

Air Quality Management Plan: Bendigo Ophir Gold Project

Date October 2025

DOCUMENT CONTROL

Revision	Author	Comments	Date	Approved
DRAFT 1	Jeff	DRAFT Status	04 February	
	Bluett	This version of the AQMP has not been	2024	
		through the PDP review or quality		
		assurance processes. The purpose of this		
		DRAFT is to provide an update on		
		progress to date and allow us to identify		
		any key omissions from the content of the		
		AQMP		
DRAFT 2	Jeff	FINAL DRAFT	30 April 2025	
	Bluett	This version of the AQMP has been		
		updated to match the final Draft		
		Bendigo-Ophir Gold Project: Assessment		
		of Environmental Effects from the		
		Discharge of Contaminants into Air		
		PDP document number:		
		C051440001R003 Final Draft 240425		
		Dated:		
		April 2025		
DRAFT 3	Jeff	Revising Draft 3 to address BOGP	16 May 2025	
	Bluett	review comments on DRAFT 2.		
FINAL	Jeff	Aligning Stage 2 Assessment with	5 June 2025	
	Bluett	updated AQMP following review		
		comments from Daiman Spring		
FINAL-R1	Jeff	Minor edit – updated soil contamination	2 July 2025	
	Bluett	data		
FINAL-R2	Jeff	Revised to align with proposed consent 5/09/2025		
	Bluet	conditions		

1.	INTF	RODU	JCTION	. 7
	1.1.	Plar	n purpose and scope	. 7
	1.2.	Key	Objectives	. 7
	1.3.	Key	Outcomes	. 7
2.	KEY	ENV	IRONMENTAL FACTOR: DUST	. 8
	2.1.	Intro	oduction	. 8
	2.2.	Prio	rity 1 Dust Source – Haul and Public Roads	11
	2.3.	Prio	rity 2 Dust Sources	12
	2.3.	1.	Ore Processing Plant	12
	2.3.	1.	Tailings Storage Facility	12
	2.4.	Prio	rity 3 Dust Sources	13
	2.4.	1.	Open Pits	13
	2.4.2	2.	Soil and Ore Stockpiles	13
	2.4.3	3.	Engineered Landforms	14
3.	KEY	ENV	IRONMENTAL FACTOR: GASEOUS AIR CONTAMINANTS	14
	3.1.	Intro	oduction	14
	3.2.	Ore	Processing Plant	14
	3.3.	Mac	chinery and Vehicles	15
	3.4.	Und	lerground Portals	15
4.	RES	PON	SIBILITIES	15
	4.1.	Site	Manager and Staff	15
	4.2.	Staf	f Training	16
5.	MAN	IAGE	MENT OBJECTIVES: DUST MITIGATION	17
	5.1.	God	od Practice Mitigation – All Dust Sources	17
	5.2.	Prio	rity 1 Dust Source - Haul Roads and Public Road Works	18
	5.3.	Prio	rity 2 Dust Sources	19

	5.3.	1.	Ore Processing Plant19	11120	
	5.3.	2.	Tailings Storage Facility		20
	5.4.	Prio	ority 3 Dust Sources		22
	5.4.	1.	Open Pits		22
	5.4.	2.	Soil and Ore Stockpiles		23
	5.4.	3.	Engineered Landforms		24
6.	MAN	NAGE	EMENT OBJECTIVES: WATER FOR DUST SUPPRESSION		25
	6.1.	Wat	ter Demand		25
	6.2.	Wat	ter Supply		27
	6.3.	Арр	olying Water to the Site		27
7.	MAN	NAGE	EMENT OBJECTIVES: GASEOUS AIR CONTAMINANTS		28
8.	MAN	NAGE	EMENT OBJECTIVES: COMPLAINTS		29
	8.1.	Rec	ceipt Procedure		29
	8.2.	Res	sponse Procedure	••••••	30
9.	MAN	NAGE	EMENT OBJECTIVES: ENVIRONMENTAL MONITORING		31
	9.1.	Dus	st Monitoring - Visual		31
	9.1.	1.	Method		31
	9.1.	2.	Action and Responses		31
	9.1.	Dus	st Monitoring – Deposition		32
	9.1.	1.	Sites and equipment		32
	9.1.	2.	Triggers and Responses		33
	9.2.	Dus	st Monitoring – Real Time		34
	9.2.	1.	Sites and equipment		34
	9.2.	2.	Triggers and Responses		36
	9.3.	Met	teorological Monitoring		37
	9.3.	1.	Sites and equipment		37
	9.3.	2.	Actions, Triggers and Responses		39

	9.4.	Ore Processing Plant Gaseous Air	GOLD LIMITED	
	Conta	minant Monitoring		. 40
	9.5.	Frequency of Monitoring		. 40
	9.6.	Reporting of Monitoring Programme		. 41
1	0. CHA	NGE MANAGEMENT		. 42

1. INTRODUCTION

1.1. Plan purpose and scope

Pattle Delamore Partners Ltd (PDP) produced the Bendigo-Ophir Gold Project: Assessment of Environmental Effects from the Discharge of Contaminants into Air ¹ on behalf of Matakanui Gold Limited (MGL). That assessment report can be used as a reference for this Air Quality Management Plan (AQMP) as it presents full details on the sources, mitigation, monitoring and effects of the air contaminants discharged from the Bendigo-Ophir Gold Project (BOGP).

This AQMP has been prepared by PDP on behalf of MGL and presents a summary of the key information on the sources, mitigation and monitoring of the air contaminants discharged from the BOGP.

The overarching objective of this AQMP is to set out actions and measures that will be taken by MGL to ensure that air discharges from the BOGP do not result in noxious, dangerous, objectionable, or offensive dust or gases beyond the site boundary.

1.2. Key Objectives

The key objectives of the AQMP are:

- Identify and categorise sources of air contaminants, including dust and gaseous emissions.
- Outline mitigation strategies for managing air quality impacts during the establishment, operation, and restoration phases of the project.
- Establish monitoring protocols for assessing the effectiveness of air quality controls.
- Promote proactive and adaptive management of air quality risks.

1.3. Key Outcomes

The key outcomes from executing the AQMP will be:

- Implementing best practicable options for controlling air contaminant emissions from all site activities.
- Establishing a robust environmental monitoring programme that provides realtime data to assess the effectiveness of air emission control strategies.
- Providing a proactive framework for managing air quality across the development, operational, and restoration phases of the BOGP.

¹ Bendigo-Ophir Gold Project: Assessment of Environmental Effects from the Discharge of Contaminants into Air. Pattle Delamore Partners report number C051440001R003. Dated April 2025.

- Aligning with industry best practice and meet the requirements of relevant consents and environmental standards.
- Defining the types and maximum scale of activities permitted to discharge contaminants into the air.
- Establishing environmental bottom lines and performance measures, including the requirement that no air discharges cause offensive, objectionable, noxious, or dangerous effects beyond the site boundary.
- Requiring implementation of mitigation measures outlined in the AQMP, including dust suppression, buffer distances, and dust emission controls.
- Mandating an environmental monitoring programme to verify the effectiveness of mitigation measures and compliance with performance standards.
- Including provisions for complaints management, reporting, and AQMP review and updates.

2. KEY ENVIRONMENTAL FACTOR: DUST

2.1. Introduction

The activities which have the potential to generate dust within the BOGP are in relation to the establishment, operation and (where required) the restoration of:

- Haul and public roads;
- Ore crushing;
- Tailing storage facility;
- The four open pits;
- Soil and ore stockpiles; and,
- Engineered landforms.

Figure 1 shows the footprint of the BOGP and the location of each of the dust sources.

Using the spatial scale, location, frequency and duration of dust discharges and the buffer distances between BOGP dust sources and sensitive receptors, each of the six dust sources have been categorised as either:

- **Priority 1** Large scale constant dust source requiring routine and intensive dust suppression. Priority 1 dust source will be the focus of the day-to-day routine dust management programme and likely require intensive dust management.
- Priority 2 Small scale constant dust source requiring routine dust suppression.
 Priority 2 dust sources will be part of the day-to-day routine dust management programme but require less intensive dust management.

 Priority 3 - Small scale intermittent dust source requiring intermittent dust suppression. Due to the intermittent nature of these dust sources, and the site's buffer distances to sensitive receptors, Priority 3 dust sources will be mitigated on a as needed basis.

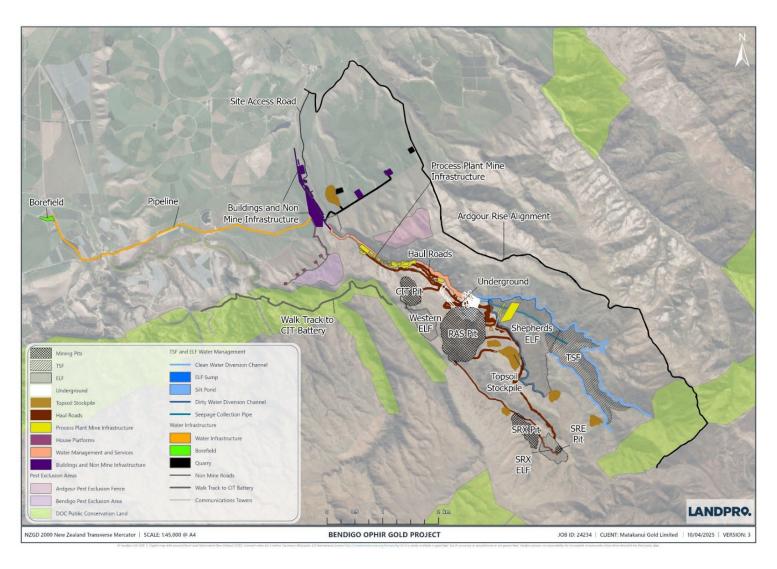


Figure 1 BOGP general site layout and dust sources

The following sections detail BOGP's Priority 1, 2 and 3 dust sources and describe the characteristics of the dust discharged from each source.

2.2. Priority 1 Dust Source – Haul and Public Roads

The BOGP includes the development and use of on-site haul roads which will be travelled by machinery to transport soil, rock, ore and tailings from the pits to stockpiles, Engineered Landforms (ELFs), the processing plant or the Tailings Storage Facility (TSF). The project will also require some small sections of new or re-aligned public roads outside of the site footprint to efficiently connect the BOGP with the local roading network. The consent holder will be responsible for controlling the dust generated from the construction of the affected public roads, however the consent holder is not responsible for controlling the dust generated from the operation of public roads.

The roading works included in the BOGP are:

- Upgrades to the Ardgour and Thomsons Gorge Roads (TGR) from SH8 to the entry point of Shepherds valley;
- A new road from TGR through the "neck" of the lower Shepherds gorge into the process plant area; and
- Ardgour Rise Re-alignment of the western portion of the TGR to follow the Ardgour ridge through to an existing easement in the DOC reserve and then re-joining with the TGR at Thomsons saddle
- Haul roads the establishment of haul roads on the project site

The surfaces of the haul and re-engineered public roads will be unsealed gravel. The sources and characteristics of the haul road dust particles are outlined in **Table 1**.

Table 1: Sources and characteristics of unsealed road dust			
Activity	Dust type	Relative size of dust	
		source	
Haul and	Soil dust. Brown in colour.	Medium	
public road	Brown rock dust. Brown in colour		
construction	Mainly TSP (total suspended particulate		
	matter) with a small component of PM ₁₀ .		
Haul road	Brown rock dust. Brown in colour.	Large	
use	Mainly TSP with a small component of PM_{10} .		

2.3. Priority 2 Dust Sources

2.3.1. Ore Processing Plant

Table 2 describes the sources and characteristics of ore processing plant dust.

Table 2: Sources and characteristics of ore processing plant dust			
Activity	Dust type	Relative size of dust source	
Run of Mine (ROM)	Grey/black rock dust.	Small	
pad.	Mainly TSP with a small		
	component of PM ₁₀ .		
ROM bin.	Grey/black rock dust.	Small	
	Mainly TSP with a small		
	component of PM ₁₀ .		
Covered crushed ore	Grey/black rock dust.	Medium	
stockpile.	Mainly TSP with a small		
·	component of PM ₁₀ .		
Reagent make-up	White dust. Mainly TSP with	Small	
	a small component of PM_{10} .		
Lime silo.	White dust. Mainly TSP with	Small	
	a small component of PM ₁₀ .		

2.3.1. Tailings Storage Facility

The sources and characteristics of the TSF dust particles are outlined in Table 3.

Table 3: Sources and characteristics of ore processing plant dust		
Activity	Dust type	Relative size of dust source
	Grey/black rock dust.	Small.
TSF construction.	Mainly TSP with a small	
	component of PM ₁₀ .	
TSF operation.	Grey/black rock dust.	Small.
	Particulates < 100 μm.	
TSF remediation.	Brown soil dust.	Medium.
	Mainly TSP with a small	
	component of PM ₁₀ .	

2.4. Priority 3 Dust Sources

Due to the size of the site footprint and distances to off-site receptors, some large dust sources are considered as posing a negligible risk of off-site dust effects. These Priority 3 Dust Sources are detailed below:

2.4.1. Open Pits

The BOGP mine includes four open pits, RAS, CIT, SRX and SRE. **Table 4** shows the sources and characteristics of pit dust.

Table 4: Sources and characteristics of pit dust		
Activity	Dust type	Relative size of dust
		source
Soil	Soil dust. Brown in colour	Large
overburden	Mainly TSP with a small component of PM ₁₀ .	
removal		
Drilling and	Brown waste rock dust or grey ore dust.	Medium
Blasting	Mainly TSP with a component of PM ₁₀ .	
Rock	Brown waste rock dust or grey ore dust.	Small
overburden	Small amounts of TSP with a minor	
and ore	component of PM ₁₀ .	
removal		

2.4.2. Soil and Ore Stockpiles

The BOGP mine includes six stockpiles where overburden soil will be stored until it is used for remediation. **Table 5** shows the sources and characteristics of soil stockpile dust.

Table 5: Sources and characteristics of soil stockpile dust		
Activity	Dust type	Relative size of dust
		source
Soil	Soil dust. Brown in colour.	Medium
overburden	Mainly TSP with a small component of PM ₁₀ .	
Elevated	Soil dust. Brown in colour.	Medium
arsenic soil	Mainly TSP with a small component of PM ₁₀	
overburden	containing As with concentrations between	
	150 and 500 ppm.	

The BOGP mine includes one stockpile where ore will be stored until it is transported to the processing plant. **Table 6** shows the sources and characteristics of ore stockpile dust.

Table 6: Sources and characteristics of ore stockpile dust		
Activity	ty Dust type Relative size of dust	
		source
Ore rock	Ore dust. Black in colour.	Small
stockpiling	Mainly TSP with a small component of PM ₁₀ .	

2.4.3. Engineered Landforms

The sources and characteristics of the ELF dust particles are outlined in Table 7.

Table 7: Sources and characteristics of ELF dust			
Activity Dust type		Relative size of dust	
		source	
ELF	Brown rock dust. Brown in colour	Small	
construction	Mainly TSP with a small component of PM_{10} .		
ELF	Soil dust. Brown in colour.	Moderate	
rehabilitation	Mainly TSP with a small component of PM_{10} .		

3. KEY ENVIRONMENTAL FACTOR: GASEOUS AIR CONTAMINANTS

3.1. Introduction

The BOGP activities which have the potential to discharge gaseous air contaminants are:

- Ore processing plant;
- Machinery and vehicles; and
- Underground mine exhaust portals.

The following sections detail BOGP's sources of gaseous air contaminants and describe the characteristics of the gases discharged from each source.

3.2. Ore Processing Plant

The are three potential sources of gaseous air contaminants and one source of particulate from the ore processing plant:

- Leaching and adsorption tanks;
- Acid wash and elution columns; and,
- Electro-winning cells.

Table 8 describes the sources and characteristics of ore processing plant gaseous and particulate air contaminants.

Table 8: Sources and characteristics of ore processing plant gaseous pollutants			
Process	Pollutant type	Quantity of Emission	
Leaching and adsorption	HCN	Zero – subject to mitigation.	
tanks			
Gold recovery Acid wash and	HCN	Zero – subject to mitigation.	
elution columns			
Electro-winning cells	NH ₃	Minor	
Induction furnace	Particulate and	Minor	
	base metals		

3.3. Machinery and Vehicles

The key combustion products discharged from the burning of diesel in machines and vehicles are PM_{10} and NO_X . PDP's experience with large quarry and mining sites shows that the operation of diesel-powered machinery and vehicles are usually a minor source of gaseous contaminants and impacts are always less than minor. For this reason, the effects of combustion products discharged from the burning of diesel in machines and vehicles are not considered further in this AQMP.

3.4. Underground Portals

In the underground mine the following diesel-powered machinery will be operated:

- Two twin boomed development jumbos;
- Three 50-t dump trucks; and
- One 17-t bucket underground loader.

As for the above-ground machines, the key combustion products discharged from the underground machines are PM_{10} and NO_X .

4. RESPONSIBILITIES

4.1. Site Manager and Staff

The Site Manager has the day-to-day responsibility for implementing the AQMP. The Site Manager has the responsibility to ensure that:

The conditions of all relevant resource consents are complied with at all times;

The dust control and mitigation measures and procedures outlined in the AQMP are implemented effectively;

- There are adequate personnel and equipment on site at all times to implement the dust control;
- Processes and equipment are in place to enable water application outside BOGP operational hours when required;
- The meteorological and dust monitoring programmes are carried out as required, including recording of daily observations;
- Any complaints received are investigated and resolved as far as practicable;
- All records are kept and are available to the relevant regulatory authorities; and
- All personnel working on the Project have responsibility for following the requirements of the air discharge consent conditions and the AQMP and reporting to the Site Manager on these issues.

4.2. Staff Training

Successful dust management depends on appropriate actions by site personnel in effective day-to-day and after-hours operations of the site. Environmental training for all staff will be undertaken as part of the site induction programme. The environmental induction will include the following information specific to this AQMP:

- Information about the activities that may cause dust discharges within the site with the potential to impact neighbouring areas;
- Consent requirements;
- Dust mitigation procedures;
- Description of dust and meteorological monitoring for the site; and
- Complaints management procedures.
- Staff training records will be maintained on site. The records will include:
 - Who was trained;
 - When the person was trained; and
 - General description of training content and whether follow up/refresher courses are required at a later date.

5. MANAGEMENT OBJECTIVES: DUST MITIGATION

5.1. Good Practice Mitigation - All Dust Sources

All Priority 1, 2 and 3 dust sources will, as far as practical, be constructed, operated and (where required) decommissioned using good practice dust mitigation as detailed in **Table 9.**

Table 9: Good F	Practice Mitigation – Design Measures
Mitigation and	Description
Design	
Phasing of	As far as practicable, dust-generating activities have been located away
extraction	from highly sensitive receptors. Minimisation of dust through site design
activities	is addressed through extraction of ore in 3 stages, minimising
	unconsolidated areas.
Design and	Stockpiles, haul roads, and exposed areas have been located distant
location of	from sensitive receptors.
dust-generating	
activities	
Management	An AQMP has been produced and will be adhered to. Effective site
	management practices are critical to demonstrate the willingness of the
	operator to control dust emissions and provides a mechanism for
	auditing site operations. Such management procedures are outlined
	within the AQMP. This includes recording of all dust and air quality
	complaints, identification of cause(s), appropriate measures taken to
	reduce emissions in a timely manner, and record of the measures taken.
Provision for	Planning and design of the scheme has made provision for water supply
water supply	to meet the site demand for mitigation and dampening.
Equipment and	The site has been designed to minimise haul route distances and to
vehicles	locate haul routes away from sensitive receptors.
Planting	Soil stockpiles will have surfaces stabilised by planting of vegetation.
Training	MGL will provide training to the site personnel on dust mitigation. Training
	will also cover 'emergency preparedness plans' to react quickly in case of
	any failure of the planned dust mitigation.
Monitoring	An appropriate monitoring scheme will be implemented. This includes a
	range of monitoring methods from visual inspections, wind monitoring
	and real-time PM ₁₀ continuous monitoring locations. MGL will undertake
	daily on-site inspections, audit the monitoring programme, carry out

Table 9: Good P	Table 9: Good Practice Mitigation – Design Measures		
Mitigation and	Description		
Design			
	regular site inspections to monitor compliance with the AQMP and adjust		
	the frequency of site inspections according to dust risk (higher frequency		
	in dry and windy conditions)		
Communication	MGL aims to maintain good communication to help alleviate anxieties		
	between the operators and the surrounding communities.		
Planning of	Some activities should ideally be planned only during favourable weather		
activities	conditions. Where possible, particularly dusty activities should be		
	avoided during extended periods of dry and windy conditions. Excavation		
	of ore from open pits and earthworks activities will cease if winds are		
	greater than 7.5 m/s and when dust can be seen blowing over the site		
	boundary.		
Vehicle	Standard good practices for site haulage include:		
movements	 Regular clearing, grading and maintenance of haul routes. When sensitive receptors are within 250 m of a highly trafficked area lay down a bed of pea metal (<6mm stone), which keeps the truck tyres out of contact with fine dust. 		
	 Setting a site-specific and enforceable speed limit of 60 km/hour. The speed limit reduces to 20 km/hour on sections of road when the road surface and/or wind conditions are such that dust plumes are likely to be blown across the site boundary. Evenly loading vehicles to avoid spillages. 		
	Regular application of water in dry conditions.		

5.2. Priority 1 Dust Source - Haul Roads and Public Road Works

Table 10: Unsealed road dust generating activities and dust mitigation strategies		
Activity	Dust generation	Mitigation measures
	method	
Haul road	Establishing haul	Not undertaking haul road construction
construction.	road foundation	activities when windspeeds are greater than 7.5
	by backhoe	m/s and toward sensitive receptors within 500 m
: Upgrades to	excavator and	of the site boundary and when dust can be seen
Ardgour and	tracked dozer.	blowing over the site boundary.
Thomsons Gorge		

Table 10: Unsealed road dust generating activities and dust mitigation strategies			
Activity	Dust generation	Mitigation measures	
	method		
Roads (TGR) from	Establishing	Minimising drop heights from excavator and	
SH8 to the entry	roadway surface	dump truck.	
point of	dumping surface		
Shepherds valley.	material from rigid	Dampen surface of construction surfaces.	
: A new road from	body dump truck		
TGR into the	and rolling	Maintain adequate buffer distance (>250 m) to	
process plant	surface.	sensitive receptors.	
area.	Wind erosion on		
∴ Re-alignment of	unconsolidated		
the western	surfaces.		
portion of the TGR			
to follow the			
Ardgour ridge.			
Haul road use	Up to 420 vehicle	Engineered surface which minimises free fine	
	movements per	material which can generate dust.	
	day.	Maintain haul road surfaces to avoid excess	
	68% light duty	fines and potholes.	
	vehicles <3,500	Reduction of speed limit to 20 kph when dust	
	kg tare weight	can be seen blowing over the site boundary.	
	32 % heavy duty	Dampen surface of haul roads in response to	
	vehicles - >3,500	any discharged road dust blowing over the site	
	kg tare weight.	boundary.	

5.3. Priority 2 Dust Sources

5.3.1. Ore Processing Plant

Table 11: Ore processing plant dust generating activities and dust mitigation strategies			
Activity	Dust generation method	Mitigation measures	
Run of	ROM ore is stockpiled on	Maintain adequate buffer distance (>500 m) to	
Mine	the pad for blending into the	sensitive receptors.	
(ROM) pad.	plant feed. ROM ore is		
	deposited by trucks and		

Table 11: Ore processing plant dust generating activities and dust mitigation strategies		
Activity	Dust generation method	Mitigation measures
	moved by front-end Loader	Dust mitigation by water truck or sprinkler in
	(FEL).	response to any ROM dust blowing over the site
		boundary.
ROM bin.	ROM Ore is deposited into	Dust mitigation by water sprays. Feed out of this
	the open ROM bin by FEL.	bin is by apron feed, water sprays at transfer
		points Automated as FEL approaches bin and
		over jaw crusher.
Covered	Material is deposited into	Water sprays at transfer points to mitigate dust.
crushed	the crushed ore stockpile	Ore crusher fitted with high pressure low volume
ore	by conveyor. Ore is	misting system.
stockpile.	removed by apron feeders	Dust mitigation in tunnel is by extraction at
	located in a tunnel below	transfer points and extraction along tunnel
	the stockpile.	length to a wet scrubber.
Lime silo.	Silo delivers lime into mill	Silo dust collector is reverse pulse baghouse
	feed conveyor which is	with felt bags and will return collected dust to
	transporting primary	the silo.
	crushed ore via a screw	Lime transfer to the conveyor belt by a screw
	feeder.	feeder with minimal drop height.
Reagent	Dry reagents are unloaded	All dry reagents are unloaded from bulk bags
make-up.	from bulk bags.	inside an enclosed bulk bag breaker located
		directly above the make-up tank to contain dust.

5.3.2. Tailings Storage Facility

Table 12: Tailings Storage Facility dust generating activities and dust mitigation		
strategies		
Activity		Mitigation measures
	Rock overburden dumped	Maintain adequate buffer
TSF construction.	by dump truck and ELF	distance (500 m) to sensitive
	formed by tracked dozer.	receptors.
TSF operation.	The tailings are pumped to	The continuous delivery of the
	the TSF as a slurry and are	tailings slurry to the TSF keeps
	wet when they arrive and	the surface damp.
	are deposited.	

Table 12: Tailings Storage Facility dust generating activities and dust mitigation strategies			
Activity		Mitigation measures	
TSF remediation.	Dumping soil from dump truck. Shaping soil covering by backhoe excavator and tracked dozer. Wind erosion on unconsolidated surfaces.	Targeting the soil stockpile building or disturbance for the cooler and wetter months of the year when soil moisture content is relatively high (March to October). Not undertaking soil stockpile building or disturbance when:	
		Windspeeds are greater than 7.5 m/s; and	
		 Winds are blowing toward sensitive receptors within 500 m of the site boundary; and, 	
		 Dust can be seen blowing over the site boundary Minimising drop heights from excavator and dump truck. Dampen surface of soil in response to any ROM dust blowing over the site boundary. Maintain adequate buffer distance (500 m) to sensitive receptors. Establish vegetative cover on stockpile surface which is resistant to wind erosion. 	

5.4. Priority 3 Dust Sources

5.4.1. Open Pits

	Table 12: Pit dust generating activities and dust mitigation strategies		
Activity	Dust generation	Mitigation measures	
	method		
Soil	Soil scraping by	Not undertaking soil overburden removal when	
overburden	tracked dozer.	windspeeds are greater than 7.5 m/s and toward	
removal	Soil loaded into	sensitive receptors within 500 m of the site boundary	
	dump truck by	and when dust is seen blowing over the site boundary.	
	backhoe	Minimising drop heights from excavator to dump	
	excavator or	truck.	
	wheeled FEL.	Dampen surface of soil where dry soil is seen to be	
		causing dust discharges.	
		Maintain adequate buffer distance (500 m) to	
		sensitive receptors.	
Drilling and	Bulk waste drilling	Not undertaking drilling or blasting when windspeeds	
Blasting	Ore drilling	are greater than 7.5 m/s and toward sensitive	
		receptors within 500 m of the site boundary and when	
		dust is seen blowing over the site boundary.	
		Maintain adequate buffer distance (500 m) to	
		sensitive receptors.	
Rock	Rock overburden	Not undertaking rock overburden and ore removal	
overburden	and ore loaded	when the rock material is coated with fines and	
and ore	into dump truck	windspeeds are greater than 7.5 m/s and toward	
removal	by backhoe	sensitive receptors within 500 m of the site boundary	
	excavator or	and when dust can be seen blowing over the site	
	wheeled FEL.	boundary.	
		Maintain adequate buffer distance (500 m) to	
		sensitive receptors.	

5.4.2. Soil and Ore Stockpiles

Table 13: So	Table 13: Soil stockpile dust generating activities and dust mitigation strategies		
Activity	Dust generation	Mitigation measures	
	method		
Soil		Targeting the soil stockpile building or disturbance for	
overburden		when the soil moisture and/or wind conditions are	
		such that dust plumes are unlikely to be blown across the site boundary.	
	Dumping soil from	Minimising drop heights from excavator and dump	
	dump truck	truck.	
	Shaping soil	Dampen surface of soil in response to any soil dust	
	stockpile by	blowing over the site boundary.	
	backhoe excavator	Maintain adequate buffer distance (500 m) to sensitive	
	or tracked dozer.	receptors.	
	Wind erosion on	Establish vegetative cover on stockpile surface which	
	unconsolidated	is resistant to wind erosion.	
	surfaces.	Build soil stockpiles to a maximum height of 30 m.	
Elevated		Keep elevated arsenic soil overburden in a separate	
arsenic soil		stockpile. Do not mix with uncontaminated soils.	
overburden		Document the location and quantity of elevated As	
		soil stockpiles.	
		Dampen surface elevated As soil stockpiles in	
		response to any soil dust witnessed.	
		Minimise time elevated As soil is stockpiled. Where practical direct transfer elevated As soils to rehabilitation areas where the native material was high in As.	
		Establish vegetative cover on elevated As soil stockpile surfaces which is resistant to wind erosion. Use elevated As soil overburden for rehabilitation in	
		areas with naturally elevated levels of these	
		contaminants (i.e. Soil from SRX pit used on SRX ELF,	
		Soil from southwest side of CIT returned to SW side	
		during rehabilitation of CIT).	

Activity Dust generation		Mitigation measures
	method	
Ore rock	Dumping Rock from	Minimising drop heights from excavator and dump
stockpiling	dump truck	truck.
	Shaping ore stockpile by	Maintain adequate buffer distance (500 m) to
	wheeled FEL.	sensitive receptors.
	Wind erosion on	
	unconsolidated	
	surfaces.	

5.4.3. Engineered Landforms

Table 15: ELF dust generating activities and dust mitigation strategies		
Activity	Dust generation	Mitigation measures
	method	
ELF construction	Rock overburden	Maintain adequate buffer distance (500 m)
	dumped by dump	to sensitive receptors.
	truck and ELF formed	
	by backhoe excavator	
	or tracked dozer.	
ELF rehabilitation	Dumping soil from	Targeting the soil stockpile building or
	dump truck.	disturbance for when wind conditions are
	Shaping soil covering	such that dust plumes are unlikely to be
	by backhoe excavator	blown across the site boundary.
	or tracked dozer.	Minimising drop heights from excavator
	Wind erosion on	and dump truck.
	unconsolidated	Dampen surface of soil in the working area
	surfaces.	in response to any soil dust blowing over
		the site boundary.
		Maintain adequate buffer distance (500 m)
		to sensitive receptors.
		Establish vegetative cover on stockpile
		surface which is resistant to wind erosion.

6. MANAGEMENT OBJECTIVES: WATER FOR DUST SUPPRESSION

6.1. Water Demand

One of the key dust mitigation measures is the application of water. As a benchmark for dust suppression the Ministry for the Environment Good practice guide on assessing and managing dust recommends a water application rate 1 mm/hour (or 1 litre/m² per hour). This recommended water application rate often proves to be conservative because site evapo-transpiration data usually peaks at 0.8mm/hour on the hottest part of the hottest days over summer.

Three stages of the mine life cycle have been identified as providing representative scenarios for assessing the water demand for dust mitigation. The three stages of the mine life cycle assessed are detailed in **Table 17** which shows the volume of water per hour required for dust suppression for each of the three assessment scenarios.

Table 16: Mine life cycle stages for assessing dust mitigation water demand			
Stage of mine life cycle	Timing (years)	Dust Sources	
Startup and Project Development	0 to 2	Accommodation area development	
		Haul Roads and public roads	
		development	
		Ore Processing plant development	
		RAS site prep	
		Soil stockpiles	
RAS pit mining on its own	3 to 5	Haul Roads use	
		RAS pit	
		Processing plant	
		Soil stockpiles	
RAS Pit plus RAS UG, plus CIT	6 to 11	Haul Roads use	
(CIT Pit mined months 102 to 114)		RAS pit	
(SRX Pit mined months 145		CIT Pit	
onwards)		Processing plant	
		Soil stockpiles	

The dust suppression water demand volumes have been calculated for the three assessment scenarios using the following assumptions:

- Water application rate 1 mm/hr (1 L/m²/hr);
- Water applied to roads for 8 hours per day;
- 10 % of infrastructure construction site areas may need water suppression at any one time;
- 50% of active ELF area may need water suppression at any one time;
- 50% of haul Roads may need water suppression at any one time; and,
- Processing plant requires 10 m³/hr for dust suppression.

Table 18 shows the volume of water per hour required for dust suppression for the key dust sources associated with each of the three site-development and operational scenarios.

Table 17: Dust mitigation water demand				
Stage of mine	Dust Sources	Area of	Dust	Volume of
life cycle		dust	suppression	water (m³/hr)
		source	area (ha)	
		(ha)		
Startup and	Accommodation area	15	1.5	15
Project	development	15	1.5	15
Development	Ore Processing plant	10	1	10
Years 1 and 2	development	10	'	
	Haul Road RAS to Plant	3.2	1.6	16.2
	Haul Road RAS to ELF	8.7	4.4	43.5
	ELF	1	0.5	5
	Haul road length to topsoil	3.9	1.9	19.3
	outside	3.9	1.9	19.5
	Infrastructure area	2	1	10.2
	Haul road to TS stack	2	1	10.2
	Total volume of dust supp	ression wat	er (m³/hr)	129 (36 l/s)
RAS pit	Haul Road RAS to Plant	3.2	1.6	16.2
mining	Haul Road RAS to ELF	8.7	4.4	43.5
Years 3 to 5	ELF	1	0.5	5
	Haul road length to topsoil	3.9	1.9	19.3
	outside	5.5	1.5	19.5
	Dust suppression	2	1	10.2
	infrastructure area	_	<u> </u>	10.2
	Average haul road to TS	2	1	10.2
	stack	_	•	10.2

Table 17: Dus	Table 17: Dust mitigation water demand				
Stage of mine	Dust Sources	Area of	Dust	Volume of	
life cycle		dust	suppression	water (m³/hr)	
		source	area (ha)		
		(ha)			
	Processing plant	NA	NA	10	
	Total volume of dust supp	ression wat	er (m³/hr)	114 (32 l/s)	
RAS pit plus	Haul Road RAS to Plant	3.2	1.6	16.2	
CIT or SRX pit	Haul Road RAS to ELF	8.7 4.4		43.5	
mining	ELF	1	0.5	5	
Years 6 to 11	Haul road length to topsoil	aul road length to topsoil 3.9		19.3	
	outside	3.3	1.9	19.3	
	Dust suppression	2	1	10.2	
	infrastructure area	_	•	10.2	
	Average haul road to TS	2	1	10.2	
	stack	2	1	10.2	
	Processing plant	NA	NA	10	
	CIT or SRX to Plant/ELF	7.5	3.7	37.4	
	Total volume of dust suppression water (m³/hr)			152 (42 l/s)	

6.2. Water Supply

The BOGP water supply system will need to be designed to deliver up to 50 l/s, 180 m³/hr or 4,320 m³/day for the purposes of dust suppression. In addition to the BOGP water supply system, two years after the start of the site development, a minimum of 5 l/s water will be available for dust suppression from the dewatering of the pits.

6.3. Applying Water to the Site

MGL will ensure that 50 l/s of water is available daily for potential dust suppression purposes for the first two years of site development and a minimum of 55 l/s in subsequent years. There will be two dust suppression water carts on site. Use of a cart rather than fixed sprinkler lines allows dust suppression target areas to move around with staging of ore extraction. Should the need be identified by visual dust monitoring, this AQMP will be reviewed to determine the need for fixed sprinklers, mobile k-line sprinkler system, and water truck with cannon for haul roads and active mine areas in addition to the water cart.

During the period of peak demand for dust suppression water (summer for RAS pit plus CIT or SRX pit mining) the water demand is estimated to be 42 l/s. The water supply during that period will be at least 55 l/s. This means there will be at least 12 l/s (43 m³/hr) available for dust suppression for any dust sources beyond those identified in **Table 18** which may on occasion require suppression (e.g. soil overburden removal, soil stockpiles, soil bunds).

In summary, the site provides sufficient water for typical and for high demand dust suppression. All water supply and dust mitigation systems installed will be designed to ensure 1 mm water per hour over mine operation target areas on dry days at any stage of the mine's life.

7. MANAGEMENT OBJECTIVES: GASEOUS AIR CONTAMINANTS

Table 19 details the ore processing plant gaseous air and particulate contaminants generating activities and gas mitigation strategies.

Table 18: Ore processing plant gaseous pollutant generating activities and mitigation measures			
Activity	Gas generation method	Mitigation measures	
Leaching and	CN- ions in solution may combine	OHS requirements.	
adsorption tanks	with H ⁺ ions to produce HCN gas.	pH maintained at >10.5.	
		pH Alarms and HCN sensors.	
Gold recovery Acid	CN ⁻ ions in solution may combine	OHS requirements.	
wash and elution	with H⁺ ions to produce HCN gas.	pH maintained at >10.5.	
columns		pH Alarms and HCN sensors.	
Electro-winning cells	During the electrowinning	Gases from the electrowinning	
	process a small amount of NH ₃	cells are captured by a hood and	
	may be generated.	then are fan forced and vented to	
		the atmosphere and from a 15 m	
		high stack for adequate	
		dispersion.	
Induction furnace	The gold smelting process	Fume hood.	
	removes impurities from gold	Glass silica curtains.	
	ore. These could be the original	Furnace Bag Filter System.	
	impurities found in gold deposits	Comprehensive dust extraction	
	in the earth, or impurities added	system.	
	to gold in manufacturing. To	Environmental and OHS	
	remove these impurities,	requirements.	
	extremely high temperatures,		

Table 18: Ore processing plant gaseous pollutant generating activities and mitigation measures			
Activity	Gas generation method	Mitigation measures	
	pressure and a number of fluxes	Reverse Jet self-cleaning	
	are used.	polyester filter bags.	
	In these extreme conditions,	Any fumes are captured by a	
	particulate matter can be	hood and then are fan forced and	
	produced and discharged from	vented to the atmosphere and	
	the liquid mixture of metals and	from a 15 m high stack for	
	slag (SiO ₂) contained in the	adequate dispersion.	
	furnace curable.		

The vehicle, machine and generator engines and all associated emission control systems will be routinely maintained in accordance with the manufacturer's instructions.

The underground mine will be served by two inlet ventilation portals fitted with 110 kW ventilation fans. Two fans will draw air down into the mine and two fans to drive air back up and discharge via the by two ventilation portals. The underground mine ventilation system will draw up to 200 m³/s which is more than sufficient to meet the health and safety requirements for the miners working underground. The ventilation portals will be 3 m wide and 3 m high and discharge horizontally at ground level.

Given the number of vehicles and machines used on the surface and underground on site, the vehicle maintenance programme and underground ventilation system will be sufficient to ensure no adverse effects will occur from this source of contaminants.

8. MANAGEMENT OBJECTIVES: COMPLAINTS

8.1. Receipt Procedure

MGL acknowledges the importance of ensuring that any complaints are recorded and promptly investigated to identify and resolve the cause of the complaint. Requirements and procedures for complaints are detailed below.

The Site Manager is responsible for response to and follow up all complaints regarding dust or any other air quality matters, and to ensure that suitable trained personnel are available to respond to complaints at all times.

Following the receipt of a complaint the Site Manager must, and in the mind of the Site Manager there are reasonable grounds that a breach of the consent conditions is possible as soon as is possible, respond as follows:

- Undertake a site inspection. Check the required dust controls are in place. Note all
 dust-producing activities taking place and the mitigation methods being used, take
 photographs for reference as appropriate. If the complaint was related to an event
 in the recent past, where possible, note any dust-producing activities taking place at
 that time and review on site weather records and shift plan and report;
- Initiate any remedial action necessary, which may include a stop work period;
- Note the time and date of the complaint/s and (unless the complainant refuses to provide them) the identity and contact details of the complainant. Ask the complainant to describe the discharge:
- Is it constant or intermittent?
- How long has it been going on for?
- Is it worse at any time of day?
- Does it come from an identifiable source?
- Review meteorological data from the on-site station;
- Note if the complaint has been referred to the ORC;
- As soon as possible (within 1 hour, where practicable), visit the area from where the complaint originated to ascertain if dust is still a problem;
- If it becomes apparent that there may be a source of dust other than the BOGP activities causing the complaint, it is important to verify this, for example, photograph the source and emissions and/or make notes;
- As soon as possible after initial investigations have been completed, contact the complainant to explain any problems found and remedial actions taken; and
- If necessary, update any relevant procedures to prevent any recurrence of problems and record any remedial action taken.

8.2. Response Procedure

Following the receipt of the complaint, and in the mind of the Site Manager there are reasonable grounds that a breach of the consent conditions is possible, the following actions will be undertaken:

- Fill out the appropriate complaint form;
- Advise site personnel as soon as is practicable that a complaint has been received, what the findings of the investigation were, and any remedial action taken; and

• Call or visit the complainant to update them on the actions taken and to check that the issue has been resolved.

9. MANAGEMENT OBJECTIVES: ENVIRONMENTAL MONITORING

9.1. Dust Monitoring - Visual

9.1.1. Method

Visual monitoring of dust must be undertaken to assess the level of dust emissions on the site and beyond its boundary. The visual monitoring will:

- Identity source(s) of dust (e.g. from vehicle movements, stockpiles, earthworks or material disturbance, etc.);
- Identify any areas of deposited dust from the site on surrounding roads and properties;
- Assess the extent and direction of any dust plumes (e.g. within boundary, crossboundary, or covering a large extent);
- Identify receptors potentially impacted by the plume (e.g. properties downwind to the northeast);
- Assess overall impact as high, medium, or low.

All staff are required to continuously monitor activities to identify dust events. The Site Manager or delegate undertakes site visual dust monitoring at least once per day, in the early afternoon, to assess the overall effectiveness of the AQMP and ensure compliance with the requirements of the resource consent conditions.

Site observations are recorded in a daily log form and the daily log forms will be kept for at least 3 years.

9.1.2. Action and Responses

Recording relevant inspection results, as well as the conditions of external and internal factors on the log forms, must be used to help assess if control measures are effective and to define appropriate corrective or preventative actions in the event that adverse effects occur.

9.1. Dust Monitoring – Deposition

9.1.1. Sites and equipment

Figure 2 shows the location of the five dust deposition monitoring sites that have been installed to collect dust data to assess and manage the impact of dust discharged from BOGP. A photograph of a dust deposition gauge is shown in **Figure 3**. The metadata for each of the dust deposition monitoring sites is shown in **Table 20**.

Figure 2: Locations of dust deposition monitoring sites

Figure 3: Photograph of a dust deposition gauge.

Table 19: Metadata for dust deposition monitoring sites				
Site name	Install date	Equipment	Site Type	
Ardgour Flats	11 September	Dust Deposition	Background	
CIT Valley	2024	Gauges to meet the requirements of	Impact	
CIT Stamper		ISO4222.2	Impact	
CIT Valley North			Impact	
RAS			Impact	

9.1.2. Triggers and Responses

The dust deposition data will be used for two purposes:

- · Assessing the pre-development dust deposition rates; and,
- Determining if the BOGP dust mitigation measures are being effective.

Typically for a sensitive receptor, an increase in dust disposition rate of 4 g/m² over 30 days above background dust deposition rates is accepted as an indicator that additional dust mitigation is likely required. Given the low sensitivity of the on-site locations of the dust

deposition gauges and distances to off-site receptors, the indicator that additional dust mitigation is required will be 6 g/m² over 30 days above background dust deposition rates.

For the BOGP the Ardgour Flats dust deposition monitoring site has been identified as providing the most useful indicator of the wider area's background dust deposition rates.

The increase in dust disposition rate due to the BOGP activity will be estimated as the difference between the deposition rate measured at each of the four impact sites and the deposition rate measured at the Ardgour Flats.

Should the increase in dust disposition rate at any of the four impact sites be calculated as greater than 6 g/m^2 over 30 days then the following actions will be taken:

- Identify the key source/s of dust impacting the sites which have exceeded the dust deposition trigger level; and
- Review and if needed improve the dust mitigation measures being used on the relevant dust sources.

9.2. Dust Monitoring - Real Time

9.2.1. Sites and equipment

Figure 4 shows the location of the two real-time dust monitoring sites that have been installed to collect dust data to assess and manage the impact of dust discharged from BOGP. A photograph of the current real-time dust monitoring equipment is shown by the red circles in **Figure 5**. It is important to note that the Lake Clearview monitor will be shifted to the site's administration offices on Ardgour Terrace when those buildings have been set up. The new site is approximately 2 km due east of the current Lake Clearview site and is shown as the green circle in **Figure 5**. The new site will meet the requirements of usefully assessing any off-site dust impacts of the mining operation. The metadata for each of the sites is shown in **Table 21**.

Figure 4: Locations of real-time particulate monitors (red circles)

Figure 5: Photograph of real time dust monitoring equipment

Table 20: Metadata for PM₁₀ dust monitoring sites				
Site name	te name Install date Equipment and PM Data capture rate			
		measurement type		
Lake Clearview	11 February 2023	e-BAM Plus	99.8	
CIT valley North	11 December 2024	ES-642 - TSP	N/A	

9.2.2. Triggers and Responses

The dust monitoring instruments will provide real time data to the site staff. This information will be used to assist with the dust management of the site. The dust monitoring system must be set up to send email and SMS text alerts to site staff. The monitors provide real-time PM_{10} or TSP data each minute and will send an alert to the site's Environmental Manager when concentrations exceed the trigger level, shown in **Table 24**.

Table 21: TSP and PM ₁₀ Trigger level				
1-hour rolling	Actions			
average				
concentration				
150	: Identify the key source/s of dust impacting the sites.			
	 Review and if needed improve the dust mitigation measures 			
	being used on the relevant dust sources.			
	 Continue reviewing dust monitoring data until the 1 -hour 			
	rolling average concentration drops below 150 μg/m³.			
300	 Halt dust generating activities until the 1 -hour rolling 			
	average concentration falls below 300 µg/m³.			

Upon receipt of the dust alert message the site manager will undertake the relevant action/s that are defined in **Table 24.** The dust data will be logged and archived and will be used in the complaint response procedure (see Section 10.2).

9.3. Meteorological Monitoring

9.3.1. Sites and equipment

Figure 6 shows the location of the four meteorological monitoring sites (green dots) that have been installed to collect wind data to inform the dust assessment. The location and design of the meteorological stations are, as far as practicable, consistent with the AS/NZS 3580.1.1:2016. A photograph of the monitoring equipment is shown in Figure 7. It is important to note that the Lake Clearview monitor will be shifted to the site's administration offices on Ardgour Terrace when those buildings have been set up. The new site is approximately 2 km due east of the current Lake Clearview site and is shown as the green circle in Figure 7. The new site will meet the requirements of usefully assessing the wider Bendigo area wind conditions. The metadata for each of the sites is shown in Table 23.

Figure 6: Locations of meteorological monitoring sites

Figure 7: Photograph of the Lake Clearview meteorological monitoring equipment

Table 22:	Metadata f	or meteorological monitoring site	es	
Site	Install	Equipment Anemom		Data capture
name	date		height (m)	rate (%)
Lake	11 Feb	The Gill Windsonic Ultrasonic	10	99.9
Clearview	2023	Wind Sensor is a high-end		
CIT	11 Feb	meteorological grade wind speed	6	99.8
	2023	and direction sensor.		
RAS	13 Dec	The Harvest Air	6	NA
	2024	Temperature/Relative		
SRX	11 Feb	Humidity/Barometric The sensor 6		100
	2023	has a calibrated accuracy of		
		±0.1°C (temperature), ±1.5%		
		relative humidity, and ±1.5mbar		
		barometric pressure.		
		The HyQuest TB3 is a high-quality		
		tipping bucket rain gauge with		
		accuracy of ±2% for measuring		
		rainfall.		

9.3.2. Actions, Triggers and Responses

Monitoring weather forecasts will be undertaken daily and used to inform the potential need for additional mitigation measures (e.g. in the event that strong winds are forecast).

Before the daily briefing meeting, the Site Manager must obtain the weather forecast for the day and identify whether high dust risk conditions (see **Table 24**) may occur. If high dust risk conditions are forecast, the Site Manager will highlight this to other on-site staff and instruct whether any additional dust mitigation is to be implemented for that day.

The forecast occurrence of high dust risk conditions shall be noted in the daily log along with any outcomes from the daily briefing meeting.

The meteorological station will provide real time data to the site staff. This information will be used to assist with the dust management of the site. The meteorological system will be set up to send email and SMS text alerts to site staff. An alert will be sent when 1-hour average windspeeds exceed 5 m/s which will prompt site staff to carefully monitor dust sources and implement additional mitigation measures if required. An alert will be sent when 1-hour average windspeeds exceed 7.5 m/s, which will prompt site staff to stop work on dust generating activities if dust discharges are witnessed that cannot be adequately controlled **and** are toward sensitive receptors within 500 m of the site boundary **and** when dust is seen blowing over the site boundary.

Where an alert of strong winds (>7.5 m/s as a 1-hour average) coincides with

Table 24 shows a summary of the meteorological conditions contributing to different dust risk levels, the associated notifications, and required responses.

Table 23	Table 23: Dust Risk Levels, Meteorological Conditions and Responses			
Dust	Wind	Wind	Notification	Response
Risk	Speed	Direction		
Level		(blowing		
		from)		
Low	< 5 m/s	All	-	-
Medium	5 – 7.5 m/s	directions	Text & email	Prepare for mitigation actions, visual
				inspection of dust discharges and
				implement water application for dust
				suppression if required
High	≥ 7.5 m/s		Text & email	Operators to visually identify any dust
				discharges and sensitive receptors

Table 23: Dus	Table 23: Dust Risk Levels, Meteorological Conditions and Responses			
	within 500 m in downwind direction.			
	Dust mitigation measures are to be			
	implemented as appropriate in			
	response to any dust discharges			
	witnessed. If dust is witnessed crossing			
	the boundary, work is to cease.			

Meteorological data will be logged and archived and will be used in the complaint's response procedure (see Section 10.2).

9.4. Ore Processing Plant Gaseous Air Contaminant Monitoring

The ore processing plant gaseous air and particulate contaminants discharges are continuously monitored at the control room. This monitoring includes instrumental monitoring of the pH within the leaching and adsorption tanks to avoid the generation of HCN. Instrumental HCN monitors with set trigger alarm points are in the ore processing plant for health and safety purposes. Any instance of elevated HCN concentrations leads to a shut-down of the process.

The airflow from the electro-winning cell and induction furnace is continuously monitored. The induction furnace reverse jet furnace bag filter system includes a pressure-drop gauge to monitor for clogging and bag tears.

9.5. Frequency of Monitoring

Table 25 outlines the frequency of the activities undertaken as part of the monitoring programme.

Table 24: Monitoring Programme Activities and Frequency			
Monitoring Activities	Frequency		
Check weather forecasts for strong winds and rainfall to	Daily and as conditions		
plan appropriate activities and dust management	change		
response (7-day forecasts also available on			
www.metvuw.com and www.metservice.com).			
Visual dust monitoring early afternoon site assessment.	Daily		
Daily log form for visual monitoring of dust.	Daily		
Monitor ore processing plant operational conditions,	Ongoing		
including the pH of the leaching and adsorption tanks,			
furnace bag filter system, and extraction fans operation.			

Table 24: Monitoring Programme Activities and Frequency					
Monitoring Activities	Frequency				
Monitor workplace exposure to HCN with alarms for	Ongoing				
detection.					
Record the pressure drop across the induction furnace	Daily				
fabric filter baghouse emission control system to detect					
any blinding or tears.					
Inspect and calibrate ore processing plant pH monitors,	Monthly				
HCN alarms, and emission control systems.					
Inspect watering systems (water cannon, sprinklers, water	Weekly				
carts and any other spray system) to ensure equipment is					
maintained and functioning to effectively dampen					
exposed areas.					
Inspect dust generating activities (as listed in Section 3) to	Ongoing				
ensure dust emissions are effectively controlled.					
Monitor dust concentrations in air, with alerts for high	Ongoing				
concentrations.					
Monitor dust generating activities and water application	In winds over 7.5 m/s blowing				
rate.	all directions.				

9.6. Reporting of Monitoring Programme

The following information must be recorded in a daily log or equivalent system:

- Results of the daily site inspections of visible dust emissions;
- Likely source(s) of any observed dust;
- General weather conditions during the day (i.e., windy, calm, warm, rain etc.);
- The frequency of use of the sprinkler system, water cannon and any water carts (if needed);
- Dust and ore processing plant emissions control equipment malfunctions and any remedial action(s) taken;
- Any unusual on-site activities; and
- Records of any complaints or other community feedback.

The log forms will be collated and stored on site and will be made available to ORC staff upon request.

Data from the dust and meteorological monitors is to be continuously recorded to an electronic system at a minimum of 10-minute resolution. The data is to be held for at least two years from the date recorded.

10. CHANGE MANAGEMENT

The AQMP will be reviewed and updated, with the necessary re-certification, throughout the course of the mining activity timeline to reflect changes in dust management techniques, staging of excavation and fill areas, or changes to the receiving environment. Re-certification by ORC will be required for any relevant revisions of a material nature for the AQMP. The review will take into consideration:

- Any significant changes to dust management activities or methods;
- Key changes to roles and responsibilities;
- Changes in industry best practice option for dust controls;
- Results of inspection and maintenance programmes, logs of incidents, corrective actions, internal or external assessments; and
- The outcome of investigations into discharges of dust/odour/air pollutants.

Reasons for making changes to the AQMP will be documented and version tracking will be recorded in the 'Document Control' register at the start of this report. A copy of the original AQMP document and subsequent versions will be kept for the project records and marked as obsolete. Each new/updated version of the AQMP documentation will be issued with a version number and date and the following version update table be completed and added to the Exec summary of the AQMP.

Item	Section	Summary	Reason for	Complexity of change	Date
		of change	change		
1.				☐ Minor	
				□ Moderate	
				☐ Major	
2.				☐ Minor	
				□ Moderate	
				☐ Major	
3.				☐ Minor	
				□ Moderate	
				☐ Major	