ecoLogical solutions ltd
195 main highway, ellerslie
e: ccroft@ecologicalsolutions.co.nz
w: www.ecoogicalsolutions.co.nz

18 June 2025

Graeme Rogerson

c/o: Dave MacPherson

cc: Fraser McNutt, Barker & Associates Ltd

Rogerson Block Fast Track Referral

Introduction and Project Description

Mr Graeme Rogerson is applying for consent under the Fast Track Approvals Act (2024) to undertake concurrent land and subdivision development for general residential and industrial use including the establishment of associated works, roads and infrastructure over an area of approximately 43 ha, at 201 Tuhikaramea Road, Dinsdale Hamilton (the 'Site' or 'Rogerson Block'). The Rogerson Block is situated within the Southern Link 1 (SL1) growth cell, an extensive area of land that is exclusively contained within Waipa District Council and contiguous with Hamilton City Council's southern boundary (Figure 1). Mr. Rogerson is part of a well-established group of developers involved in a consortium that has been established for some time that represent the bulk of the SL1 growth cell, recognised by Future Proof and the development community in the Waikato. Strong synergies with the listed (Southern Links 1 Stage 1 Industrial and Stage 1 Residential), Fast-Track project exist.

The proposed development will be split into approximately 13 ha of medium density residential development and 28 ha of industrial development. The residential component of the proposal will comprise circa 200 residential units, primarily medium-density (300 m² allotments), of varying typologies such as terraced, duplex and detached dwellings. The industrial component of the proposal will comprise circa 35 industrial allotments of varying size, including less than 5,000 m² (small lots), 5,000 m² to 10,000 m² (medium lots), and over 10,000 m² (large lots), to provide for a range of uses from small-scale manufacturing or workshops to light industrial workshops and warehouses. The Rogerson Block masterplan is shown in Figure 2 and contained within the Urban Design Memorandum.

The residential development is underpinned by a series of design principles, which focus on creating a well-connected, legible and integrated community on Hamilton City's urban fringe. The proposed transport network utilises the existing connection points, specifically on Tuhikaramea Road and Karen Crescent, to ensure the community is supported by local roads, cycle connections and pedestrian pathways to create an accessible and legible development. As aforementioned, a range of housing typologies and densities are proposed to meet the growing and changing needs of the housing market to ensure there are options for future residents. Each typology has been thoughtfully located, based on opportunities and constraints, with density ranging from terraced, duplex and detached dwellings to ensure integration with the adjoining urban footprint.

An open space network will buffer the residential component of this proposal from the industrial component, with a proposed 20 m wide green buffer and artificial wetlands, to provide amenity for local residents and create a functional development. A series of four artificial wetlands will provide both a stormwater and amenity function.

The larger east-to-west spine road, of approximately 27.8 m in width, will provide for the movement of people and vehicles through the Site. Two additional transport corridors will be provided from this spine road to provide logical access for the industrial allotments. The industrial allotments have been thoughtfully located, with the small lots adjoining the proposed residential development and the larger lots integrating with the neighbouring proposed industrial development of the wider SL1 development and adjoining rural land.

The development will be appropriately serviced via a robust infrastructure strategy, which includes utilisation of existing services, stormwater artificial wetlands, and if required new water bores.

Approach to Effects Management

Ecological Solutions Ltd. were engaged to undertake the initial high-level terrestrial and aquatic ecological assessment of the proposal including the identification of any actual or potential effects. A suitably qualified and experienced ecologist(s) will prepare a description of the current ecological values, provide an assessment of the actual or potential effects of the proposal and set out the methods to avoid, remedy, mitigate and offset/compensate those effects on the values identified.

Specific detailed ecological management plans required to address any adverse effects on ecological values will be prepared, including applications for any statutory authorisations (e.g., Wildlife Act Authorisation). Once the necessary resource consents are obtained, appropriately qualified and experienced ecologists will also assist with implementation of any ecological management plans as required.

Background Analysis and Receiving Environment

The northern boundary of the Rogerson Block is along the current southern limit of the Hamilton urban area and the Frankton Neighbourhood Plan area. Current land use within the proposed project area was a combination of a horse racing facility occupying the northern portion and livestock farming over the southern portion.

Information on which to assess the ecological values of the Rogerson Block has been gathered from a range of desk-top sources including Waipa District and Waikato Regional Council reports, national databases such as the New Zealand Freshwater Fish Database, the Department of Conservation's Herpetofauna and Bat databases, eBird, Waikato Regional Council's Long-tailed bat distribution map, and Southern Links road transport project reports.

In addition to the desk-top assessment, a site walk-over and a late season acoustic bat survey were undertaken in April 2025.

Terrestrial Ecological Values

There are no Significant Natural Areas (SNAs) located within or directly adjacent to the Rogerson Block. Vegetation cover across the Site was as expected for farmland in the periurban area and dominated by exotic pasture, exotic hedgerow vegetation and occasional exotic specimen trees. Given the lack of indigenous vegetation on the Site, minimising adverse effects on vegetation values is not expected to be an ecological constraint.

With respect to indigenous fauna within and surrounding the Site, native birds include exotic and common open habitat species (eBird records). Given the overall absence of vegetation within the Site, habitat for birds was limited. Copper skink (*Oligosoma aeneum*) (At Risk – Declining) (Hitchmough et. al. 2021) have been recorded within 2 km of the Site. If present within the Site, copper skink are likely to be restricted to the very small areas of habitat associated with hedgerows, overgrown/rank grass along fence lines and drainage canals. With the implementation of suitable mitigation measures, to be outlined in a lizard

management plan, including salvage and relocation to suitable release sites with adequate predator control and protection security, minimising adverse effects on lizards is not expected to be a significant ecological constraint.

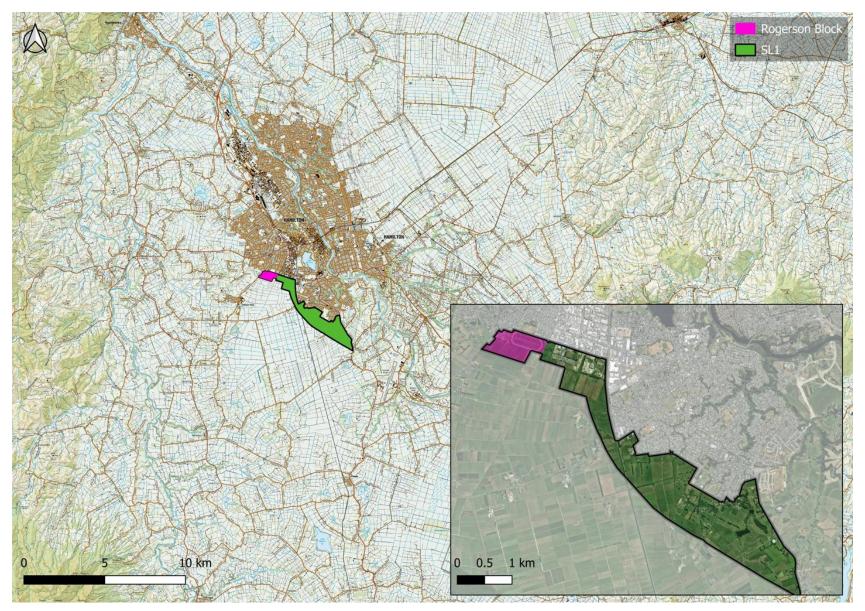
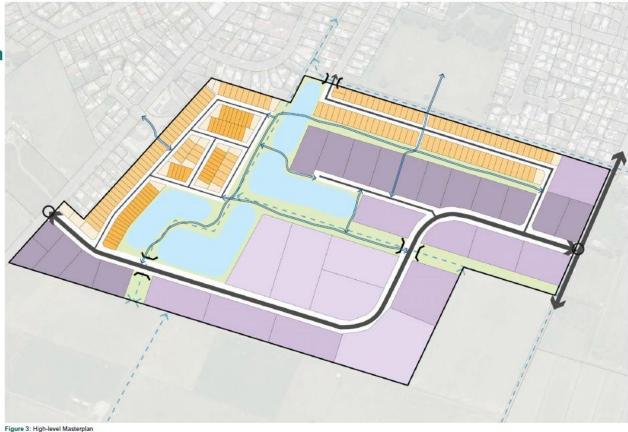


Figure 1: Rogerson Block within SL1 Growth Cell.



3.0 Masterplan

3.1 High-level Masterplan

* This masterplan document represents a high-level conceptual layout only. The proposed site layout, estimated yield, typologies, and land uses illustrated herein are based on the preferred development approaches and the existing industrially zoned areas within Hamilton. The exact residential typology, industrial activities, and lot sizes are subject to further adjustments upon comprehensive technical investigations and detailed design processes, including but not limited to engineering, ecological assessment, geotechnical analysis, and hydrological studies.

Residential Metric	Typical Lot Size	Estimated Yield	Potential Typologies/Uses
Higher density (7.5m - 9m lot)	200m ² - 250m ² 300m ² and above	50 133	Terraced dwellings, duplexes Duplexes, detached dwellings
Lower density (10m - 12m lot)			
Larger lot and/or irregular shaped	400m ² and above	22	Detached dwellings
Total		205	

Industiral Metric	Typical Lot Size	Estimated Yield	Potential Uses
Smaller lots	Less than 5,000m²	16	Small-scale manufacturing, repair workshops, and wholesale businesses
Medium lots	5,000m ² - 10,000m ²	9	Light industrial workshops, warehouse, and commercial showrooms
Larger lots	10,000m ² and above	5	Light industrial workshops, warehouse, and commercial showrooms
Total	ž.	30	Å .

Figure 2: Rogerson Block Masterplan.

Long-tailed bat (*Chalinolobus tuberculatus*) (Threatened – Nationally Critical) (O'Donnell et. al. 2022) activity has been previously recorded within 500 m of the Rogerson Block as recently as 2019. An acoustic survey undertaken within the Rogerson Block in April of 2025 by ecological Solutions recorded a single bat pass over a 21-day survey period. The extent to which long-tailed bats roost, forage or fly over the Rogerson Block area will need to be further investigated to assess the extent of use by bats and identify any potential or actual adverse effects. It is anticipated that with the implementation of suitable effects management measures, in accordance with a bat management plan, any adverse effects on bats will be effectively managed and therefore, bats are not considered a significant ecological constraint.

Wetland Values

The Rogerson Block is located within the former Rukuhia Swamp with a high percentage of fibric organic/peat soils (Manaaki Whenua - Landcare Research 2024). Based on aerial photographs and a site walk-over there are small, fragmented areas typically associated with drains and micro depression areas that may qualify as natural inland wetlands (NPS-FM 2020). All potential wetland areas had been affected by historic vegetation removal, drainage and livestock management. As a result, they were highly modified and degraded. Wetland vegetation was generally dominated by introduced pasture, rushes and herbs. The presence and delineation of any natural inland wetlands will need to be confirmed during field surveys to be conducted during the appropriate season.

Freshwater Ecological Values

Based on aerial imagery and available maps, the Rogerson Block appeared to be hydrologically connected to Waitawhiriwhiri Stream flowing north of Kahikatea Drive through the Hamilton City suburbs of Frankton, and Dinsdale and discharging to the Waikato River at Victoria Street in Whitiora. Based on a site walk-over there were at least three watercourses noted within the Rogerson Block area. Due to the historic and current land use, watercourses within the Rogerson Block were characterised as artificial, highly modified farm drains. These farm drains were modified through vegetation removal, and channelisation associated with ongoing farm maintenance. As a result, the habitat values of the drains were considered low. At the time of observation (April), two of the three farm drains were dry with only one retaining water.

The New Zealand Freshwater Fish Database did not contain any records within the Rogerson Block. Black mudfish (*Neochanna diversus*) (At Risk – Declining) have not been previously recorded in the wider SL1 area but could be present within artificial drains. Black mudfish are patchily distributed in wetlands and drains with suitable habitat and hydrological conditions throughout the Waikato. Experienced observations of the watercourses within the Rogerson Block identified potential black mudfish habitat.

With the implementation of suitable effects management measures in accordance with a fish management plan, it is anticipated that any adverse effects on indigenous freshwater fish are able to be managed and therefore, fish are not considered a significant ecological constraint.

Actual and Potential Ecological Effects

The proposed development of the Rogerson Block area will involve works with the potential for both positive and adverse effects on ecological values. Anticipated effects include:

 The potential for riparian and wetland restoration, removing exotic and pest plant species and in turn increasing the amount of native vegetation within the Site, and enhancing habitat for native fauna.

- The potential for higher quality water discharging from the site over the long term through the removal of stock and a change in land use leveraging stormwater management strategies.
- Removal of poor quality, predominantly exotic terrestrial vegetation and habitats and the effects of this loss on any terrestrial fauna (e.g., birds, lizards, bats) resident within the project area.
- Unavoidable loss of low-quality wetland habitat, if present (i.e., via groundwater draw down and/or earthworks).
- Unavoidable loss or modification (i.e., via groundwater draw down and/or earthworks) of some artificial drains which may provide habitat for black mudfish and other native fish such as eels.
- Potential adverse effects on short-term water quality and aquatic life due to sediment and/or contaminant discharges.
- Potential disturbance of fish migration and spawning during the works, depending on timing.
- The potential for the temporary restriction of fish passage.
- The potential for introduction of weed and pest species.

The general approach to addressing each of these effects is set out in the following section.

Approach to Addressing Effects

The general approach to addressing potential effects are outlined below:

- The removal of predominantly exotic vegetation (or habitats) can be managed to avoid adverse effects on native fauna. A management plan approach is proposed to address any effects on birds, lizards and bats so that they are avoided or adequately mitigated. Management of fauna would be subject to the provisions of the Wildlife Act 1953, and the management of lizards specifically, would require a Wildlife Act Authority (WAA) from the Department of Conservation, if present. Acquisition of a WAA for the management lizards at this site is not expected to be a risk or constraint.
- The loss of low quality natural inland wetland habitat (if present) will be addressed via avoidance where practicable, and where loss cannot be avoided, remedied or mitigated in accordance with the effects management hierarchy, biodiversity offsetting and/or aquatic compensation will be implemented. In addition to any specific offsetting or compensation, stormwater treatment wetlands constructed as part of the development would be designed to maximise their ecological value as habitat for native species. The potential for wetland loss and the approach to wetland offsetting is discussed in further detail in the following section.
- The loss of potential black mudfish habitat, if present, will need to be addressed through application of the effects management hierarchy process, including offsetting/ compensation. Precedence for offsetting black mudfish habitat loss has occurred recently for the Rotokauri Greenway project that was consented through the COVID-19 Recovery (Fast Track Consenting) Act 2020.
- The magnitude of adverse effects on water and aquatic habitat quality will be substantially reduced via best practice approaches to the timing of works and through careful construction methodologies and erosion and sediment control measures implemented in accordance with existing Waikato Regional Council guidelines.

- Construction within the Rogerson Block area will involve instream works and physical habitat changes which have the potential to disrupt migration and spawning for native fish. These effects will be reduced by managing the timing of the works and use of well-designed temporary diversion channels as required to allow fish passage around any active works. Adverse effects on indigenous fish during instream works will be managed through the implementation of a fish management plan.
- Any proposed watercourse crossings have the potential to impact fish passage.
 Culverts will be designed in accordance with best practice solutions to provide fish passage by drawing on the New Zealand Fish Passage Guidelines, version 2.0 (NIWA 2024).
- The potential for the introduction of weeds and pests can be managed via a weed management plan which includes biosecurity protocols (e.g., for earthworks machinery entering the site) and including weed and pest management as part of habitat restoration.

Potential Residual Effects Management Approach

Should significant adverse residual effects be unavoidable (e.g., permanent loss of wetland), the quantum of specific residual effects management required to ensure 'no net loss' or a 'net gain' in extent or value will be determined using the Biodiversity Compensation Model (BCM) (Baber et al. 2021). Best practice habitat restoration activities will include a combination of the following activities:

- Retirement from livestock grazing/access.
- Planting of ecologically appropriate indigenous plant species.
- Pest plant and animal control.
- Formal legal protection (e.g., covenanting or similar).

Depending on the extent of the overall effects, areas outside of the Rogerson Block may be required. If off-site restoration is required, opportunities will be sought via regional and district councils as a priority, followed by conservation groups and private landowners.

Public Good

The potential to improve the overall ecological values (both terrestrial and freshwater) within the Rogerson Block or wider area in the medium – long term is limited due to the current and historical land use and the ecological values present. Where achievable the integration of indigenous vegetation and the creation of vegetation corridors/buffers would enhance the quality of habitat for indigenous fauna within the site and potentially create functional connectivity to the wider landscape. Increased ecological connectivity and functional buffering of habitat will improve ecological resilience and integrity, particularly when coordinated with development across the greater SL1 area.

Conclusion

The anticipated adverse ecological effects of developing the Rogerson Block are manageable through the development and implementation of suitable conditions of consent and the use of site-specific ecological management plans for particular species (e.g., bats, lizards, black mudfish) and habitats (e.g., watercourses and wetlands). A Wildlife Act Authorisation will be required for the management of incidental injury or death of absolutely protect indigenous lizards during vegetation clearance and salvage and relocation measures. With respect to wetlands, any unavoidable loss may require biodiversity offsetting/compensation either within or near the Rogerson Block area. A detailed ecological

assessment and ecological management/ offsetting plan will be included in the resource consent application, should the application be accepted as a referred project.

Qualifications and Experience

Ecological Solutions Ltd. are expert freshwater and terrestrial environmental consultants with offices in Auckland, Tauranga, Northland and Nelson, from where we service our national client base. Richard Montgomerie is Ecological Solutions Managing Director and a freshwater ecologist with over 26 years' experience. Dr Gary Bramley is the terrestrial team lead and Nick Carter is the freshwater team lead, each with more than 20 years' experience managing a diverse range of environmental projects, including significant infrastructure and housing projects, throughout the country.

Ecological Solutions has extensive experience in the Waikato Region, having provided ecological services for numerous land development projects and primary sector clients for many years. Gary is currently the project manager for the Rotokauri Greenway Project (an EPA approved COVID-19 Recovery (Fast-track Consenting Act 2020 project) together with Rebecca Bodley one of our senior terrestrial ecologists. Rebecca is also project managing the Brymer project (a Fast Track Approvals Act 2024 project) while Chad Croft, another of our senior ecologists has extensive experience in the land development sector in the Waikato Region including the Peacocks Structure plan area and is currently managing Ecological Solutions involvement in the greater Southern Links 1 project area.

Ecological Solutions are experienced in developing appropriate mitigation and biodiversity offset/compensation projects required to manage terrestrial, wetland and stream habitat loss for a range of flora and fauna, including wetlands and black mudfish for the Rotokauri Greenway Project and bats for various developments in the Peacocke area. The most recent example of black mudfish offsetting undertaken included the development and implementation of an enhancement plan for Lake Waiwhakareke to offset loss of habitat for black mudfish associated with another local project.

References

Baber, M, Dickson, J, Quinn, J, Markham, J, Ussher, G, Heggie-Gracie, S, and Jackson, S (2021). A Biodiversity Compensation Model for New Zealand – A User Guide (Version 1). Prepared by Tonkin & Taylor Limited. Project number 1017287.0000P.

Hitchmough, Rob, Ben Barr, Carey Knox, Marieke Lettink, Joanne M. Monks, Geoff B. Patterson, James T. Reardon, Dylan van Winkel, Jeremy Rolfe and Pascale Michel. 2021. New Zealand Department of Conservation, August 2021.

Manaaki Whenua - Landcare Research 2024. The New Zealand SoilsMapViewer. https://doi.org/10.26060/9vfz-hw43

NIWA. 2024. New Zealand Fish Passage Guidelines. Version 2.0. Prepared for Ministry for the Environment, June 2024. Unpublished NIWA Client Report No: 2024157HN version 2.0. July 2024. National Institute of Water and Atmospheric Research, Hamilton. 160pp + appendices.

O'Donnell, Colin F.J, Kerry M. Borkin, Jenny Christie, Ian Davidson-Watts, Gillian Dennis, Moira Pryde and Pascale Michel 2022. Conservation status of bats in Aotearoa New Zealand. New Zealand Department of Conservation, April 2023.

