d (35% average annual rainfall)	Upper catchment rainfall recharge value applied directly to the embankment rock (Zones B – D)
	4 and 5	Water flux: 1 x 10 ⁻³ m/d	5-year average cap infiltration rate for Zones G & H, which is 370 mm/yr (17% of GHD's adopted average rainfall value) (AECOM, 2020)

Table I 9	Adopted material	narameters for	TSF3 model scenario	s (where additional	to	Table I 2
100101.5	Adopted material	parameters for		s (where additional	10	100101.2)

Material ^{(1) (2)}	Scenario/s applied to	К _н (m/s)	K _v (m/s)	VWC and K function ⁽³⁾	Hydraulic conductivity justification	
Tailings:						
HDPE liner Material applied as a line:	3-5	2 x 10 ⁻¹⁵	2 x 10 ⁻¹⁵	Well graded clay	Sufficiently low to enable liner leakage boundary condition in Table I.8 to provide the dominant leakage mechanism.	
Starter embankment tailings	3	1 x 10 ⁻⁷	2 x 10 ⁻⁸	Sandy silt (coarse tailings)	K _v provided by EGL (2019b). Modelling outputs for estimated consolidation provided in Figure	
Operational – closure tailings	4	5 x 10 ⁻⁸	1 x 10 ⁻⁸	Sandy silt (coarse tailings)	I.6. Note: The K _V values indicated for closure in Figure	
Long-term / Post closure tailings	5	1 x 10 ⁻⁸	5 x 10 ⁻⁹	Sandy silt (coarse tailings)	current proposed height of 1,155 m RL (pers. comm. EGL, email dated 12/07/2021).	
Embankment rock						
NAF undercut structural backfill	3-5	1 x 10 ⁻⁶	1 x 10 ⁻⁶	Well graded #2	Based on embankment material information provided by EGL	
Zone A	1-5	1 x 10 ⁻⁸	1 x 10 ⁻⁸	Clayey silt	(2019c).	
Zone B	3-5	1 x 10 ⁻⁸	1 x 10 ⁻⁸	Clayey silt		
Zone C1	3-5	1 x 10 ⁻⁶	1 x 10 ⁻⁶	Silty sand		
Zone C2	3-5	1 x 10 ⁻⁶	1 x 10 ⁻⁶	Silty sand		
Zone D2	3-5	1 x 10⁻⁵	1 x 10 ⁻⁶	Silty sand		
Zone D3	4-5	1 x 10 ⁻⁶	1 x 10 ⁻⁷	Silty sand	_	
Zone F	4-5	1 x 10 ⁻⁴	1 x 10 ⁻⁵	Uniform sand		
Zone G/H	4-5	1 x 10 ⁻⁸	1 x 10 ⁻⁸	Clayey silt		

1. Geological units are colour coded as per the SEEP/W cross section (Figure 5.15 of the main report).

2. TSF construction materials are described in Table 5.1 (Section 5.1.2) of the main report.

3. VWC = Volumetric water content function (SEEP/W 2012 database), selected based on EGL descriptions of materials provided by email (EGL 2019b and 2019c).

Tailings consolidation modelling results showing K_V (EGL, 2019b) for various potential tailings height

I.2.2 Cross-section 2 (SEEP/W)

Base model set up

The model length was 3.6 km, beyond the northwestern crest north of the site and through to the Ruahorehore Stream southeast of TSF3 (Figure I.7 and Figure I.8). The cross-section was aligned perpendicular to the direction of dominant groundwater flow of the primary aquifer. However, the purpose of this assessment was to assess potential excavation inflows and drawdown associated with dewatering to 20 m depth during removal of the sensitive tuff. During this time the groundwater flow regime will change locally so that groundwater flow becomes parallel to the cross-section (towards the excavation) and the use of the model to predict drawdown is considered to be acceptable when considering results within close proximity to the excavation. As discussed in the Rationale (Section 5.4.3 of the main report), this analysis is supported by Theis (1935) for drawdown further away from the excavation (Section 1.2.3 below).

Parameter inputs, calibration and scenarios

Cross-section 2 comprised a transient model, set up using the inputs from the calibrated Cross-section 1 model for hydrogeological properties (Table I.2). Boundary conditions were set to achieve a high groundwater table through the sensitive tuff, as per the existing site conditions for the base model and achieve water the presence of water in the Ruahorehore Stream.

As with Cross-Section 1, the geological structure for the model was provided by EGL. In this model, the sensitive tuff thickness was only present to 15 m depth. For the purpose of estimating drawdown and allowing settlement analysis, a more conservative 20 m excavation scenario was assessed (Figure I.9).

A constant head boundary was applied to the Ruahorehore Stream for the dewatering scenarios to simulate the expected discharge of dewatered groundwater through the initial construction stage of works.

A summary of the model scenarios is provided in Table I.10 and model inputs is provided in Table I.8 and Table I.9.

Figure I.7 SEEP/W Cross-section 2 location compared with the primary section (Cross-section 1)

Figure I.8

TSF3 cross-section 2 SEEP/W model set-up

Figure I.9 TSF3 cross-section 2 SEEP/W model set-up

Table I.10 Summary of steady transient model scenarios for Cross-section 2 (construction dewatering)

Scenario	Stage of work	Days	Description	
1 – Steady state (Parent for 2B and 3)	Base model	0	Material properties as per Cross-Section 1 calibration. Boundary conditions provided in Table I.8.	
2A - Transient (Parent for 2B)	Partial excavation (15 m)	0 - 30	Removal of surficial alluvium down to sensitive tuff, and includes excavations for the cut off and toe drains, and shear key.	
2B - Transient (Parent for 2C)	Full excavation (15 m)	30 - 75	Removal of sensitive tuff to maximum depth present in model (15 m). Assumes no inflow mitigation (such as piling).	
2C - Transient	Partial backfilled (15 m)	75 - 120	Backfill to original sensitive tuff surface, using NAF structural backfill (to be subsequently overlain by the Zone A soil liner).	
3 - Transient	Full excavation (20 m)	0 – 75	As per above full excavation to 15 m, but with additional region removed into underlying rhyolite tuff to achieve 20 m excavation depth. Analysis undertaken for drawdown only.	
* As discussed in the Rationale (Section 5.4.2) of the main report, additional analyses were run to provide a range of potential effects. Refer to appendix sections 1.2.2 and 1.2.3.				

 Table I.11
 Cross-Section 2 model set-up

Boundary type	Scenario	Adopted boundary conditions	Justification
Rainfall recharge	All	Water flux - potential seepage face review: 3 x 10 ⁻⁵ m/d (Lower catchment rate)	As per Cross-section 1.
Upgradient groundwater boundary (NW)	All	Constant Head – 1,108 m RL	To achieve groundwater flow direction toward the SE, and a high water table near
Downgradient groundwater boundary (SE)	All	Constant Head – 1,113.5 m RL	ground level at the area of the excavation, as per existing site conditions.
Ruahorehore Stream	2 and 3	Constant Head – 1,109.1 m RL	Set to nominal stream depth of 1 m assuming discharge of dewatering groundwater will occur to the stream.
Dewatering	2 and 3	Water rate – potential seepage face review: 0 m ³ /day	Removal of water from undercut.

 Table I.12
 Adopted material parameters for Cross-Section 2 (where additional to Table I.2)

Material ^{(1) (2)}	Scenario/s applied to	К _н (m/s)	Kv (m/s)	VWC and K function ⁽³⁾	Hydraulic conductivity justification
Tailings	All	8 x 10 ⁻⁹	8 x 10 ⁻¹⁰	Sandy silt (coarse tailings)	Long-term consolidation as per Figure I.6
Operational – closure tailings	All	1 x 10 ⁻⁶	1 x 10 ⁻⁶	Silty sand	As per Zone D2 of Cross- section 1.

1. Geological units are colour coded as per the SEEP/W cross section

3. VWC = Volumetric water content function (SEEP/W 2012 database), selected based on EGL descriptions of materials provided by email (EGL 2019b and 2019c).

I.2.3 Theis drawdown analysis

The Theis model supports the Cross section 2 model in predicting excavation drawdown effects on water levels. Where the cross section model was used to predict local drawdown near the excavation, the Theis model was used to predict effects to groundwater levels more distant from the excavation. It was also used to provide a comparative analysis for the SEEP/W modelling approach. The Theis model set up, outputs and sensitivity analysis are presented in this methodology section, with the outputs presented here are incorporated into the assessment results provided below (Section I.3).

Theis model set-up

This 1-D analytical solution allows only for dewatering from a single point, which is assumed here to be the deepest point of the undercut excavation, under unsteady state conditions. Inherent assumptions of this analysis include that the aquifer is confined, has a seemingly infinite areal extent, is homogeneous, isotropic, and of uniform thickness over the area influenced by dewatering. Prior to dewatering, the piezometric surface is assumed to be horizontal over the area that will be influenced, is pumped at a constant discharge rate, and the excavation penetrates the entire thickness of the aquifer, receiving water only from horizontal flow (i.e. does not consider recharge).

Theis model input parameters

The following inputs and assumptions were adopted from the information obtained from site data and the conceptual model:

- A range of T values were applied to provide sensitivity analysis, with these representing the measured range
 of permeability values at the site (2, 20 and 200 m²/day), with rounding to account for uncertainty of the
 thickness of the affected saturated aquifer.
- A range of nominal S values (0.1 and 0.01) were also tested to reflect unconfined fractured rock aquifer conditions to semi-confined conditions (respectively).

Using the above inputs parameters, the model outputs (discharge, Q; and ZOI) were determined from the backcalculation of expected groundwater levels after 75 days continuous dewatering for the following aims:

- Discharge (Q): Achieve a maximum drawdown of 20 m at 0.1 m radial distance from the abstraction point.
- ZOI: Achieve a drawdown of 0.5 m (defined as the ZOI) in metres distance from the abstraction point.

Theis scenarios and outputs

A summary of the applied scenarios and results are in Table I.13 and Figure I.11. Values are rounded to account for uncertainty.

The geomean of permeability results is considered to be represented by $T = 2 m^2/day$ and $T = 20 m^2/day$. The results for $T = 20 m^2/day$ are generally in line with the outputs for Cross-Section 1. The analysis of $T = 200 m^2/day$ represents the upper limit of permeability measured at the site, and is consistent with Cross-section 2 (Scenario 2) outputs.

Т	2 m²/d		20 m²/d		200 m²/d		
S	0.1	0.01	0.1	0.01	0.1	0.01	
Q	30	30 - 40 m³/d		290 - 330 m³/d		2,560 - 2,900 m³/d	
ZOI	70	70 - 210 m		210 - 610 m		610 - 1,840 m	

 Table I.13
 Theis (1935) solution inputs and outputs

Figure I.10 TSF3 Theis model outputs

Theis sensitivity analysis

Sensitivity testing is covered by the above analysis, which indicates the solution is sensitive to the range of K (and therefore T) measured at site.

A graphed comparison of the results to assess for sensitivity presented above are presented below in Figure I.11. This indicates that:

- For ZOI, the solution is sensitive to both S and T.
- For inflows, the solution is not very sensitive to changes in adopted S values, but is sensitive to the applied T.

The upper end of the results range is expected to be overly conservative, given that only four test locations from a total of 27 locations reported a result greater than 3×10^{-5} m/s (estimated results of 1×10^{-4} m/s), likely due to localised fracturing. The geomean of all results was 5×10^{-7} m/s. Based on the CGM, an applied T of 20 m²/day is expected to be more representative of the bulk permeability of the geology influenced by dewatering and is therefore adopted for the assessment. To maintain conservatism for the ZOI, an S of 0.01 has been adopted. The drawdown results there adopted for this assessment is the blue graph line presented in Figure I.12.

Figure I.11 Comparison of input parameters for Theis solution

I.3 TSF3 analysis results

I.3.1 Construction dewatering

The two key outputs of the construction dewatering analyses are groundwater inflows to the excavation and groundwater level drawdowns.

A breakdown of the results from the modelling are provided below in Table I.14 and Table I.15.

Figure I.12 demonstrates how the drawdown curve and ROI (presented in Figure 5.14 of the main report) were derived.

Table I.14 Summary of modelling outputs for predicted inflows to excavation

	Expected inflow ra	anges in m³/day*	Upper bound	Cumulative	inflows				
Scenario	Cross-section 1 (to 15 m depth)	Theis (to 20 m depth) (T = 2 and 20)	Cross-section 2 (to 15 m depth)	Expected minimum	Expected maximum	Upper bound			
Scenario 2A (0-30 d)	16 - 23		402 - 511	480	690	15,290			
Scenario 2B (30-75 d)	100 - 120	33 - 334	1,465 - 2,445	1,485	15,030	110,250			
Scenario 2C (75-120 d)	0 - 9		4 - 96	0	405	4,500			
		SUM:		1,965	16,125	130,040			
Portion of aq		uifer management level:	0.1%	0.9%	7%				
*Ranges given for	*Ranges given for Day vs. end of scenario								

 Table I.15
 Summary of modelling outputs for ZOI for dewatering at 75 days

Analysis	Result	ZOI (from deepest point of excavation)
Cross-section 1 (to 15 m depth)	North direction	430 m
	South direction	390 m
Cross-section 2 (to 20 m depth)	West direction	Not considered. As the model is parallel to
	East direction	groundwater flow direction, the model is expected to over-estimate drawdown. Only the drawdown within 200 m of the excavation is considered. See Figure I.12.
Theis (to 20 m depth) (T = 2 and 20)	Radial for T = 20 m²/day	610 m
Adopted ZOI		610 m

Figure I.12 Drawdown curves for the TSF3 undercut dewatering

I.3.2 TSF3 discharges

The modelled discharge rates were extracted in m³/day per 1 m model width. The extracted results have been multiplied by 1,000 m, which is the approximate width of TSF3 perpendicular to the cross-section line, to provide results for the entire facility. Where appropriate, the results for the shear key model were considered for 500 m.

Tailings

As drains also capture groundwater, flow lines predicted by the SEEP/W models (refer to Figure 5.15 of the main report) were used to assist in estimating water sources and discharge rates. The modelled tailings discharge rates are provided in Table I.16. Where the discharge through the Zone A soil liner is:

- Less than that of the HDPE liner, this is due to the some of the discharge through the HDPE liner being captured by the upstream cut-off drain.
- Greater than the HDPE liner, this is where the tailings are emplaced above the HDPE liner (Scenarios 4 and 5), and where tailings discharge occurs over the top of the liner. More tailings discharge is captured in Scenario 4 where the drains are operational. Note: Discharge from the facility is captured during Scenario 5 (post-closure, where only the downstream toe drain is operational), but this is only embankment infiltration.

Embankment

The model embankment infiltration and discharge values are provided in Table I.17. The results indicate:

- The total infiltration through the embankment is increased for Scenarios 4 and 5, which is expected due to full embankment construction (260 m), which is longer than Scenario 3 (140 m).
- The discharge values (267 m³/day) are the same for Scenarios 4 and 5 (within rounding), as the same infiltration rate has been applied, across the same embankment construction.
- The operational drains through Scenarios 3 and 4 are indicated to effectively capture the embankment rock infiltration, whereas only a small portion (~10%) of the discharge is captured by the downstream toe drain in Scenario 5.

Collection pond

Leakage from the ponds was calculated from the following inputs:

- Total pond area = $33,000 \text{ m}^2$ = 3.3 ha
 - Pond S6 area = 11,500 m²
 - Pond S7 area = 21,500 m²
- Leakage rate = 42 L/ha/day
- So that 42 L/ha/day x 3.3 ha = 139 L/day or 0.14 m³/day.

Drain capture

Drain widths across the embankment vary from 500 - 1200 m. For simplicity, and for direct comparison to the above seepage results, all values extracted from SEEP/W were multiplied by 1,000 m.

The individual drain capture results are provided in Table I.19. The details of final drain capture composition is provided in Table I.20. Mass flux to the drains (Table 5.10 of the main report) was calculated from the following inputs:

- Geochemistry of the discharges:
 - Tailings pore water quality predicted mean value from AECOM (2025) report.
 - Embankment leachate water quality predicted median values for the development stage (Scenarios 3 and 4) and closure stage (Scenario 5) from AECOM (2025) report.
 - Groundwater quality the median of water quality from AP01a was used.
- Drain capture volumes for each component in Table I.20.

So that: (predicted concentrations in $g/m^3 x$ drain volumes in m^3/day) / 1000 = mass flux in kg/day to the WTP.

Table I.16 Summary of modelling outputs for tailings discharge for full facility width

Analysis	Discharge through HDPE liner (m³/day)	Discharge through the Zone A soil liner to ground* (m³/day)	To drains		To receiving environment	
Scenario 3	10	5	Flow lines indicate all discharge to drains			
Scenario 4	21	116	71 m ³ /day	70%	45 m³/day	30%
Scenario 5	16	62	0 m ³ /day	0%	62 m³/day	100%
Comparison Scenario 3 – no HDPE liner	n/a	700	161 m³/day	23%	539 m³/day	77%

Table I.17

Summary of modelling outputs for embankment rock infiltration for full facility width

Analysis	Emb. length (m)	Height (m RL)	Total infiltration through embankment (m ^{3/} day)	To drains To receiving environmer		l t	
Scenario 3	140	1,135	230	Flow lines indicate all discharge to drains			rains
Scenario 4	260	1,155	267	Flow lines indicate all discharge to drains			rains
Scenario 5		1,155	267	237 m³/day 8	89%	30 m³/day	11%

 Table I.18
 Summary of combined tailings and embankment discharge to the receiving environment from TSF3 (m³/day)

Analysis	Tailings	Embankment	Total discharge to receiving environment
Scenario 3	0	0	Flow lines indicate all discharge to drains
Scenario 4	45	0	45
Scenario 5	62	30	92

Table I.19 Summary of modelling outputs for drain capture (m³/day) for full facility width

Analysis	Subsoil drains	Upstream cut off	Initial toe drain	Final downstream toe	Leachate sump collection	Sum drain capture
Scenario 3	164	4	31	92	n/a	291
Scenario 4	119	4	34	1	7	355
Scenario 5	n/a	n/a	n/a	0	n/a	260
Components of drain capture*	Mix (tailings, embankment, groundwater)	Tailings	Embankment	Mix (tailings, embankment, groundwater)	Tailings and embankment	
*as determined by SI	EEP/W flow lines	·	·	·	·	·

Table I.20 Sum

Summary of modelling outputs for drain capture for full facility width

Analysis	Discharge	s to drains (n	n³/day)	Sum drain capture	Groundwater	Drain water composition		
	Tailings	Emb.	Total	(m³/day) (Table I.19)	<i>component*</i> (m³/day)	Tailings	Emb.	GW
Scenario 3	10	230	240	291	51	3%	79%	18%
Scenario 4	21	267	288	355	67	6%	75%	19%
Scenario 5	0	237	237	260	23	0%	91%	9%
*The difference between drain capture and total discharges to drains								

1.3.3 Water levels and flow rates

The total groundwater flows measured in SEEP/W downgradient of TSF3 are provided in Table I.21, along with the proportion of TSF3 seepage in groundwater. It is noted that the total groundwater flow is not necessarily equivalent to TSF3 total seepage plus the base model groundwater flow. This is due to minor changes in the hydraulic gradient across the model as the TSF is constructed where the groundwater levels re-equilibrate to accommodate the added recharge to the groundwater system. The proportion of TSF3 seepage as groundwater has been calculated from the above discharge values from the down gradient flow rate.

Groundwater flows used for groundwater quality analysis below are presented in Table I.22. Comparison of the upgradient flow in this table (715 m³/day) to the down gradient flow in Table I.21 provides recharge of 4 m³/day of the TSF3 site prior to construction, which is consistent with the conceptual model.

Analysis	TSF3 total seepage* (m³/day)	Total Groundwater Flow** (m³/day)	Proportion of flow as TSF3 seepage				
Base model	0	719	0%				
Scenario 3	0	723	0%				
Scenario 4	45	743	6%				
Scenario 5	95	766	13%				
Comparison Scenario 3 – no HDPE liner	539	838	64%				
*Combined tailings and embankment infiltration to the receiving environment, from Table 1.18							

Table I.21 Summary of modelling outputs for proportion of groundwater flow

Combined tailings and embankment infiltration to the receiving environment, from Table I.18.

** Result extracted from SEEP/W at the same location downgradient of TSF3 for all scenarios.

Aspect	Groundwater flow
Base model upgradient flow for mixing analysis (all flow for full aquifer mixing)	715 m³/day
Flow extracted from beneath tailings area based on flow lines (limited flow for direct/local groundwater mixing)	118 m³/day

1.4 Water quality assessment

1.4.1 Methodology

A mixing assessment has been undertaken to predict the impact that the leachate (Section J.2) may have on the water quality of the receiving environment. The analytical model allows for only mixing (dilution). Other processes that influence water quality such as adsorption to aquifer materials are not adequately represented in the model. As such, the predicted results are considered to be highly conservative, providing confidence that actual effects are likely to be less than predicted in this assessment. The following mass balance analytical solution was used:

C V =	$C V \perp$	CV	
$b_{3}v_{3} - b_{3}v_{3}$	$C_1 V_1 T$	6212	

Where:

C = Concentration of parameter in g/m^3 V = Flow volume in m³/day CV = Mass flux of parameter in g/day

1 = Existing water conditions

2 = TSF3 discharge

3 = Water quality after mixing of 1 and 2

The following scenarios analysed are provided in Table I.23. No analysis is provided for the starter embankment on the basis that no discharge is predicted to discharge to the receiving environment (Table I.18). For added conservatism, the analysis considered straight mixing of the TSF3 leachate into surface water, i.e., dilution by groundwater not considered as part of the analysis for the Ohinemuri River or Ruahorehore Stream.

Table I.23 Water quality assessment scenarios and input sources

Scenario	Concentrations	Volume
 The influence of all TSF3 discharges on local groundwater: a. Operational to closure b. Long-term 	C ₁ = Groundwater well AP01a median water quality values	V ₁ = Groundwater flow for both local and full aquifer mixing (Section I.3.3).
	C ₂ = Mean tailings pore water quality and median embankment leachate median water quality (AECOM, 2025)	V ₂ =TSF3 discharges (Table I.18)
 The influence of all TSF3 discharges on the Ohinemuri River: a. Operational to closure b. Long-term 	C ₁ = Ohinemuri River OH1 median water quality values	V_1 = Median flow data from the OGNZL FRENDRUPS gauge on the Ohinemuri River (Section 2.2.1 of the main report).
	C ₂ = Mean tailings pore water quality and median embankment leachate median water quality (AECOM, 2025)	V ₂ =TSF3 discharges (Table I.18)
 3. The influence of collection pond leakage on the Ruahorehore Stream: a. Operational to closure b. Long-term 	C1 = Ruahorehore Stream RU03 and RU10 median water quality values	V ₁ = Measured stream baseflow (Section 5.3.5 of the main report).
	C ₂ = Median embankment leachate median water quality (AECOM, 2025)	V ₂ =Collection pond discharge (Section I.3.3)

I.4.2 Results

The predicted water quality outputs from the mixing analysis are presented in full in Section 5.6.2 of the main report. The ranges provided in the groundwater results table (Table 5.13 of the report) reflect the results for local/direct mixing to groundwater versus full mixing within the aquifer (refer to Table I.22).

The mass flux of parameters entering the Ohinemuri River catchment via groundwater discharge were calculated by multiplying the predicted leachate concentrations in Table 5.14 of the main report with the volume of leachate discharged to the receiving environment (Table I.18). The results are provided in Table 5.15 of the main report.

I.5 Sensitivity testing

This sensitivity testing focuses on the primary analysis, Cross-section 1, which has informed the key assessment of tailings discharge to the receiving environment. The key aspects considered are (Table I.23):

- Leakage through the HDPE liner.
- Tailings permeability, which provides one of the key controls on the volume of tailings seepage leaving the facility.
- Hydraulic conductivity of the geology underlying the tailings (rhyolite tuff), which is interpreted to provide TSF3 discharge from directly entering the Ruahorehore Stream at the embankment toe. Due to the complexity of the model, it was not recalibrated for the K change.

Model aspect:		Boundary condition - water flux (m/d)	Tailings K (m/s)		Rhyolite tuff
			Scenario 3	Scenario 5	K (m/s)
Base model values:		1.7 x 10⁻⁵	1 x 10 ⁻⁵	1 x 10 ⁻⁸	1 x 10 ⁻⁷
Sensitivity test no.	Change to model				
Sens.1	Liner leakage \downarrow	4.3 x 10 ⁻⁶			
Sens.2	Tailings ↑		1 x 10 ⁻⁶	1 x 10 ⁻⁷	
Sens.3	Tailings ↓		1 x 10 ⁻⁸	1 x 10 ⁻⁹	
Sens.4	Geology K ↑				1 x 10 ⁻⁶
Sens.5	Geology K ↓				1 x 10 ⁻⁸

Table I.23 TSF3 sensitivity testing scenarios

The results of the sensitivity testing are summarised as follows:

- Leakage rates of the liner: Estimated by EGL (2019b) to range from 42 to 170 L/ha/d. Both upper and lower bound values were assessed and applying the lower leakage rates provided the following general results (Table I.24):
 - The leakage of tailings through the liner decreases by 48% (Scenario 5) to 58% (Scenario 3) with the lower leakage limit.
 - Drains are the primary recipient of the upper leakage limit in Scenario 3. Tailings discharge is to ground in Scenario 5 for both the base model and sensitivity analysis.
 - Neither analysis results in flow lines to the Ruahorehore Stream from beneath the TSF.
 - The greatest effect of increasing the liner leakage is to increase groundwater flow the deep groundwater receptor, and inferred discharge to the Ohinemuri River. The upper leakage value was reported in the assessment for conservatism.

Scenario	Water rate (m/d)	Scenario 3 – Tailings discharge (m³/day)			Scenario 5 – Tailings discharge (m³/day)		
		Through Zone A	To drains	To receiving environment	Through Zone A	To drains	To receiving environment
Sens.1	4.3 x 10 ⁻⁶	2	2	0	7	0	7
Base model	1.7 x 10⁻⁵	5	5	0	13	0	13
Decrease u leakage:	under lower	58%			48%		

Table I.24 Sens.1 results – liner leakage

- Permeability of the tailings: The scenario testing analysed an order of magnitude higher and lower than the base model K. The results (Figure I.13) showed:
 - The flow directions of the tailing pore water changes so that is more horizontal under the highest K applied, and more vertical under the lowest K applied (Figure I.14).
 - No change in seepage volume from TSF3 (including the embankment) under Scenario 3, as the liner leakage is controlled by the applied liner rate and the drains are operational.
 - Sensitivity to changes in K for Scenario 5 tailings, where:
 - An increase of tailings discharge to the environment 12 times that of the base model is reported for the increased K (Sens.2).
 - The total volume of embankment infiltration does not change (controlled by the applied infiltration rate through the capping layer; AECOM 2020), but the changes in discharge from the tailings influences the proportion of embankment infiltration that goes to the drains. Under the higher K scenario (Sens.2), all embankment infiltration reports to the one active drain (downstream toe drain); whereas under decreased tailings K conditions, the majority discharges to the receiving environment.
 - Neither analysis results in flow lines to the Ruahorehore Stream from beneath the TSF.

Figure I.13 Sensitivity testing outputs for changes to tailings K (Sens.2 and Sens.3)

Figure I.14 Sensitivity testing outputs for changes to tailings K (Sens.2 and Sens.3)
- Permeability of the rhyolite tuff: The scenario testing analysed an order of magnitude higher and lower than the base model K for this rock unit. The results (Figure I.15) showed a change in groundwater flow paths was the key change resulting from the sensitivity tests, which influenced the results as follows:
 - Scenario 3:
 - A moderate change in tailings volume from TSF3 under Scenario 3, with the lower K value (Sens.5) allowing some tailings porewater (31% of total discharge) to bypass the drains and enter the receiving environment. There was no change reported for the increased K value (Sens.4).
 - The response of infiltration (which is applied as rainfall recharge) through the embankment was slightly influenced by the underlying rhyolite unit, with a minor increase in embankment discharge under higher K (Sens.4) of 12 m³/day more than the base model; whereas a lower K (Sens.5) decreased by 4 m³/day against the base model.
 - Scenario 5:
 - The increase and decrease to K both allow for drainage capture of tailings, but a similar order of discharge occurs to the receiving environment.
 - The same volume of embankment infiltration occurs (as per AECOM 2020), but with the sensitivity test results reporting all captured by drain.

Neither analysis results in flow lines to the Ruahorehore Stream from beneath the TSF.

Figure I.15 Sensitivity testing outputs for changes to rhyolite tuff K (Sens.4 and Sens.5)

Appendix J Wharekirauponga Willows Rock Stack Technical assessment

This appendix presents the methodology and results for technical assessment of the proposed Wharekirauponga Willows Waste Rock Stack (WRS). All elevations are presented in metres reduced level (mRL) with reference to Waihi Mine datum, which is 1,000 metres below sea level.

J.1 Introduction

This technical appendix provides the details of the Wharekirauponga Willows WRS analysis presented in Section 6.4 of the Waihi North Groundwater Assessment report.

The outline of this appendix is as follows:

- J.2 Numerical analysis (methodology and results)
- J.3 Water quality assessment
- J.4 Sensitivity analysis

J.2 Numerical analysis

J.2.1 Methodology

The rationale for the model set up is described in Section 6.3 of the Groundwater Assessment report. This section describes the physical model set up, how calibration was achieved, and the scenarios applied.

The base model comprised a steady-state 2D cross-sectional model using Geostudio 2024 SEEP/W (see Figure 6.7 in main report for section location). The section length was 228 m, with the gully located approximately 151 m along the X axis. The model boundaries represent the ridges and were approximated from topography. The model was calibrated to shallow groundwater levels recorded within the andesite, downwards vertical hydraulic gradients and baseflow discharge to the gully stream.

The model scenarios are summarised in Table J.1. Model set up details are provided in Table J.2, base model calibration results are provided in Table J.3 and calibrated hydraulic properties of the geology and WRS material are provided in Table J.4.

Scenario		Description
Base model		 Base of gully set to 1,177.5 m RL.
		 Ground model provided by EGL. Whiritoa Andesite rock as primary geology, with overlying ash/residual soils.
		 Rainfall recharge applied to full model (10% of annual rainfall)
		 Model calibrated to shallow groundwater levels within the andesite, downwards vertical hydraulic gradients and baseflow discharge to the gully stream.
WRS operation	Scenario 1: 30% rainfall	 Rock placed to maximum height directly on ash/residual soil, and within shear key underlain by Zone A liner.
	recharge _	 Rainfall recharge rate applied directly to surface of the rock stack.
	Scenario 2: –	 Rock drain at base of gully (assumed 0.5 m thick).
	50% rainfall	 Shear key drain at southern extent of above Zone A liner.
	recharge	- Results multiplied by 450 m (length of WRS perpendicular to model section)

Table J.1	WRS base model calibration and scenario summary	(stead	v state)
	whice base model campitation and scenario summary	Jaccau	y sidie

Table J.2 WRS model set-up

Boundary type	Adopted boundary condition	Justification	Model scenario	
Groundwater boundary (base of model) Constant head – 1,153 mRL		Calibrated to shallow groundwater levels within	Base model and WRS operation	
Rainfall recharge	Water flux – 7x10 ^{.9} m/s (10% annual rainfall)	Andesite, downwards vertical hydraulic gradients and baseflow to gully stream.		
Recharge to the rock stack	Two recharge rates applied to the rock stack: Water flux – – 30% recharge: 2.3x10 ⁻⁸ m/s – 50% recharge: 3.5x10 ⁻⁸ m/s	30 & 50 % of average rainfall at the site (2,110 mm/year; NIWA 2019)	WRS operation	
Shear key and rock drains	Water rate – 0 m ³ /day with potential seepage face review	Removal of leachate through drains	WRS operation	

Table J.3 WRS base model calibration results

Parameter	Measured	Modelled			
Groundwater levels within shallow	Groundwater levels within shallow andesite				
WWS101 VWP2	1,180.3	1,179.0			
WWS102S	1,179.5	1,180.3			
WWS105 VWP3	1,183.8	1,181.2			
Downwards vertical hydraulic gradients	Deep andesite groundwater levels 1,172.6 mRL (WWS107) 1,174 mRL (WWS105)	1,153 – 1,181 mRL within Low Permeability Andesite unit at base of model			
Baseflow discharge to gully stream	0.7 L/s ⁽¹⁾	0.69 L/s ⁽²⁾			
 Baseflow adopted from lowest measured flow gauging result 24 March 2024 (WWLA, 2024) Assumes 470 m length of stream receiving baseflow discharge within gully 					

Table J.4 WRS model calibrated hydrogeological material parameters

Material unit	Hydraulic conductivity (m/s)	Anisotropy (K _V /K _H)	Hydraulic conductivity justification		
Residual soil	2 x 10 ⁻⁸	0.3	EGL (2025c) geotechnical		
Extremely – Very Weak Andesite	9 x 10 ⁻⁷	0.6	site investigation results and calibrated to shallow groundwater levels within		
Weak – Moderately Strong Andesite	1 x 10 ⁻⁶	1.0	Andesite, downwards vertical hydraulic gradients		
Low permeability Andesite	1 x 10 ⁻⁹	1.0	stream.		
Rock drain	1 x 10 ⁻²	1.0	Nominal value considered appropriate for rock drain		
Rock stack	1 x 10 ⁻⁵	0.5	Considered appropriate for emplaced rock materials (as applied for NRS).		
** VWC = Volumetric water content function (SEEP/W 2012 materials database)					

J.2.1 SEEP/W outputs

The phreatic groundwater surface and groundwater flow paths for the calibrated base model are presented in Figure J.1, and groundwater recharge and discharge per 1 m section of the model are presented in Table J.5.

 Table J.5
 Groundwater recharge and discharge in calibrated base model (m³/day per 1 m section)

Recharge	Discharge to WRS gully	Discharge to base of model (Mataura Stream)
0.14	0.13	0.017

Figure J.1 Calibrated numerical groundwater model (base model). Dashed blue line = phreatic groundwater surface. Solid green lines = groundwater flow paths.

Following development of the rock stack, the proportion of predicted rock stack leachate captured by the seepage drains is presented in Table J.6 (results scaled by 450 m length of WRS perpendicular to model section). The predicted leachate not captured by the drains is the volume predicted to enter the Ohinemuri River catchment via the Mataura Steam.

 Table J.6
 Leachate generation and discharge from WRS (m³/day)

WRS recharge	Total infiltration through WRS	Leachate captured by shear key drain and rock drain	Leachate seepage not captured by drains
30%	175	178	2.2
50%	267	270	1.2

J.2.1 Drain capture – mass flux calculation

The mass flux of parameters to the drains was calculated by multiplying the predicted leachate concentrations by the maximum predicted drain capture (270 m³). The leachate parameter concentrations were sourced from the water balance model, provided in the GHD (2025a) water management report. These values are based on the 95th percentile for TSF1A seepage data. The results are presented in Table J.7.

 Table J.7
 Mass flux of leachate captured by shear key and rock drain (50% recharge scenario) assuming leachate quality of 95th percentile values for TSF1A

Parameter	Mass flux (kg/d)
AI	0.089
As	0.00081
Cu	0.00081
Fe	5.1
Hg	0.00015
Mn	12.9
Ni	0.081
Pb	0.00011
Se	0.0013
Sb	0.0013
SO4	647
Zn	0.051

J.3 Water quality assessment

J.3.1 Methodology

A mixing assessment has been undertaken to predict the impact that the leachate (Section J.2) may have on the water quality of the receiving environment. This has been determined to be the Mataura Stream, which is part of the Ohinemuri River catchment (Section 6.2.3 of the main report). The analysis conservatively considered straight mixing of the leachate into the stream (i.e. dilution by groundwater not considered) using the following mass balance analytical solution:

Where:

C = Concentration of parameter in g/m³

V = Flow volume in m³/day CV = Mass flux of parameter in g/day

1 = Existing stream quality

2 = WRS leachate discharge

3 = Stream water quality after mixing of 1 and 2

This analysis considers the following inputs:

- Existing Mataura Stream water quality (C₁): The background stream quality was adopted from the median concentrations from samples collected at M12 between 2020 – 2024.
- Leachate parameter concentrations (C₂): Sourced from the water balance model, provided in the GHD (2025a) water management report (as per the drain capture mass flux analysis above; Section J.2.1). For this analysis leachate quality of 95th percentile values for TSF1A was adopted.
- Mataura Stream flow (V₁): A range of (rounded) flows was considered, based on the lowest predicted flow (2,000 m³/day) and median stream flow (19,000 m³/day) (GHD, 2024).
- Maximum predicted leachate not captured by drainage system (V₂): From groundwater modelling results above (2.2 m³/day).

J.3.2 Results

The results are presented in Table J.8. Due to the relatively low discharge volume to ground, most predicted parameter concentrations report no differences between the analysed scenarios within the levels of accuracy available. The key parameters that do vary across the scenarios are iron, manganese and sulphate.

The mass flux of parameters entering the Ohinemuri River catchment via groundwater discharge were calculated by multiplying the predicted leachate concentrations with the volume of leachate discharged to ground. The results are provided in Table J.9.

Parameter	Existing water quality*	Predicted water quality after	Receiving water	
	(median values)	Median flow conditions (19,000 m³/day)	Low flow conditions (2,000 m³/day)	4
AI	0.03	0.03	0.03	
As	0.001	0.001	0.001	0.19
Са	2.3	2.4 🔨	2.9 🔨	
Cd	0.00005	0.00005	0.00005	0.0003
Со	0.0002	0.0002	0.0004 🔨	
Cu	0.0005	0.0005	0.0005	0.003
Fe	0.03	0.03	0.05 🛧	1.0
Hg	0.00008	0.00008	0.00008	0.000012

Table J.8 Mataura Stream estimated water quality (values in mg/L)

Parameter	Existing water quality*	Predicted water quality after	Receiving water	
	(median values)	Median flow conditions (19,000 m³/day)	Low flow conditions (2,000 m³/day)	
к	1.0	1.0	1.0	
Mg	1.3	1.3	1.6 🛧	
Mn	0.002	0.0076 🔨	0.055 个	2.0
Na	6.9	6.9	7.0 🛧	
NH₃-N	No data	No result (<i>increase of 0.0003</i>) ↑	No result (<i>increase of 0.003</i>) ↑	0.19
Ni	0.0005	0.0005	0.0008 个	0.04
Pb	0.0001	0.0001	0.0001	0.0004
Se	No data	No result (increase of 0.0000006) ↑	No result (increase of 0.000006) 个	0.02
Sb	0.0002	0.0002	0.0002	0.03
SO ₄	9.0	9.3 🔨	11.6 🔨	
Zn	0.001	0.001	0.001	0.027

Notes:

Receiving water quality criteria values for hardness 20 $g/m^3\,CaCO_3$

Values in $\ensuremath{\textbf{bold}}$ indicate an exceedance of the receiving water quality criteria

 * Median from sampling results at Mataura Stream M12 2020 – 2024

** The mercury (Hg) criterion is lower than available laboratory detection limits

↑ Denotes a predicted increase from existing surface water quality (note: not all increases are expected to be measurable)

Table J.9 Predicted mass flux to the Mataura Stream (kg/day)

Parameter	Mass flux (kg/d)
AI	0.00073
As	0.0000066
Са	1.2
Cd	0.0000022
Со	0.00031
Cu	0.000007
Fe	0.042
Hg	0.0000012
к	0.041
Mg	0.55
Mn	0.11
Na	0.28
NH ₃ -N	0.006
Ni	0.00066
Pb	0.0000088
Se	0.000011
Sb	0.000011
SO4	5.3
Zn	0.00042

J.4 Sensitivity analysis

Sensitivity testing was undertaken for hydraulic conductivity of the following:

- The emplaced waste rock.
- The underlying geology.

The applied hydraulic conductivity values for each material tested are presented in Table J.10, with the results presented in Figures J.2 - J.6.

 Table J.10
 Sensitivity analysis parameters

Scenario	Waste rock	Ash/Residual soil	E - V Weak Andesite	Weak - Mod Strong Andesite	Low permeability Andesite
Base model hydraulic conductivity (m/s)	1x10 ⁻⁰⁵	2x10 ⁻⁰⁸	9x10 ⁻⁰⁷	1x10 ⁻⁰⁶	1x10 ⁻⁰⁹
Sensitivity analysi	S				
Hydraulic conductivity increase (m/s)	1 x10 ⁻⁰⁴	2 x10 ⁻⁰⁷	9x10 ⁻⁰⁶	1x10 ⁻⁰⁵	1x10 ⁻⁰⁸
Hydraulic conductivity decrease (m/s)	1x10 ⁻⁰⁶	1 x10 ⁻⁰⁹	9x10 ⁻⁰⁸	1x10 ⁻⁰⁷	1x10 ⁻¹⁰

Figure J.2 Sensitivity analysis – hydraulic conductivity of residual soil / ash

Figure J.4 Sensitivity analysis – hydraulic conductivity of Extremely – Very Weak Andesite

Figure J.5 Sensitivity analysis – hydraulic conductivity of weak – moderately strong andesite

Figure J.6 Sensitivity analysis – hydraulic conductivity of low permeability andesite

The results of the sensitivity analysis indicate that for all scenarios tested, excluding the low permeability andesite, the volume of leachate seepage not captured by the drains only varies by a small amount $(0 - 4.7 \text{ m}^3/\text{day})$. However, where the hydraulic conductivity of the low permeability andesite was increased by an order of magnitude, the volume of leachate seepage not captured by the drains increased to 49 m³/day (18 – 27% of total infiltration through the waste rock stack for the 50% and 30% recharge scenarios, respectively). While these sensitivity analysis results are based on an uncalibrated model scenario, review of the potential impact the increased leachate discharge may have on the water quality of the Mataura Stream has been undertaken. The results indicate that with the exception of mercury, for which the RWQC is lower than available laboratory detection limits, no exceedances of the RWQC are estimated when considering 49 m³/day of leachate discharge to the Mataura Stream during low flow conditions.

Appendix K Water resource users

Table K.1Registered groundwater bore (WRS database) within the WNP area (excluding OceanaGold bores)

Well ID	Identifier	Location description	Drilling date	Company name	Easting	Northing	Diameter	Depth drilled	Casing bottom	Screen inside diameter	Screen top	Screen bottom
38314	63_4		30/10/1984	Brown Bros (N.Z.) Limited	1854108	5855876		106.29				
38444	63_11		19/10/1984	Brown Bros (N.Z.) Limited	1852107	5855872	100	169.7				
38542	63_124	Ford Road Waihi	22/05/1991	Tauranga Drilling Co Limited	1852808	5855673	100	110	78			
38544	63_136	Waihi Rubbish Dump	25/02/1996	Perry Geotech Limited	1851801	5859173	50	12.5	10.5	50	10.5	12.5
38557	63_2		24/10/1984	Brown Bros (N.Z.) Limited	1855410	5855178	100	116.57				
39141	63_388	Bulltown Road, Waihi	8/10/1982	Radial Drilling	1851601	5858973	100	50				
39142	63_392	In school grounds	1/01/1945	Benton & Son Limited	1853908	5853933	150	126.7	76.6			
39856	63_200	Old Tauranga Road Waihi	22/01/1990	Barham United Welldrillers Limited	1851711	5853470	100	123				
40006	63_249	WARMSLEY RD, WAIHI	8/12/1994	Barham United Welldrillers Limited	1852400	5859974	100	74	45.5	65	45.5	74
40258	63_328	Golden Valley Road Waihi	3/05/1991	Tauranga Drilling Co Limited	1856283	5859856	100	49	19.5			
40350	63_305	TRIG RD, WAIHI	13/04/1995	Barham United Welldrillers Limited	1857306	5857782	100	66	36			
40701	63_351	MAIN RD, WAIHI	29/09/1983	Rex Brown Drilling (2012) Limited (Ceased Trading)	1853912	5853974	100	125	71.68			
41068	63_370	Waihi Rubbish Dump	26/02/1996	Perry Geotech Limited	1851801	5859173	50	8	6	50	6	8
41117	63_95	Crean"s Rd, Waihi	10/05/1991	Barham United Welldrillers Limited	1851406	5856271	100	105	17			
41127	63_113	TAURANGA RD, WAIHI	5/10/1993	Barham United Welldrillers Limited	1853711	5854074	100	122	84.5			
41128	63_237	WHANGAMATA RD, WAIHI	9/11/1993	Barham United Welldrillers Limited	1856197	5862883	100	33	16.1	80	21	33
41675	63_78	Waihi Beach Road	9/09/1992	Tauranga Drilling Co Limited	1856828	5854849	100	24	13			
41676	63_266	Baxter Rd Waihi.	29/08/1983	Barham United Welldrillers Limited	1854107	5856776	100	128.02	36.57			
41703	63_310	Tauranga Road Waihi	1/05/1987	Ken Garnett Drilling Limited	1854112	5853875	100	130	72			
41738	63_207	Kingsley Road Waihi	8/09/1992	Tauranga Drilling Co Limited	1853607	5856475	100	46	33			
41814	63_319	GOLDEN VALLEY RD, WAIHI	15/10/1993	Barham United Welldrillers Limited	1856715	5859753	100	78	58.5			
41860	63_128	Kingsley Rd	31/08/1990	Tauranga Drilling Co Limited	1853607	5856275	100	43	32.5			
42537	72_16		12/10/1999	Ken Garnett Drilling Limited	1851405	5856871	150	55	39			
42545	63_96	FRANKTON RD, WAIHI	12/10/1994	Tauranga Drilling Co Limited	1851206	5856270	100	140	91			
42563	63_381	Waihi	13/02/1997	Perry Geotech Limited	1851902	5858573	50	7	4	50	4	5.5
42683	63_264	Waihi Beach Rd	10/09/1992	Barham United Welldrillers Limited	1855711	5854878	100	156	65			
42945	63_234	S H 2 WAIHI	6/06/1985	Ken Garnett Drilling Limited	1853107	5856274	100	87.8	52			
43476	63_267	Whangamata Highway	8/01/1991	Tauranga Drilling Co Limited	1853801	5859777	100	53	32.5			
43700	72_666		26/02/2001	Geo Hutchinson (1984) Limited	1857205	5858683	100	42.6	19.6			
44074	63_385	Katikati-Waihi Road, Waihi	1/01/1985	Ken Garnett Drilling Limited	1854134	5853766	100	129	70			
44107	72_1332		25/03/2003	Drillwell Holdings New Zealand Limited	1855610	5855178	150	139.5				
44244	63_125	Trig Rd Waihi.	21/04/1985	Carlyle Drilling Limited	1854370	5853739	150	161				
44282	63_198	TAURANGA RD, WAIHI	1/12/1983	Thames Valley Welldrillers Ltd	1853509	5855574	100	98	52			
44283	63_201	WAIHI BEACH RD	1/01/1982	Thames Valley Welldrillers Ltd	1855436	5855078	100	48	26			
44284	63_235	TAURANGA RD, WAIHI	6/06/1985	Ken Garnett Drilling Limited	1853307	5856174	100	87.8	52			
44285	63_236	TAURANGA RD, WAIHI	15/06/1985	Ken Garnett Drilling Limited	1853168	5856185	112	88	52.5			
44295	63_389	HASZARD STREET, WAIHI	19/08/1997	Perry Geotech Limited	1851503	5858072	50	6	4.5	50		
44384	72_1360		30/03/2003	Ewen Cameron Welldrilling	1853710	5855074	150	167.64	58			
44385	72_1361		8/04/2003	Ewen Cameron Welldrilling	1855510	5855178	105	125	71.5			

 \rightarrow The Power of Commitment

Well ID	Identifier	Location description Dri	rilling date	Company name	Easting	Northing	Diameter	Depth drilled	Casing bottom	Screen inside diameter	Screen top	Screen bottom
44541	72_961	17/	7/02/2000	Perry Geotech Limited	1852891	5857203	100	126				
44641	72_959	30/	0/10/1999	Perry Geotech Limited	1853005	5857174	100	72				
44664	72_960	14/	4/02/2000	Perry Geotech Limited	1853005	5857174	100	85				
44748	72_1223	22/	2/11/1988	Tauranga Drilling Co Limited	1853668	5859634	120	92.5	19.1			
45418	72_762	17/	7/12/1997	Barham United Welldrillers Limited	1855698	5861982	100	172	65			
45427	72_771	20/	0/11/1998	Barham United Welldrillers Limited	1854004	5858477	100	86	50			
45546	72_3954	24/	4/07/2000	Ewen Cameron Welldrilling	1854112	5854075	100	130				
45772	72_3562	10/	0/07/2007	Geo Hutchinson (1984) Limited	1856204	5858681	100	55	23			
45983	72_3956	22/	2/08/2008	Carlyle Drilling Limited	1853207	5856174	100	60	31.5			
46126	72_2437	16/	6/05/2005	Carlyle Drilling Limited	1856539	5854901	100	124	65			
46537	72_4839	14/	4/01/2005	Barham United Welldrillers Limited	1853508	5856075	100	84	65	65	64	84
46679	72_4879	21/	1/04/2005	Barham United Welldrillers Limited	1854100	5860178	100	30	16			
46800	72_5193	16/	6/12/1988	Tauranga Drilling Co Limited	1853001	5859475	120	86	56			
46975	72_3985	17/	7/07/2007	Boart Longyear Drillwell	1853080	5858797	125	95			92.9	94.9
46976	72_3986	20/	0/07/2007	Boart Longyear Drillwell	1853074	5858795	125	49.9	47.9		47.9	49.9
46977	72_3987	20/	0/07/2007	Boart Longyear Drillwell	1853066	5858791	125	9.4	7.4	25	7.4	9.4
46978	72_3988	20/	0/07/2008	Boart Longyear Drillwell	1852894	5858463	125	68			64.4	66.4
47131	72_3338	19/	9/06/2007	Geo Hutchinson (1984) Limited	1856204	5858681	100	55	23			
47327	72_5196	6/0	/03/1989	Tauranga Drilling Co Limited	1855898	5861982	120	82	60			
47610	72_5195			Tauranga Drilling Co Limited	1855698	5862182	120	73	43			
47647	72_5742	20/	0/07/2011	Boart Longyear Drillwell	1852703	5858674		144.7				
47648	72_5743	24/	4/08/2011	Boart Longyear Drillwell	1852502	5858674						
47649	72_5744	15/	5/09/2011	Boart Longyear Drillwell	1852602	5858974						
47966	72_5738	16/	6/08/2011	Boart Longyear Drillwell	1852502	5858974		144.6				
48022	72_5081	28/	8/02/2007	Barham United Welldrillers Limited	1855614	5853277	100	11	5	100	5	11
48149	72_5739	3/0	/08/2011	Boart Longyear Drillwell	1852702	5858874		158				
48150	72_5740	11/	1/07/2011	Boart Longyear Drillwell	1852803	5858675		122				
48258	72_5963	7/1	/11/2010	Ken Garnett Drilling Limited	1856267	5858213	100	47	45	100		
48428	72_6078	27/	7/07/2012	Boart Longyear Drillwell	1852602	5858974		265				
48598	72_8975	28/	8/09/1989	Tauranga Drilling Co Limited	1856412	5862701	100	57.5	12			
49453	72_9336	1/0	/01/1965	Carlyle Drilling Limited	1852920	5856804	100	183	61			
49743	72_10626	18/	8/12/2020	Brown Bros (N.Z.) Limited	1855116	5861496	100	120	84			
49763	72_9795	29/	9/03/2017	Brown Bros (N.Z.) Limited	1852343	5854046	250	119	41.25			
49991	72_10628	27/	7/07/2020	Brown Bros (N.Z.) Limited	1855829	5854773	200	244.6	172.5			
50038	72_10251	24/	4/01/2020	Brown Bros (N.Z.) Limited	1855830	5859751	100	82.9	58.2			
50238	72_10064	28/	8/04/1988	Ewen Cameron Welldrilling	1856790	5857987	120	63	42			
50412	72_10311	10/	0/10/1989	Tauranga Drilling Co Limited	1853811	5861066	120	200	34			
50430	72_9798	15/	5/09/2018	Brown Bros (N.Z.) Limited	1852938	5856790	200	350.03	173.5			
50701	63_5	30/	0/10/1984		1854108	5855976						
50707	63_71				1856711	5854980						
50855	63_12	19/	9/10/1984		1852107	5855972	100	169.7				
51151	63_3	30/	0/10/1984		1854208	5856076	100	106.29				
53626	63_398	0/0	/01/1900		1854109	5855776		80				
54017	72_1822	1/1	/12/1983		1853509	5855474	100	98	58.5			
54889	72_6162				1855370	5858492	100					

Well ID	Identifier Location descriptio	n	Drilling date	Company name	Easting	Northing	Diameter	Depth drilled	Casing bottom	Screen inside diameter	Screen top	Screen bottom
54890	72_6163				1855431	5858341	100	95	45			
54891	72_6164				1855812	5858480	100					
55438	72_9209				1853845	5854095	100	139	133.3			
55525	72_9253		1/01/1986		1853897	5855233	100					
55566	72_8777				1855671	5853176						
56607	72_8693				1854698	5855477	100	30				
56609	72_8695				1856244	5855738						
56910	72_9048				1856339	5853381						
57150	72_6232		1/01/1988		1851395	5853809	150	120	120			
57452	72_10865		9/02/2022	Brown Bros (N.Z.) Limited	1853894	5856217	100	120	78		78	120
57642	72_11017		23/05/2022	Barham United Welldrillers Limited	1856519	5862801	100	58	13		13	38
57759	72_11440		30/09/2018	Rig Rentals Limited	1853820	5861463	100	88.5	64.5			
58672	72_12076		11/12/2023	Brown Bros (N.Z.) Limited	1856680	5859842	100	122.27	122.27			
118774	72_12391		25/09/2024	Brown Bros (N.Z.) Limited	1856238	5862822	100	50.7	37.8	100	38.7	50.7

 Table K.2
 Water take consents (WRS database) located within the WNP project area (excluding OceanaGold consents)

Authorisation ID	Activity	Commenced	Expiry date	Holder	Authorisation Address	Easting	Northing
AUTH131303.01.01	Ground water take	4/12/2015	31/12/2030	Arthur Farms Limited	95 Trig Road, Waihi	1855738	5855738
AUTH131595.01.01	Ground water take	28/04/2016	31/12/2030	B McLean & AE Gaddes	87 Mathers Road, RD 1, Waihi 3681	1856339	5853381
AUTH142870.01.01	Ground water take	27/07/2021	31/07/2036	Black Hill Orchard Limited	9477 Tauranga Road, Waihi	1852939	5856790
AUTH141021.01.01	Ground water take	9/12/2019	30/11/2034	Chris McHardy	24 Waihi Beach Road, RD 1, Waihi, Waihi 3681	1853168	5856185
AUTH131596.01.01	Ground water take	23/11/2015	30/11/2030	GK & MH Mathers	88 Mathers Road, RD 1, Waihi 3681	1855671	5853176
AUTH137051.01.01	Ground water take	22/07/2016	31/07/2031	Goldmine Developments Limited	State Highway 2, Waihi	1853890	5855250
AUTH130392.01.01	Surface water take	16/05/2014	16/05/2034	Hauraki District Council (Paeroa Office)	Walmsley Road, Waihi	1851558	5861828
AUTH130392.03.01	Surface water take	16/05/2014	16/05/2034	Hauraki District Council (Paeroa Office)	Walmsley Road, Waihi	1853973	5858554
AUTH119346.01.01	Ground water take	19/08/2009	1/08/2027	Hauraki District Council (Paeroa Office)	Bulltown Rd, Waihi (Waihi Closed Landfill)	1851801	5859173
AUTH131201.01.01	Ground water take	23/11/2015	30/11/2030	JG & JM Wright	159-179 Waihi Beach Road, Waihi	1854698	5855477
AUTH146468.01.01	Ground water take	26/02/2024	26/02/2039	Macedonian Properties Limited	436 Golden Valley Rd, Waihi (Fonterra 75911)	1856680	5859842
AUTH125743.01.01	Ground water take	27/09/2013	30/09/2028	MT & JL Gerring	Trig Rd, Waihi (Fonterra 75920)	1856267	5858213
AUTH125803.01.01	Ground water take	9/04/2014	9/04/2029	Orchard Dairies Limited	Trig Road North, Waihi (Fonterra 75923)	1855370	5858491
AUTH125803.01.01	Ground water take	9/04/2014	9/04/2029	Orchard Dairies Limited	Trig Road North, Waihi (Fonterra 75923)	1855812	5858480
AUTH125803.01.01	Ground water take	9/04/2014	9/04/2029	Orchard Dairies Limited	Trig Road North, Waihi (Fonterra 75923)	1855431	5858341
AUTH143325.01.01	Ground water take	11/08/2021	1/07/2036	Protective Cropping Limited	232 Trig Road South, RD 1, Waihi, Waihi 3681	1855830	5854770
AUTH120591.01.01	Surface water take	1/08/2010	1/07/2027	RG McIntyre Farms Limited	Fisher Road, Waihi	1854107	5856376
AUTH147307.01.01	Ground water take	20/12/2024	13/08/2039	SMAC Holdings 2001 Limited	25A Fisher Road, RD 1, Waihi 3681	1853894	5856217
AUTH146708.01.02	Surface water take	14/08/2024	13/08/2039	SMAC Holdings 2001 Limited	25A Fisher Road, RD 1, Waihi 3681	1853900	5856301
AUTH139076.01.01	Ground water take	22/01/2018	1/02/2033	Taran and Arash Sunner Limited	263 Waihi Beach Rd, RD 1, Waihi	1855410	5855078
AUTH126104.01.01	Ground water take	27/09/2013	30/09/2028	Tavuna Farm Limited	Old Tauranga Rd, Waihi (Fonterra 75928)	1851395	5853809
AUTH136827.01.01	Ground water take	8/06/2016	31/12/2030	Vale Green Services Limited	Ford Road, Waihi	1853845	5854095
AUTH132325.01.01	Ground water take	4/12/2015	31/12/2030	VM Jensen	730 Waihi Whangamata Road, RD 1, Waihi 3681	1856412	5862701
AUTH125719.01.01	Surface water take	7/06/2017	31/12/2030	Waihiki Holdings Limited	Waihi Beach Road, Waihi (Fonterra 755961)	1856073	5855066
AUTH142291.01.01	Ground water take	22/10/2020	31/10/2035	Waitui Trust	11 Trig Road South, Waihi	1854134	5853767

Appendix L

Gladstone Wetland Groundwater Assessment Summary

Technical Memorandum

01 March 2022

То	Oceana Gold (New Zealand) Limited	Tel	093708208			
Copy to	Ethan Glover and Adrian Low (Mitchell Daysh)	Email	zoe.pattinson@ghd.com; anthony.kirk@ghd.com			
From	Zoe Pattinson and Anthony Kirk	12552081				
Subject	Gladstone Wetland Groundwater Assessment Summary					

Document Status

Status	Revision	Author	Reviewer		Approved for issue			
Code			Name	Signature	Name	Signature	Date	
S3	Draft (Rev A)	Z. Pattinson	A. Kirk	Record on file	A. Kirk	Record on file	21/01/2022	
S3	Draft (Rev B)	Z. Pattinson	A. Kirk	Record on file	A. Kirk	Record on file	01/03/2022	

1. Introduction

GHD was commissioned by Oceana Gold New Zealand Limited (OGNZL) to deliver a study relating to groundwater and surface water for the proposed excavation of the Gladstone Open Pit (GOP) and development as a Tailings Storage Facility (TSF) as part of the wider "Waihi North Project" (WNP).

This technical memorandum presents a summary of the assessment of effects on the Gladstone Wetland as a result of the proposed activities. The full assessment is presented in the following report which must be read in conjunction with this technical memorandum:

Waihi North Groundwater Assessment WAI-985-000-REP-LC-0012. Prepared for Oceana Gold (New Zealand Limited).

This technical memorandum is subject to, and must be read in conjunction with, the limitations set out in Section 2 and the assumptions and qualifications contained throughout.

2. Limitations

The following limitations are reproduced in this technical memorandum from the Groundwater Assessment Report (WAI-985-000-REP-LC-0012). This technical memorandum is subject to, and must be read in conjunction with, the following limitations as well as the assumptions and qualifications contained throughout the Groundwater Assessment Report (WAI-985-000-REP-LC-0012).

This report has been prepared by GHD for Oceana Gold (New Zealand) Ltd and may only be used and relied on by Oceana Gold (New Zealand) Ltd for the purpose agreed between GHD and Oceana Gold (New Zealand) Ltd as set out in section 1 of this report. GHD otherwise disclaims responsibility to any person

→ The Power of Commitment

other than Oceana Gold (New Zealand) Ltd arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described throughout this report and in the appendices. GHD disclaims liability arising from any of the assumptions being incorrect.

GHD has prepared this report on the basis of information provided by Oceana Gold (New Zealand) Ltd and others who provided information to GHD (including Government authorities), which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept liability in connection with such unverified information, including errors and omissions in the report which were caused by errors or omissions in that information.

The opinions, conclusions and any recommendations in this report are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points.

Investigations undertaken in respect of this report are constrained by the particular site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant site features and conditions may have been identified in this report. Site conditions (including the presence of hazardous substances and/or site contamination) may change after the date of this Report. GHD does not accept responsibility arising from, or in connection with, any change to the site conditions. GHD is also not responsible for updating this report if the site conditions change.

GHD has not been involved in the preparation of the Assessment of Environmental Effects (AEE), prepared by Mitchell Daysh and has had no contribution to, or review of the AEE other than in this technical report for groundwater assessment. GHD shall not be liable to any person for any error in, omission from, or false or misleading statement in, any other part of the AEE. The GHD document containing the disclaimer is to be included in any other document, the entirety of GHD's report must be used (including the disclaimers contained herein), as opposed to reproductions or inclusions solely of sections of GHD's report.

3. Gladstone Wetland

3.1 Site setting and current conditions

The Gladstone site setting and water level and quality monitoring locations are presented in Figure 1. Two watercourses are present at the southern extent of the proposed Gladstone Pit, which feed a small wetland at the foot of the valley. The watercourses are intermittent, with no measurable baseflow during dry summer periods.

Water discharged from the wetland flows to the southwest through monitoring site TB4 before discharging to the Ohinemuri River. A culvert at the down gradient edge of the wetland provides water level and discharge control on the wetland, with TB4 located immediately upstream of this feature (Figure 2).

The tributary culvert elevation is approximately 1.5 m above the local Ohinemuri River gauging station (OH11), and the wetland slopes upwards to the east, being some meters above the culvert at its most distant extent.

Water levels at the tributary remain relatively constant, controlled by the culvert, except:

- 1. Under high flow conditions, with catchment run-off significantly increasing flow and water level.
- 2. Following prolonged periods without rain

P2011. While very care has been aken to prepare this map, GHD (and LNZ, ESR). Oceans Gold Limited, ESU; make no representations or warranties about fasecuracy, relability, completeness or suitability for any particular purpose and carnol accept liability and responsibility of any knowledge and carnol accept liability and responsibility and responsibility and responsibility and responsibility and responsibility and responsibility and presentations. Unclude the carnot set and the carno

Level 3, 136 Victoria Street, PO Box 13 468, Christchurch 8141, New Zealand 1 64 or any particular purpose and cannot accept liability and responsibility

Figure 2 TB4 monitoring location upstream of culvert

3.2 Wetland conceptual hydrology

The wetland provides both a path for overland flow and dynamic storage for water which flows to the tributary and the Ohinemuri River.

Flow from the catchment to the wetlands and drainage of stored water from the wetlands, which influences water levels and wetland drying, occurs via different modes and at different rates, creating a flow and water level recession response. The outcomes of this are not uniformly evidenced within the wetland and tributary, primarily owing to differences in wetland elevation.

Conceptually, the wetland response is considered to occur as follows:

- Significant rain events create rapid catchment run-off and saturation of soils and organic litter within the wetland. Excess water is rapidly passed through the wetlands, as high rates of surface water flow and water levels measured at TB4. Residual water, whether ponded or in wetland soils or litter, remains as stored water within the wetland.
- Delayed flow from the catchment, such as from interflow, continues after rapid run-off has ceased. This
 continued inflow maintains effective saturation of the wetland. The catchment inflow reduces over a
 period of days to weeks since rainfall.
- Water stored within the wetland drains from soils and organic litter at a slower rate than surface water flow. Water drains from the upper wetland areas towards lower parts of the wetland, where it contributes surface water flow in lower parts of the wetland and in the tributary, maintaining a higher degree of saturation in these areas.
- The drainage of stored water is buffered by groundwater inflow to the wetland, any residual interflow from the catchment and any subsequent inflow created by rain events. The rate of drainage from wetland soils exceeds the rate of groundwater inflow.
- During dry periods, sub-surface drainage continues to remove stored water, with greater reductions in stored water in the upper areas of the wetland first. Prolonged periods without rain see this ongoing drainage result in drying of the wetland, first at the upper wetland extents, and ultimately in lower areas, including at the tributary.

→ The Power of Commitment

- The occurrence of no-flow or dry conditions at the tributary coincides with that point in time when the rate of drainage from the wetlands has reduced to the point that it can be passed as groundwater flow beneath the tributary culvert i.e. there is no excess to generate surface water flow.
- Re-saturation of the wetland is readily achieved by rainfall after a drought period.

Water level data recorded in TB4 between February 2019 – April 2021 is presented in Figure 3. The data collected at this monitoring location indicates that the tributary discharging from the wetland is occasionally present as a stagnant pond with no flow or dries up completely.

It is expected that when the tributary is dry, the wetland itself can be considered to have minimal standing water i.e. the wetland is dry also. However, during such times the soil moisture within the wetland may still remain high.

Over the period of monitoring the tributary appears to have experienced dry periods as follows:

- Summer 2019 dry for approximately 1 day on 2 occasions.
- Summer 2020 dry for approximately 5 months.
- Summer 2021 dry for approximately 2 weeks.

In each case, re-saturation of the wetland and commencement of flow from the tributary occurred with a rain event greater than approximately 40 mm/day.

3.3 Wetland water quality

Surface water quality recorded during summer conditions within and downstream of the wetland at monitoring locations GLD D and TB4, respectively, is presented in Table 1.

Samples from both locations had pH below (more acidic) the range outlined in the existing consent compliance receiving water quality criteria (RWQC). No other parameters are recorded to exceed the RWQC.

→ The Power of Commitment

Table 1	Gladstone wetland	water quality	/ sampled	14/02/2018

Parameter	Units	Glad spring D	ТВ4	Receiving water quality criteria
рН	pH units	5.5	6.0	6.5 - 9.0
Electrical Conductivity (EC)	mS/m	9.7	9.4	
Total Suspended Solids	mg/l	11	5	
Alkalinity - Total	mg/l as CaCO3	7.5	7.3	
Bicarbonate	mg/l at 25C	9.1	8.9	
Hardness-Total	mg/l as CaCO3	15.4	15	
Aluminium-Dissolved	mg/l	0.067	0.073	
Antimony-Dissolved	mg/l	<0.0002	<0.0002	0.03
Arsenic-Dissolved	mg/l	<0.001	<0.001	0.19
Barium-Dissolved	mg/l	0.042	0.048	
Boron-Dissolved	mg/l	0.008	0.009	
Cadmium-Dissolved	mg/l	<0.00005	<0.00005	0.0003
Calcium-Dissolved	mg/l	2.8	2.9	
Chromium-Dissolved	mg/l	0.0006	<0.0005	0.01
Cobalt-Dissolved	mg/l	<0.0002	0.0003	
Copper-Dissolved	mg/l	<0.0005	<0.0005	0.003
Iron-Dissolved	mg/l	0.05	0.27	1
Lead-Dissolved	mg/l	<0.0001	<0.0001	
Magnesium-Dissolved	mg/l	2	1.89	
Manganese-Dissolved	mg/l	0.010	0.025	2
Mercury-Dissolved	mg/l	<0.00008*	<0.00008*	0.000012
Molybdenum-Dissolved	mg/l	<0.0002	<0.0002	
Nickel-Dissolved	mg/l	<0.0005	<0.0005	0.04
Potassium-Dissolved	mg/l	2.2	2.3	
Selenium-Dissolved	mg/l	<0.001	<0.001	0.02
Silver-Dissolved	mg/l	<0.0001	<0.0001	0.0002
Sodium-Dissolved	mg/l	10.1	9.3	
Strontium-Dissolved	mg/l	0.022	0.021	
Thallium-Dissolved	mg/l	0.00005	0.00005	
Tin-Dissolved	mg/l	0.0005	0.0005	
Uranium-Dissolved	mg/l	0.00003	0.00003	
Weak Acid Dissociable (WAD) Cyanide	mg/l	0.001	0.001	0.093
Zinc-Dissolved	mg/l	0.0024	0.004	0.027
Sulphate	mg/l	9	10	
Chloride	mg/l	16	16	
Nitrate-N + Nitrite-N	mg/l	0.83	0.65	

→ The Power of Commitment

Parameter	Units	Glad spring D	TB4	Receiving water quality criteria				
Nitrogen-Total Ammoniacal	mg/l	0.012	0.015					
Total Kjeldahl Nitrogen (TKN)	mg/l	0.23	0.19					
Notes: Receiving water quality criteria values for hardness 20 g/m ³ CaCO ₃ Values in bold indicate an exceedance of the receiving water quality criteria								

3.4 Assessment of effects summary

Potential impacts on the wetland associated with the proposed GOP and TSF were assessed using conceptual interpretation, supported by the use of 2D numerical groundwater models and analytical models. The predicted changes to groundwater discharge, groundwater and surface water catchment areas and groundwater levels during each scenario assessed are presented in Table 2.

Gladstone scenario	Percentage change in groundwater discharge	Percentage change in surface water catchment ⁽¹⁾	Percentage change in groundwater catchment area	Groundwater level change at upper extent of wetland			
GOP excavation	-33%	-26%	-22%	- 0.5 m			
Operational TSF	_						
TSF closure	+156%	+74%	+84%	+ 2.5 m			
Long-term TSF	+197%	+74%	Not assessed	+ 3.0 m			
1) Catchment for both stormwater and interflow							

Table 2 Predicted groundwater and surface water change from current conditions

GOP Excavation and Operational TSF

The predicted effects on the Gladstone Wetland as a result of pit excavation and operation of the subsequent TSF are very similar. The reduction in groundwater discharge by approximately 33% and reduction in groundwater level of approximately 0.5 m adjacent to the wetland is expected to be unmeasurable given the natural variability within the wetland.

The reduction in surface water catchment area is predicted to result in a reduction in stormwater and interflow to the wetland of approximately 26%, which will result in changes in peak flows and recession. Monitoring at TB4 (Figure 2) indicates that during current conditions rainfall events have only a short-term influence on surface water levels, due to the level control provided by the culvert. While the reduction in stormwater and interflow as a result of the proposed activity will reduce the total wetland through flow and the period of time of rainfall recession, the reduction in surface water catchment on flows at TB4 is considered unlikely to have a measurable impact on surface water levels within the wetland.

The reduction in catchment and groundwater inflow may result in less frequent saturation of the wetland and reduced buffering of drainage from the wetland. However, the level control on the tributary provides a degree of protection for the wetland against more frequent or more prolonged periods of drying. The wetland is expected to continue to dry each summer. Some small increase in the duration of wetland drying may be evident in the more elevated (eastern) areas of the wetlands, however, as only a modest rainfall is required to re-saturate the wetland following dry conditions, the duration of complete wetland drying would likely only be influenced to a small degree on occasional years.

Changes in the duration the full extent of wetland remains dry are unlikely to be discernible from the natural variability between summer conditions. Increased average duration of drying at the very upper extents of the wetland may be discernible with monitoring over a long time period but is unlikely to deviate from the range of conditions that has occurred historically in that location.

TSF Closure and Long-term TSF

Following closure of the TSF, the capping layer is proposed to be contoured to direct rainfall runoff towards the Gladstone Wetland catchment via a culvert in the rim of Gladstone pit. This will result in an increase in catchment area for surface water in comparison to current conditions. In addition, it is understood that rewatering of the deep groundwater system will occur following cessation of underground mine dewatering. As the shallow groundwater system is currently under-drained by the deep groundwater system, rewatering is predicted to result in an increase in shallow groundwater levels as downwards vertical hydraulic gradients are reduced or reversed in low lying areas. Discharge of groundwater, stormwater and interflow to the wetland is therefore predicted to increase in comparison to current conditions, returning deep and shallow groundwater levels to those similar to pre-mining conditions.

3.5 Wetland mitigations

Diversion of stormwater to the Gladstone wetland or provision of an alternate water source, such as groundwater, may provide the means of mitigating wetland drying if considered necessary. Additionally, increasing the invert level of the culvert in the tributary may assist by promoting higher water levels and reduced rates of drainage from the wetland.

Regards

Zoe Pattinson Senior Hydrogeologist Anthony Kirk Technical Director – Environment

Appendix M Mataura Wetland Assessment

Technical Memorandum

24 February 2025

То	Oceana Gold (New Zealand) Limited	Tel	029 355 1207
Copy to	Ethan Glover and Adrian Low (Mitchell Daysh)	Email	tim.mulliner@ghd.com; anthony.kirk@ghd.com
From	Tim Mulliner and Anthony Kirk	Ref. No.	12552081
Subject	Mataura Wetland Assessment		

Document Status

Status Code	Revision	Author	Reviewer		Approved for issue			
			Name	Signature	Name	Signature	Date	
S4	Rev 1	Tim Mulliner Zoe Pattinson	A. Kirk	cheg a	A. Kirk	cheg a	24/02/2025	

1. Introduction

GHD was commissioned by Oceana Gold New Zealand Limited (OGNZL) to deliver a study relating to mine water management relating to the Willows Rock Stack (WRS) and the Willows Portal associated with the proposed tunnelling activity at the Willows Road Surface Facility Area (WSFA) which is part of the wider "Waihi North Project" (WNP). The Water Management for WNP is described in detail in GHD, 2025¹.

A small wetland has been characterised down catchment of the proposed WRS collection pond between the collection pond and the Mataura Stream (herein referred to as the Mataura Wetland). This technical memorandum presents a desktop assessment of effects on the Mataura Wetland (in terms of hydraulic load) as a result of the proposed activities in the immediate vicinity and within the defined catchment area of the wetland.

This technical memorandum is subject to, and must be read in conjunction with, the limitations set out in Section 2 and the assumptions and qualifications contained throughout.

2. Limitations

The following limitations are reproduced in this technical memorandum from the Water Management Study Report (WAI-985-000-REP-LC-0011_RevD.1). This technical memorandum is subject to, and must be read in conjunction with, the following limitations as well as the assumptions and qualifications contained throughout the Water Management Studies Report (WAI-985-000-REP-LC-0012).

This report: has been prepared by GHD for Oceana Gold New Zealand Ltd. and may only be used and relied on by Oceana Gold New Zealand Ltd. for the purpose agreed between GHD and Oceana Gold New Zealand Ltd. as set out in section 1 of this report. GHD otherwise disclaims responsibility to any person

→ The Power of Commitment

¹ GHD, 2025. Waihi North Project. Water Management Studies. WAI-985-000-REP-LC-0011.

other than Oceana Gold New Zealand Ltd. arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described throughout this report and in the appendices. GHD disclaims liability arising from any of the assumptions being incorrect.

GHD has prepared this report on the basis of information provided by Oceana Gold New Zealand Ltd. and others who provided information to GHD (including Government authorities), which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept liability in connection with such unverified information, including errors and omissions in the report which were caused by errors or omissions in that information.

The opinions, conclusions and any recommendations in this report are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points.

Investigations undertaken in respect of this report are constrained by the particular site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant site features and conditions may have been identified in this report. Site conditions (including the presence of hazardous substances and/or site contamination) may change after the date of this Report. GHD does not accept responsibility arising from, or in connection with, any change to the site conditions. GHD is also not responsible for updating this report if the site conditions change.

GHD has not been involved in the preparation of the Assessment of Environmental Effects (AEE), prepared by Mitchell Daysh and has had no contribution to, or review of the AEE other than in this technical report for water management. GHD shall not be liable to any person for any error in, omission from, or false or misleading statement in, any other part of the AEE. The GHD document containing the disclaimer is to be included in any other document, the entirety of GHD's report must be used (including the disclaimers contained herein), as opposed to reproductions or inclusions solely of sections of GHD's report.

The GHD document containing the disclaimer is to be included in any other document, the entirety of GHD's report must be used (including the disclaimers contained herein), as opposed to reproductions or inclusions solely of sections of GHD's report.

3. Mataura Wetland

3.1 Site setting

The Mataura Wetland is located on a river terrace of the Mataura Stream down hydraulic gradient of both the proposed collection pond and infrastructure area associated the WSFA. The defined Wetland area and associated 20 m setback in relation to the river, surrounding topography and key infrastructure elements are shown in Figure 1.

Figure 1 Willows Road Surface Infrastructure Layout including existing wetland adjacent to Mataura Stream (Beca Drawing No. WAI-981-000-DWG-CI-1001)

3.2 Wetland conceptual hydrology and hydrogeology

Based on the topography of the site (steep relatively incised valley), surface water is inferred to be predominantly channelled to the terrace and wetland area via the unnamed tributary flowing in from the south-west corner of the identified wetland area.

Groundwater levels beneath the site have been recorded at 1 to 2 m below surface level (WWLA,2025)². Groundwater monitoring wells and contours are presented in Figure 2, with relative levels for a number of monitoring wells and the Mataura Stream presented alongside rainfall in Figure 3 and Figure 4.

Figure 2 Groundwater monitoring wells and contours (WWLA, 2025) modified to include Mataura Stream M12 monitoring location and seeps interpreted by GHD from WSP (2021). (Note: Groundwater level and seep elevations in metres above mean sea level). Mataura Wetland located west of monitoring location M12.

The Power of Commitment

² WWLA, 2025. Waihi North Project. Assessment of Groundwater Effects – Tunnel Elements. Prepared for Oceana Gold (New Zealand) Limited. (WAI-985-000-REP-LC-0040).

Figure 3 Groundwater and Mataura Stream levels presented alongside daily rainfall.

Figure 4 Groundwater levels in close vicinity to the wetland and Mataura Stream level presented alongside daily rainfall.

The wetland is inferred to be connected to the shallow groundwater system within the terraced gravels adjacent to the Mataura Stream. WFBH005 was screened within this unit between the wetland and the Mataura stream, and downwards hydraulic gradients are present as indicated by the difference in water levels recorded in this monitoring well and nearby monitoring well WFBH06D installed in the underlying weathered tuff. These downwards gradients are also present between WFBH06S and WFBH06D, as confirmed through manual groundwater level monitoring. WFBH003 is installed within weathered tuff up hydraulic gradient to the unnamed tributary that flows to the wetland from the southwest.

Groundwater and Mataura Stream level response to rainfall in Figure 3 and Figure 4 indicates the following:

- The peaky response to rainfall within deeper monitoring well WFBH06D indicates a strong hydraulic connection to the shallow system. The large magnitude of groundwater level response within this well also demonstrates lower storage within the weathered tuff when compared to the shallower terraced gravels (WFBH005).
- During periods of low rainfall groundwater levels continue to decline until the next significant rainfall event. This is not observed within the Mataura Stream, which maintains a relatively stable baseflow, indicating that during these periods the stream is being recharged from further up the catchment.
- Elevated groundwater levels recorded further upgradient in the catchment (WFBH014, WFBH01S, WFBH015 and WFBH016) indicate that prolonged baseflow is likely to be discharged to the wetland and Mataura Stream.

The inferred water source for the defined wetland is a combination of surface water via runoff and direct rainfall, interflow from infiltrating rainfall within the catchment and groundwater baseflow.

There is no known water quality data directly associated with the defined wetland.

3.3 Assessment of effects summary

The current surface water catchment area draining to the wetland has been approximated to an area of 12.7 ha (Figure 5). During mining the catchment is expected to decrease to an estimated 10.5 ha (Figure 5), equating to an approximate 17% decrease. Surface water runoff volumes reporting to the wetland from the upper catchment is therefore estimated to decrease by a similar proportion. This is expected to be similar for groundwater recharge, as the catchment area for shallow groundwater is anticipated to be similar to the surface water catchment.

The greatest loss of catchment is expected to occur in the vicinity of the collection pond, a portion of the haul road leading to the Willow's Rock Stack (WRS) and the magazine storage area. A small increase in catchment area will occur southwest of the surface facilities area, where overland flow which would usually discharge to the Mataura Stream will be directed northwest towards the existing unnamed tributary.

The reduction in Mataura Wetland catchment area assumes no leakage will occur from the collection pond, which will be dependent on liner design and construction. Post development, the WRS, haul road and collection pond are expected to be decommissioned and it is understood that the catchment area will revert to pre-mining boundaries / areas.

Figure 5 Estimated wetland catchment pre and post development of the proposed WRS

WWLA (2025) predicts that the baseflow loss in the Matarua Stream due to the construction of the WUG tunnel would be 15 m^3 /d in the long term. In terms of the Mataura Stream flow (lowest gauged flow is estimated at >4,500 m³/day (GHD, 2025)), this amount of water loss is limited and on that basis WWLA considers the effects to surface water due to the construction of the tunnel to be less than minor. On the basis of this assessment, it is considered unlikely that an adverse effect on groundwater beneath and within the vicinity of the wetland will occur due to reduced stream flow and groundwater connectivity.

Overall, a reduced source volume of surface water runoff, interflow and groundwater recharge is expected, on account of the reduced catchment size. The extent of this impact will depend on the connection of the Wetland with the Mataura Stream and the relative contribution of these flow sources. The worse-case, conservative estimate of effects suggests an approximately 17% reduction in flow. This is anticipated to manifest in reduced peak levels in groundwater response to rainfall events. During wetter winter periods, this is unlikely to result in measureable impact to the wetland hydrology. During drier summer periods, the reduction in peak flows may result in an extended periods of lower groundwater levels and dry conditions within the wetland. However, this is expected to be unlikely to be discernible from natural variability between summer conditions.

Overflow from the collection pond following significant rainfall events is likely to discharge to the Mataura Wetland. Overflow events will coincide with elevated flows within the Mataura Stream and its tributaries, and elevated water levels in the wetland. Considerable dilution of the water discharging from the collection ponds is likely during these conditions. Furthermore, based on the conceptual understanding of the planned developments and appropriate diversion and/or collection of potentially impacted seepage and runoff water, it is expected that the effect on the receiving surface water environment in terms of water quality is likely to be limited.

3.4 Recommendations

It is recommended that continuous surface and groundwater water level monitoring within and surrounding the defined wetland area be undertaken to refine the understanding of the Mataura Stream / groundwater interactions in the area, and the relative contribution of stream water / catchment water to the wetland.

Diversion of stormwater to the wetland, or provision of an alternate water source, may provide the means of mitigating wetland drying if considered necessary.

Regards

Tim Mulliner Technical Lead - Environment Anthony Kirk Technical Director – Environment

ghd.com

