Detailed Site Investigation

Maitahi Subdivision 7 Ralphine Way, Nelson

CCKV MAITAI DEV CO LP

December 2021

Envirolink Ltd 20 Stafford Drive Mapua Ph: 027 277 3566 martyn@envirolink.co.nz

Quality Assurance

Detailed Site Investigation

Title: Maitahi Subdivision

7 Ralphine Way, Nelson

Client: CCKV MAITAI DEV CO LP

Reference: 211209.MaitahiDSI_v2

Version: 2

Date: December 2021

Prepared By: David Duncan

MSc Environmental Science

CSci C.WEM

Reviewed By: Martyn O'Cain

MSc (hons) Environmental Science PG Dip Business Management CEnvP (Site Contamination)

This document has been prepared for the benefit of CCKV MAITAI DEV CO LP and Nelson City Council. No liability is accepted by this company or any employee or sub-consultant of this company with respect to its use by any other person.

Should anyone wish to discuss the content of this report with Envirolink Ltd, they are welcome to contact us on 027 277 3566.

TABLE OF CONTENTS

Execu	utive S	Summary	1
1.0	Intro	duction	3
2.0	Obje	ectives and Scope of Work	4
3.0	Site	Conditions and Surrounding Environment	5
	3.1	Site Identification and Setting	5
	3.2	Site Description	6
	3.3	Geological and Hydrological Setting	7
4.0	Site I	History and Record Search	9
	4.1	Historical Aerial Photographs	9
	4.2	Historical Assessment Report Summary	9
	4.3	Summary of Potentially Contaminative Land Uses	10
5.0	Sam	pling and Analysis Programme	11
	5.1	Observations and Laboratory Analysis	14
	5.2	Quality Assurance/Quality Control	15
	5.3	Trigger Values	16
	5.4	Analytical Results	19
	5.5	Discussion	23
6.0	Conc	ceptual Site Model	27
	6.1	Soil Management	30
7.0	Plani	ning Considerations	31
8.0	Asse	essment of Remedial Options	32
9.0	Conc	clusions and Recommendations	34
	9.1	Conclusions	34
	9.2	Recommendations	35
10.0	Limit	tations	38

Appendix A: Proposed Development Plans

Appendix B: Site Photographs

Appendix C: Historical Aerial Photography

Appendix D: Laboratory Certificates of Analysis

Appendix E: ProUCL Worksheets

EXECUTIVE SUMMARY

Envirolink Limited (Envirolink) has been engaged by CCKV MAITAI DEV CO LP (the client) to produce a Detailed Site Investigation (DSI) for the property at 7 Ralphine Way, Nelson (the site). The site is a farm, currently stocking cattle, which is intended to be subdivided and developed as part of a large residential development. The proposed development includes standard residential lots, high-density residential properties, and reserve areas. Kaka Stream is intended to be redirected through an existing woolshed area.

The site appears on Nelson City Council's (NCC) HAIL¹ register as a result of the historical undertaking of livestock treatment. It is also understood that hop farming has historically been undertaken in the Maitai Valley and therefore part of the site may have been used for horticulture. The National Environmental Standard (NESCS) for Assessing and Managing Contaminants in Soil to Protect Human Health² requires a site investigation to be undertaken where certain hazardous activities and industries can be associated with the site.

The site has operated as a farm since the earliest available aerial photograph. A woolshed and associated sheep pens are present in much the same configuration as in the 1940s photograph and sheep treatment infrastructure has been observed on site. While no horticulture was noted in any aerial photographs, anecdotal evidence suggests that hops were grown at the site. A site investigation was undertaken to assess potential impacts from the identified HAIL activities historically undertaken in the area.

The investigation targeted the woolshed area as well the paddocks south of the woolshed, which are considered a likely location for hops to have been grown. No samples collected from the paddocks (excepting the samples associated with sheep exiting the treatment area) contained concentrations of contaminants above human health standards and soil from this area appears to be classifiable as cleanfill for disposal purposes.

The former sheep treatment area shows significant impact from arsenic and dieldrin with several samples containing concentrations above human health standards for recreational usage and ecological screening levels. As such, soil contamination in this area poses a potential risk to human health and ecological receptors given the proposal to reroute Kaka Stream through this area. Remediation and management will be required to mitigate these potential risks. It is considered likely that remediation measures taken to minimise human health risk will appropriately address potential ecological risks, in particular the removal of the most heavily contaminated soil around the treatment area.

As a "piece of land", the site will require a NESCS resource consent for subdivision, change of use, and/or soil disturbance. Due to the exceedance of NESCS standards in the area, the activity would likely be considered a restricted discretionary activity. A likely condition of a resource consent would be the preparation of a remediation action plan (RAP). The RAP should be prepared by a suitably qualified and experienced practitioner – contaminated land (SQEP). The RAP will provide a methodology to reduce potential risks posed to human health and environmental receptors to acceptable levels.

¹ Ministry for the Environment (MfE), 2011. Hazardous Activities and Industries List (HAIL).

² Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011.

Remedial options are highly dependent on the proposed development as the capping of contaminated soil may not be appropriate in the vicinity of watercourses. Some options that may be applicable to the development are:

- The excavation of soil exceeding human health standards; and
 - o Off-site disposal and/or
 - Management in another part of the development (such as a recreational reserve) away from watercourses.
- Capping of soil exceeding human health standards with "clean" cover soil.
- Solidification and stabilisation of contaminated soil to prevent leaching and reduce bioavailability.
- The redesign of the development to minimise disturbance of contaminated soils.

If excavations of greater than 1 m depth are required, groundwater may be intercepted and require dewatering. Water pumped from excavations may require additional treatment to addressed dissolved-phase contaminants.

Appropriate soil management will be required to avoid cross-contamination of "clean" soil. It appears that the majority of the site has contaminant concentrations at background levels. The contamination of these areas as a result of soil mixing or management of soil from contaminated areas, may result in future planning constraints.

The remediation objectives and methodologies will be detailed in the RAP following discussions with the client and NCC.

To facilitate the residential development, we recommend to:

- Obtain a resource consent under the NESCS for the required works;
- Undertake additional site assessment to close the relevant data gaps and reduce cost uncertainties, as needed;
- Determine the most appropriate remediation methodology based on client and council requirements;
- Produce a RAP for council approval; and
- Undertaken earthworks in accordance with the RAP and resource consent conditions.

Further information may be required to better understand areas and media impacted to assist in managing development costs and constraints. Discussions should be held prior to scoping to determine the client's objectives regarding risk management.

1.0 INTRODUCTION

Envirolink Limited (Envirolink) has been engaged by CCKV MAITAI DEV CO LP (the client) to produce a Detailed Site Investigation (DSI) for the property at 7 Ralphine Way, Nelson (the site). The site is a farm, currently stocking cattle, which is intended to be subdivided and developed as part of a large residential development.

The proposed development includes standard residential lots, high-density residential properties, and reserve areas. Kaka Stream is intended to be redirected through the existing woolshed area.

The site appears on Nelson City Council's (NCC) HAIL³ register as a result of the historical undertaking of livestock treatment. It is also understood that hop farming has historically been undertaken in the Maitai Valley and that part of the site may have been used for horticulture.

The National Environmental Standard (NESCS) for Assessing and Managing Contaminants in Soil to Protect Human Health⁴ requires a site investigation to be undertaken on properties that are undergoing a subdivision, a change of land use or significant land disturbance on a potentially contaminated site. Before the local council can authorise such activities an assessment of the site must be undertaken. The land use history of the site is assessed against the HAIL. The HAIL is a list of activities and industries that have the potential to contaminate soil. The investigation will indicate whether the site is fit for the proposed purpose or if additional information is required.

This report assesses potentially contaminative historical usage of the property in the context of the NESCS and is intended to support a resource consent application.

³ Ministry for the Environment (MfE), 2011. Hazardous Activities and Industries List.

⁴ Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011.

2.0 OBJECTIVES AND SCOPE OF WORK

The objectives of this DSI are to:

- Identify potential historical and/or current sources of contamination within the site and immediate surrounding area;
- Identify potential contaminants of concern;
- Determine if an activity or industry described in the Hazardous Activities and Industries
 List is being undertaken, has been undertaken, or is more likely than not to have been
 undertaken on the site:
- If so, assess the likelihood of human health being at risk if the proposed activity is undertaken; and
- Provide sufficient information to determine if a consent under the NESCS is required.

The following scope was undertaken to achieve the above objectives:

- Desk-based review of available information including:
 - Regional geological and hydrological setting;
 - Historical aerial photography (available from NCC, Retrolens, and Land Information New Zealand (LINZ)); and
 - o Any other relevant documents provided to Envirolink by the client.
- Site walkover/inspection;
- Collection and lab analysis of shallow soil samples in accordance with CLMG No. 5⁵;
- Production of a conceptual site model to facilitate risk assessment;
- Production of this DSI report summarising the above and consistent with the requirements of CLMG No. 1⁶.

The results and recommendations included in this investigation will accompany any resource or building consent applications that are required for future development and provide a reference to contractors and maintenance workers working on the property.

⁵ The Ministry for the Environment, 2021. Contaminated Land Management Guidelines (CLMG) No. 5 – Site Investigation and Analysis of Soils.

⁶ The Ministry for the Environment, 2021. Contaminated Land Management Guidelines (CLMG) No. 1

⁻ Reporting on Contaminated Sites in New Zealand.

3.0 SITE CONDITIONS AND SURROUNDING ENVIRONMENT

3.1 Site Identification and Setting

Site address: 7 Ralphine Way, Maitai Valley

Locality: Nelson 7010

Owner: CCKV MAITAI DEV CO LP

Legal description: Part Section 11 Brook Street and Maitai DIST

Site area: Approx. 43.7 hectares

Map reference: Latitude: -41.268176 Longitude: 173.310475

Seven Ralphine Way is located on the northern side of the Maitai River and Valley, approximately 2 km east of Nelson's central business district. While the site is indented to be redeveloped as a large residential subdivision, it is currently used as a cattle farm. The location and layout of the site are shown in Figures 1 and 2. Proposed development plans are presented in Appendix A.

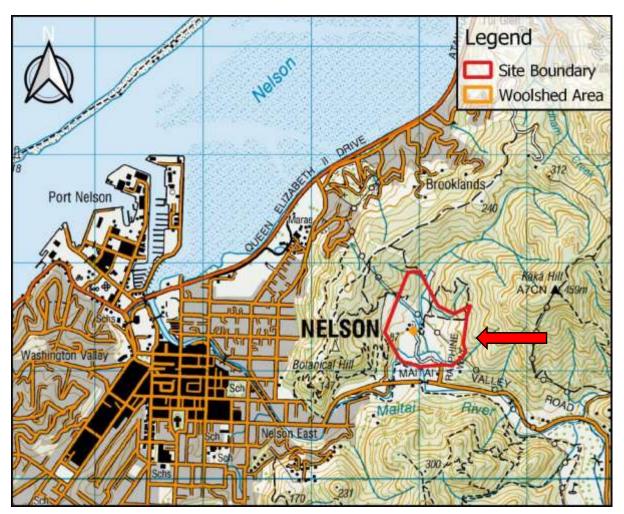


Figure 1 - Site Location

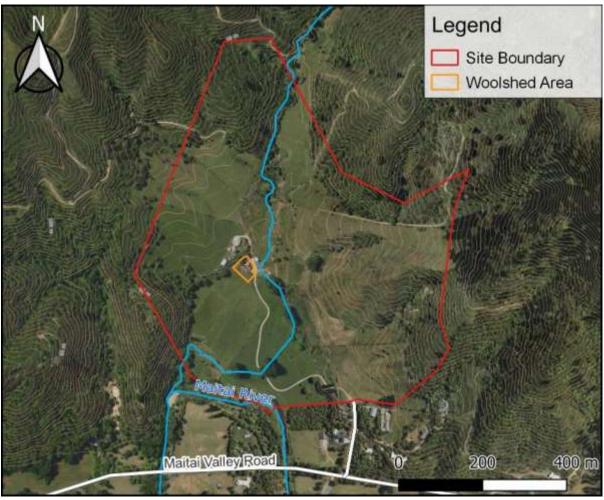


Figure 2 - Site Layout

As much of the property is steep hillside and is unlikely to have been used intensively in the past, this investigation focusses on the lower part of the property around the woolshed which was identified on NCC's HAIL register.

The site is currently zoned as *Rural - Higher Density Small Holdings Area* under the Nelson Resource Management Plan (NRMP). Adjacent properties are zoned as *Rural*. It is understood that the site is part of a current NRMP change application⁷.

3.2 Site Description

Site investigations were carried out on 6 October and 3 November 2021. Selected photos are presented in Appendix B for reference.

The higher parts of the site are grazing land and vegetated hillside. The central part of the site contains the former woolshed, an implement shed and smaller auxiliary buildings. The farmhouse and additional farm related buildings are also located centrally but are located on a raised river terrace overlooking the former woolshed. The flatter area to the south of the woolshed is grazing paddock. The property mainly stocks cattle with some goats present.

⁷ https://www.nelson.govt.nz/environment/nelson-resource-management-plan/nelson-resource-management-plan-2/private-plan-changes/private-plan-change-28-maitahi-bayview/

Kaka Stream runs north to south bisecting the site and cuts across the southernmost part of the site before draining into the Maitai River, which is present immediately south of the site. Several small overland flow paths, draining the lower paddocks toward the Maitai River, were noted.

The hillside areas of the site were not inspected as this DSI is predominately focussed on the lower area where livestock dipping/spraying and horticulture were most likely to have been undertaken.

An inspection of the area west of the woolshed revealed historical sheep treatment infrastructure including treatment and holding pads, chemical draining infrastructure and sump, and a standpipe which may have been used for water supply. A footbath was also observed to the south of the woolshed. These features are shown on Figure 3.

Figure 3 – Sheep Treatment Infrastructure

3.3 Geological and Hydrological Setting

The published site geology from the GNS Science 1:250k web map for New Zealand identifies the site to be underlain by four geological units as indicated on Figure 4. These are:

 Holocene river deposits described as 'Well sorted gravels forming modern flood plains and young fan gravels'.

- Late Pleistocene river deposits described as 'Clay bound gravels and minor fan deposits forming lowest aggradation surfaces above major rivers'.
- Basement metamorphic rocks (Wakapuaka Phyllonite) described as 'Fine grained well foliated phyllonite tectonised breccia and sandstone'.
- Basement sedimentary rocks (Grampian Formation (Brook Street Volcanics Group) described as 'Bedded sandstone commonly tuffaceous and calcareous minor sandstone and breccia sparse fossils'.

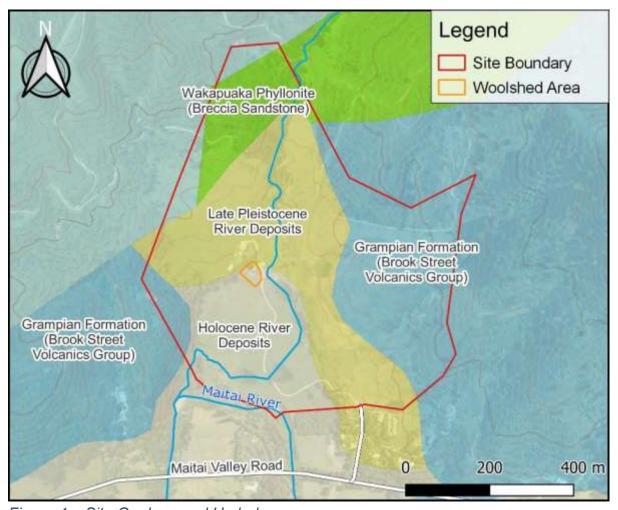


Figure 4 – Site Geology and Hydrology

NCC data⁸ indicates that there are no water takes within 1000 m of the site.

Shallow groundwater flow is likely to be generally to the south, following the topography and surface watercourses.

Kaka Stream is said to have been realigned from its original course: through the woolshed area and along the base of the hill⁹.

⁸ Obtained from NCC's Top of the South Maps GIS Platform: https://www.topofthesouthmaps.co.nz/

⁹ Young, A. 2020. Historical and Archaeological Assessment for CCKV Maitai Dev Co LP and Bayview Nelson Limited. Dated 17 December 2020.

4.0 SITE HISTORY AND RECORD SEARCH

4.1 Historical Aerial Photographs

A review of historical aerial photographs (1940s to 2019) available from NCC, Retrolens, and LINZ was undertaken as part of this assessment. Aerial photography assessed is presented in Appendix C.

The following can be surmised from the reviewed photographs:

Table 1 - Historical Aerial Photograph Descriptions

Date	Wider Site
1940s	The site is in agricultural usage and is a mix of cultivated fields and vegetation. No obvious horticulture is noted. The woolshed and pens are present in their current location and a farmhouse is present to the northeast of the woolshed.
1960	There are no major changes noted to the site. A small structure has been constructed to the rear of the farmhouse.
1967	No notable changes (poor quality image).
1969	No notable changes.
1970s	The sheep pens are obvious in this high-quality image. A building (possibly a barn/shed) has been constructed to the northwest of the woolshed.
1977	No notable changes (poor quality image).
1981	No notable changes.
1983	No notable changes.
1980s	The access road to the farm has been rerouted to Ralphine Way. No other changes noted.
2008-2009	The possible barn northwest of the woolshed appears to be a residential structure. Two new structures are present; likely a garage and barn/shed. An implement shed has been constructed just northeast of the woolshed on the other side of the farm track. The former homestead northeast of the woolshed has been demolished/removed.
2014	No notable changes.
2018-2019	No notable changes.

The site has operated as a farm since the earliest available aerial photograph. Older photos suggest the site was used predominately for livestock grazing with few changes over the years. The woolshed and associated sheep pens have been present over the period reviewed. Between the 1980s and 2008, the old farmhouse was removed and a new one constructed northwest of the woolshed.

4.2 Historical Assessment Report Summary

A historical and archaeological assessment (Young, 2020) was produced to support the proposed plan change. This assessment indicates that part of the woolshed was previously used as a hop kiln and the conversion to a woolshed occurred by the early 1900s.

Hops are said to have been grown by no later than 1897, possibly earlier.

To the rear of the former homestead area on the terrace northeast of the woolshed is said to be the site of a ca. 1842 cob cottage which was surrounded by stone walls and burned down in 1991. The chimney which is present is said to be the associated with this cottage.

4.3 Summary of Potentially Contaminative Land Uses

A review of the site's history indicates that the following HAIL activities possibly occurred on the site:

Table 2 - HAIL Site Usage

Activity	HAIL Category	Associated Contaminants	Status
Sheep Dip/Spray	A8: Livestock dip or spray race operations	Arsenic, copper, zinc Organochlorine pesticides (OCP)	Confirmed
Horticulture	A10: Persistent pesticide bulk storage or use including sport turfs, market gardens, orchards, glass houses or spray sheds	Arsenic, copper, & lead	Possible, but not noted on aerial photographs
House fire	I: Any other land that has been subject to the intentional or accidental release of a hazardous substance in sufficient quantity that it could be a risk to human health or the environment	Heavy metals, asbestos	Possible

The site has been used as a farm for many years, stocking sheep and cattle and possibly growing hops in the 1800s.

As any significant horticulture is unlikely to have occurred since the 1940s, organic pesticides are discounted. The most likely ones which may have been used are lead arsenate or copper. Given the topography of the site, it is considered unlikely that intensive horticulture was undertaken outside of the lower, flatter areas.

Operations related to sheep dipping/spraying are likely confined to the wider area of the current sheep pens/woolshed, which has been present since the earliest aerial photograph from the 1940s. The presence of a sheep spray has been observed during a site walkover. Given the above, and the long history of the farm operation, it is likely that sheep have been treated with arsenic and OCP-based solutions. Additionally, zinc and copper are commonly used to control foot rot and are included as contaminants of concern.

The area of the former homestead was inspected during a site walkover. No remnants of former structures were noted other than a chimney to the rear of the former homestead and a pile of stone wall fragments. This area will be addressed prior to Stage 2 of the development commencing.

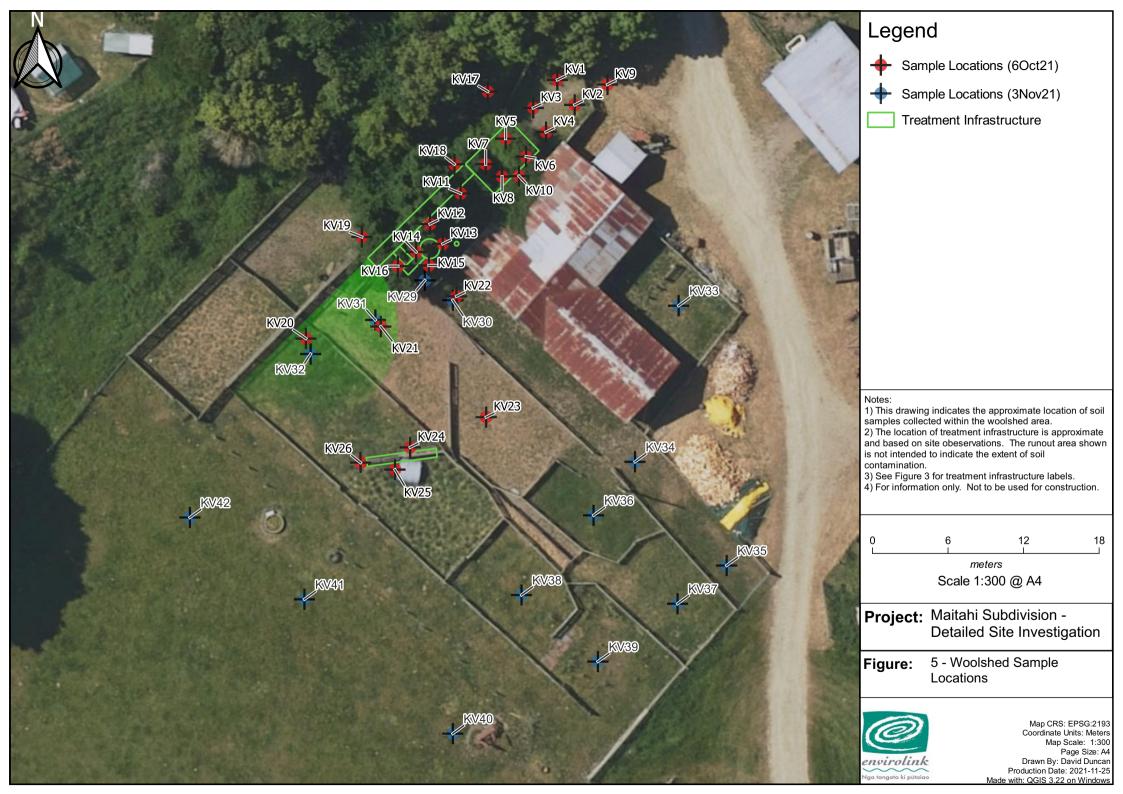
No waste burning or burial areas have been noted in this assessment, but as these are commonly found on large farm properties, accidental discovery protocols should be in place during development earthworks in case they are encountered.

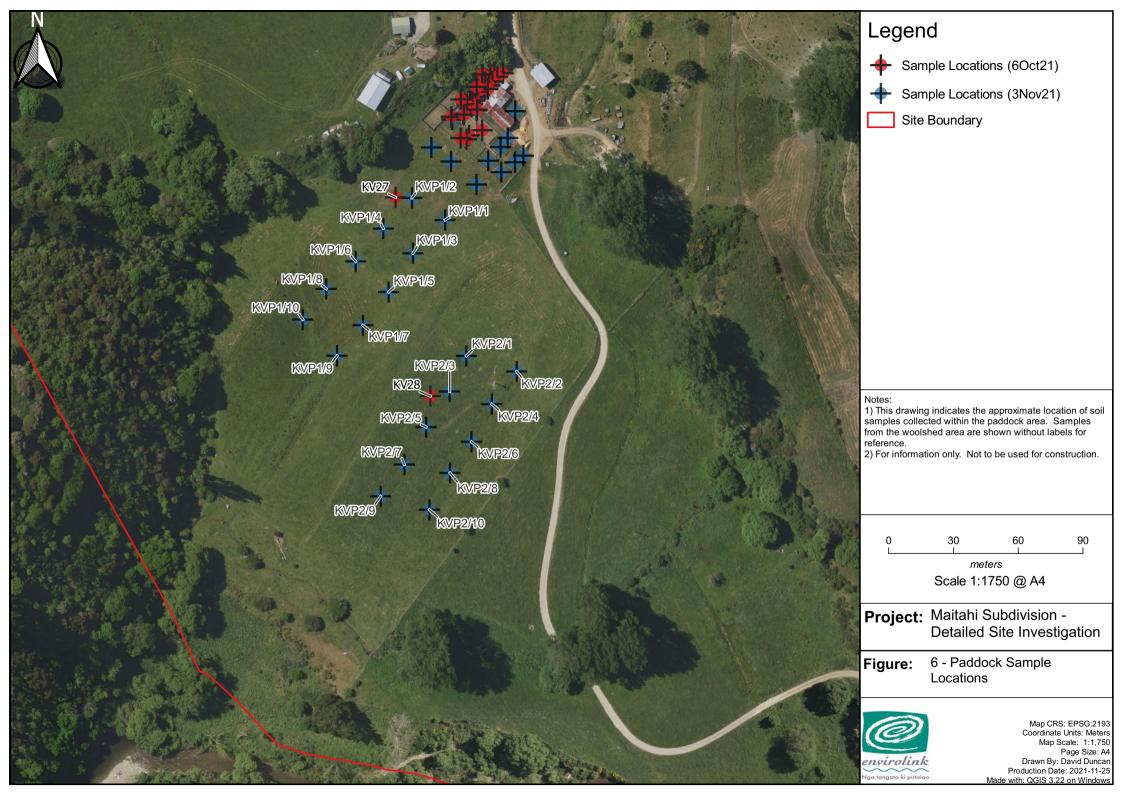
5.0 SAMPLING AND ANALYSIS PROGRAMME

Soil samples were collected over two sampling events undertaken on 6 October 2021 and 3 November 2021 to determine whether the previously identified HAIL usages of the site may have negatively impacted soil quality.

Samples collected during the first event were intended to determine if the sheep dipping/spray operation had impacted the site and to assess the paddock area for potential pesticide usage. After elevated contaminant concentrations were noted from these samples, additional samples were collected to delineate the areas impacted by sheep treatment and to further assess the paddock areas.

In order to assess impacts related to sheep treatment, samples were collected from around the treatment area and likely "run-out" areas following treatment. Surface samples were collected from twenty-six locations at a depth of 0-75 mm below ground level (bgl). Samples of the underlying subsoil (typically 200-275 mm bgl) were collected from four of those locations (KV1-KV4) as the current farmer indicated that the sheep may have exited the treatment area to the north and this is the first area they would likely be held after dipping.


Samples KV27 and KV28 were collected from the paddock to assess whether pesticides may have been historically applied. Following the detection of arsenic in one of these samples at a concentration above human health standards, it was decided to collect additional samples from the paddocks. Twenty shallow (0-75mm bgl) samples were collected from two grids of ten samples at approximately 20m spacing.


Additional samples (KV33-KV42) were collected from surface soil in the sheep pens to further assess the lateral impact of dipping-related contamination. Samples KV29-KV32 were collected from subsoil near surface sample locations containing elevated contaminant concentrations. These samples were typically collected from a depth of up to 0.5m bgl, but a hand auger was advanced at KV29 to refusal at a depth of 1.4m bgl.

Ground conditions prevented the collection of deeper samples using hand tools.

Sample locations are shown on Figure 5 and Figure 6.

Two water "grab" samples were collected during the second sampling event on 3 November 2021 in order to understand disposal requirements. One sample was collected from the concrete sump in the treatment area, which was full of water. The other was collected from a metal standpipe which appears to be connected to groundwater. The static water level within the pipe was approximately 1.3 m below the surface. It was initially thought the pipe may be connected to an underground storage tank, but when 'dipped', it did not appear to enter a larger structure.

5.1 Observations and Laboratory Analysis

Soil was generally free of anthropogenic material; however, some metal wire and glass fragments were noted in samples collected from around the sheep treatment area. No organoleptic evidence of contamination was noted. Shallow soil in the sheep pens appeared to be river gravels presumably placed to improve surface drainage. The area is elevated slightly compared to the surrounding paddocks.

The soil types encountered are summarised in Table 3.

Table 3 – Ground Conditions Encountered

Unit		Typical Depth (mm bgl)	Typical Description	Notes				
Topsoil		0-100	Dark brown organic sandy gravelly SILT	Encountered around treatment area and in paddocks				
Hardfill		0-250	Orangish brown slightly silty cobbly sandy GRAVEL	Likely imported river gravels. Encountered in sheep pens				
River	Granular deposits	250-800	Orangish brown (slightly) silty sandy GRAVEL.	River deposit depth and composition likely to be variable across the				
Deposits	Cohesive deposits 800–1400-		Soft orangish brown sandy (slightly) gravelly CLAY	woolshed and paddock areas.				
	Ground conditions based on observations from deeper samples collected at KV29-32. * (bottom depth not encountered)							

The soil encountered is considered to be generally consistent with the local geology. A layer of hardfill, likely river gravels, has been placed across the sheep pens, presumably to improve drainage and reduce 'pugging' within the pens. Topsoil was encountered in the treatment area, likely due to the accumulation of leaf litter and other organics during the long period in which it has not been in usage.

A dark grey clayey sand with brick fragments was encountered in KV29 from approximately 200-500 mm bgl. This may be associated with the installation of the below ground treatment infrastructure nearby.

Soil in KV29 was damp from approximately 1 m bgl. Groundwater was not encountered in any other locations. The paddock was noted to be waterlogged in lower areas.

Selected samples were analysed for heavy metals and OCP by IANZ-accredited Hill Laboratories. Other samples were held at the laboratory in the event that further analysis is required. Analytical scheduling was based on professional judgement and site observations.

Topsoil and subsoil samples from KV1-KV4 were composited for analysis as they were all collected from the same small pen and appear to have been significantly disturbed by cattle

over many years. The topsoil samples from the adjacent pen (KV5-KV8) were also composited for analysis.

Toxicity Characteristic Leaching Procedure (TCLP) testing was undertaken for selected samples with elevated contaminant concentrations to satisfy landfill acceptance requirements.

5.2 Quality Assurance/Quality Control

Samples were collected using a stainless-steel trowel or hand auger. Field staff wore clean disposable gloves when collecting each sample to minimise the potential for cross-contamination. All sampling equipment was cleaned in Decon 90 and rinsed in freshwater before collecting each sample.

The water sample from the sump was bailed and decanted into a sample container using a decontaminated stainless-steel vessel. The water sample from the pipe was collected using plastic tubing.

Samples were couriered to Hill Laboratories under chain of custody documentation.

Four duplicate soil samples were collected and scheduled for metals analysis. The data quality of the duplicate samples collected for quality control purposes is evaluated by reference to the Relative Percentage Difference (RPD). RPD is used to determine the precision/reproducibility of the results. Table 4 shows the results and RPD for the duplicate sample collected during the investigation.

Table 4 - RPD Results for Field Duplicate Samples

	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc
KV10	108	10.4	89	81	200	73	5500
KV-Dup1	78	13.7	83	67	155	88	4700
% RPD	32.3	27.4	7.0	18.9	25.4	18.6	15.7
KV25	49	0.26	173	85	35	197	760
KV-Dup2	46	0.26	148	86	38	200	570
% RPD	6.3	0.0	15.6	1.2	8.2	1.5	28.6
KVP1/6	12	< 0.2	126	58	13.3	55	88
KVP1-Dup	11	0.16	121	59	12.3	56	84
% RPD	8.7	-	4.0	1.7	7.8	1.8	4.7
KVP2/5	5	0.15	143	51	7.9	66	67
KVP2-Dup	5	0.15	139	52	7.5	69	66
% RPD	0.0	0.0	2.8	1.9	5.2	4.4	1.5

The precision of the laboratory analytical results is deemed to be suitable if the RPD values fall within the recommended range of 30% RPD where one or both values were greater than 10x the laboratory limit of reporting or 50% RPD where one or both values are less than 10x the laboratory limit of reporting. The RPD values for the soil samples collected as part of this investigation are within those limits with the exception of one which slightly exceeded 30%. Overall, the values are considered acceptable.

5.3 Trigger Values

5.3.1 Background

Heavy metals results are compared to the background criteria listed in Cavanagh (2015)¹⁰ in order to provide an indication of resource consent requirements. For DDT assessment, the background concentration is taken from Gaw (2003)¹¹.

5.3.2 Human Health

Soil sample results are compared to the soil contaminant standards (SCS) listed in Tables B2 and B3 (soil contaminant standards for health for inorganic and organic substances) of the NESCS. Residential (10% produce), high-density residential, and recreational exposure scenarios are all relevant to the proposed development as shown on Figure 7 and in the development plans in Appendix A.

For analytes that are not listed as priority contaminants in the NESCS, CLMG No. 2¹² provides guidance. Lindane assessment criteria is taken from the *Sheep Dip Guidelines*¹³. For nickel and zinc, the Australian NEPM Health Investigation Level¹⁴ values are used.

The woolshed is located in an area intended for recreational usage, while the adjacent paddock is to be a mixture of recreational and high-density residential. The identified potential HAIL areas are not located in areas intended for standard residential (10% produce) usage.

5.3.3 Waste Classification

Results are compared to waste acceptance criteria to provide an indication of the likely classification of soil should it need to be removed from site.

Cleanfill acceptance for heavy metals is based on recommended cleanfill criteria in Table 5 from Cavanagh (2015)¹⁰. Cleanfill acceptance criteria (for Class 5 landfills) for DDT is from WasteMINZ (2018)¹⁵. A cleanfill level for dieldrin has not been set by NCC and the suitability for dieldrin-contaminated soil to be disposed of in a cleanfill will be subject to further assessment.

Results exceeding cleanfill criteria are also compared to the York Valley Landfill screening criteria. Where these values are exceeded, leachate analysis of soil samples may be required by the receiving facility prior to confirming waste acceptance. As a result, leachate analysis was undertaken, and results are compared to York Valley Landfill acceptance limits.

¹⁰ Cavanagh, J., 2015. Background concentrations of trace elements and options for managing soil quality in the Tasman and Nelson Districts. Envirolink Advice Grant: 1555-TSDC110.

¹¹ Gaw, S, K., 2003. Historic Pesticide Residues in Horticultural and Grazing Soils in the Tasman District. TDC Rural Soils Report.

¹² The Ministry for the Environment, 2011. Contaminated Land Management Guidelines (CLMG) No. 2 – Hierarchy and Application in New Zealand of Environmental Guideline Values.

¹³ MfE, 2006. Identifying, Investigating, and Managing Risks Associated with Former Sheep-dip Sites: A guide for local authorities.

National Environment Protection (Assessment of Site Contamination) Measure 1999 (revised 2013). Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Table 1A(1).
 Waste Management Institute New Zealand, 2018. Technical Guidelines for Disposal to Land Appendices: Tables C-2 and C-3.

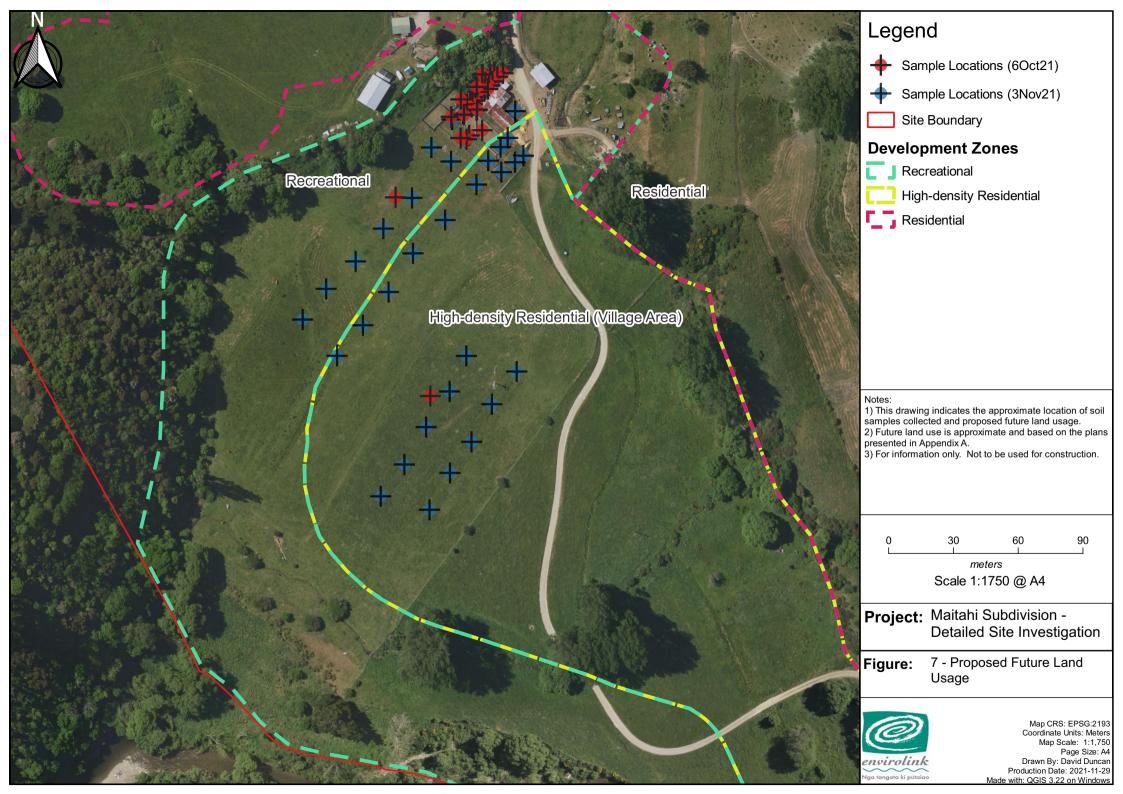
York Valley's consent does not specify limits for aldrin, dieldrin, or DDT. As such, Class A landfill acceptance criteria are used for those analytes¹⁶.

5.3.4 Ecological Protection (Soil)

It is understood that Kaka Stream is to be redirected through the current woolshed area as part of the proposed development. Given the potential for a surface watercourse to be in contact with contaminated soil, it is considered appropriate to assess soil contaminant concentrations against ecological-soil guideline values (Eco-SGV)¹⁷. The values for residential/recreational usage for typical soils with aged contamination are used. Where Eco-SGVs were not available, as is the case for nickel, dieldrin, and lindane, the ANZECC¹⁸ sediment quality guidelines (SQG) were used.

5.3.5 Ecological Protection (Water)

Water "grab" samples are compared to ANZECC 2000 freshwater screening values ¹⁹. Values for 80% species protection were used due to the highly modified nature of the surrounding environment.


These values relate to surface water quality and are presented to provide context to contaminant concentrations recorded in water samples. As the water sampled is not from or directly adjacent to a surface waterbody, these values are not appropriate for risk assessment. Additionally, the source of the waters sampled are not well understood and may not be representative of groundwater in the area.

¹⁷ Cavanaugh, J, 2016. User Guide: Background soil concentrations and soil guideline values for the protection of ecological receptors (Eco-SGVs) – Consultation Draft. And Cavanaugh, J, 2019. Updating the Ecological Soil Guideline Values (Eco-SGVs).

¹⁶ MfE, 2004. Module 2: Hazardous Waste Guidelines – Landfill Waste Acceptance Criteria and Landfill Classification.

¹⁸ Australian and New Zealand Environment and Conservation Council (ANZECC), 2013. Revision of the ANZECC/ARMCANZ Sediment Quality Guidelines.

¹⁹ Based on ANZECC, 2000. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Retrieved from: https://www.waterquality.gov.au/anz-guidelines/guideline-values/default/water-quality-toxicants

5.4 Analytical Results

A summary of analytical results for the woolshed area are presented in Table 5.

In addition to heavy metals, DDT and the sum of 'drins' (aldrin, dieldrin, and endrin) are shown. While DDT has been detected in the treatment area, dieldrin is the primary contaminant of concern. Endrin was likely to be present at much lower concentrations in treatment chemicals as an isomer/"contaminant" of dieldrin production. Though aldrin has not been detected at high concentrations, it may have been used as a treatment chemical prior to dieldrin. As aldrin degrades to dieldrin, it is difficult to know to what extent it was used. As the three compounds present a similar risk profile, they can be assessed together.

Lindane (gamma-hexachlorocyclohexane(HCH)) was detected around the treatment area. The dominant isomer detected is beta-HCH, likely due to its relatively greater resistance to biodegradation relative to the other isomers²⁰. Lindane and its isomers are presented in the results table as 'total HCH'. While the isomers have slightly different risk profiles, comparison to the lindane screening value is considered appropriate for an initial screen.

A summary of analytical results for the paddock area are presented in Table 6.

The results of TCLP analysis are presented in Table 7.

The results for the water grab samples are presented in Table 8.

The Hill Laboratories certificates of analysis is attached as Appendix D.

-

²⁰ Agency for Toxic Substances and Disease Registry (ATSDR). 2005. Toxicological profile for Hexachlorocyclohexane. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Table 5 - Summary of Analytical Results – Woolshed Area

Sam	ple Location	Depth (mm)	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc	Total DDT	Total HCH [@]	Total 'drins'^
KV1-4	4 (Composite)	0-75	20	0.42	88	58	31	89	340	< 0.08	< 0.013	< 0.013
KV1-4-	SS (Composite)	200-275	8	0.25	158	42	22	410	193	< 0.07	< 0.011	< 0.011
KV5-8	8 (Composite)	0-75	32	0.4	111	44	34	155	250	< 0.11	< 0.018	0.13
	KV9	0-75	17	0.19	77	55	20	63	188	< 0.08	< 0.013	0.024
	KV10	0-75	108	10.4	89	81	200	73	5,500	< 0.15	< 0.03	3.2
	KV11	0-75	450	9.8	98	96	390	90	610	0.27	0.329	78.707
	KV12	0-75	580	16.3	104	124	152	82	480	4.2	0.301	243.52
	KV13	0-75	270	3.6	107	72	179	53	900	0.34	0.018	36.36
	KV14	0-75	420	15.6	109	67	176	89	750	1.19	0.26	633.8
	KV15	0-75	158	11.5	85	96	200	65	1,440	3.5	0.049	154.28
	KV29-2	300-375	810	1.12	128	97	460	73	400	0.12	0.077	22.42
	KV29-3	600-700	141	0.2	96	67	7.6	47	210	< 0.07	< 0.012	3.151
	KV16	0-75	-	-	-	-	-	-	-	5.3	8.297	407.3
	KV17	0-75	31	0.42	142	51	37	210	550	-	-	
	KV18	0-75	35	0.34	87	49	22	147	300	< 0.09	< 0.015	0.153
	KV19	0-75	31	0.3	124	43	19	195	190	< 0.08	< 0.013	0.074
	KV20	0-75	89	0.49	127	97	31	240	260	< 0.09	0.016	4.016
	KV32-2	350-425	63	0.2	120	190	69	163	124	< 0.07	< 0.012	0.59
	KV21	0-75	90	0.52	113	88	50	185	230	< 0.10	< 0.016	9.536
	KV31-2	300-375	430	0.28	130	130	134	82	193	< 0.08	< 0.012	4.725
	KV22	0-75	53	1.1	119	119	137	128	680	-	-	
	KV30-1	0-75	-	-	-	-	-	-	-	< 0.07	< 0.012	1.48
	KV30-2	300-375	71	0.19	120	107	54	78	194	< 0.07	< 0.012	0.099
	KV24	0-75	86	0.32	149	450	43	200	590	-	-	
	KV25	0-75	49	0.26	173	85	35	197	760	-	-	
	KV26	0-75	39	0.3	123	108	29	200	670	-	-	
	KV33	0-75	16	0.5	95	54	67	42	198	-	-	
	KV34	0-75	18	0.43	123	60	40	146	230	-	-	
	KV36	0-75	16	0.19	125	65	26	98	136	-	-	
	KV38	0-75	19	0.2	154	77	33	177	200	-	-	
	KV41	0-75	32	0.23	130	69	46	61	149	-	-	
	KV42	0-75	59	0.37	121	120	32	164	200	< 0.08	< 0.013	1.32
	Background		11	0.90	183	41.5	33	274.4	141.5	0.48	0	0
	NCC Cleanfill		12	0.75	183	83	86	274.4	300	0.7~	-	-
	York Valley Landfill	Screening Criteria	100	10	100#	200	100	200	200		8	.4
sessment Criteria	Ecological Guidelin	Ecological Guideline Value		17	390	240	1,300	52*	300	4.8	7*	1.4*
- non	NESCS - Residentia	NESCS - Residential		3	460#	>10,000	210	400	7,400	70	140	2.6
	NESCS – Residential (High-density)		45	230	1,500	>10,000	500	1,200	60,000	240	700	45
	NESCS - Recreation	nal	80	400	2,700#	>10,000	880	1,200	30,000	400	1,400	70

Notes: - All concentrations expressed as mg/kg.
- Grey shading indicates depth samples.
^ Total 'drins' is the sum of aldrin, dieldrin, and endrin.
@ Total HCH is the sum of Lindane and its isomers.
* ANZECC SQG-H value used in absence of an Eco-SGV. Screening value for chromium is based on chromium (III).
Screening value for chromium (VI).

Table 6 - Summary of Analytical Results – Paddock Area

Sample L	ocation Depth (mm)	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc
KV	27 0-75	30	0.29	70	55	84	53	176
KVP	1/2 0-75	25	0.19	112	62	21	66	125
KVP	1/1 0-75	6	0.22	79	46	59	81	149
KVP	1/3 0-75	5	0.2	87	44	47	94	121
KVP	1/4 0-75	9	0.23	76	48	60	49	148
KVP	1/5 0-75	7	0.15	96	51	19.5	57	95
KVP	1/6 0-75	12	< 0.2	126	58	13.3	55	88
KVP	1/7 0-75	5	0.21	140	57	6.4	62	68
KVP	1/8 0-75	6	0.17	116	59	5.3	56	68
KVP	1/9 0-75	3	0.18	135	55	5.6	62	77
KVP	1/10 0-75	4	0.15	138	47	5.8	68	65
KV	28 0-75	5	0.13	148	54	6.3	69	68
KVP	2/1 0-75	5	0.17	132	58	6.9	56	63
KVP	2/2 0-75	5	0.15	117	47	10.7	56	64
KVP	2/3 0-75	6	0.16	144	61	9	63	72
KVP	2/4 0-75	5	0.19	140	54	7.6	73	70
KVP	2/5 0-75	5	0.15	143	51	7.9	66	67
KVP	2/6 0-75	5	0.15	161	57	12.5	97	75
KVP	2/7 0-75	4	0.14	148	57	7.4	69	61
KVP		5	0.17	181	64	10.6	128	76
KVP		5	0.13	151	57	5.5	87	61
KVP :		5	0.19	200	57	7.3	172	77
Pado	lock Area - 95% UCL of the mean	6.4	0.18	145.1	56.2	32.8	87.9	92.4
	Background	11	0.90	183	41.5	33	274.4	141.5
	NCC Cleanfill	12	0.75	183	83	86	274.4	300
Nacacaman i	York Valley Landfill Screening Criteria	100	10	100#	200	100	200	200
Assessment Criteria	Ecological Guideline Value	55	17	390	240	1,300	52*	300
	NESCS - Residential	20	3	460#	>10,000	210	400	7,400
	NESCS - Residential (High-density)	45	230	1,500	>10,000	500	1,200	60,000
	NESCS – Recreational	80	400	2,700#	>10,000	880	1,200	30,000

Notes: - All concentrations expressed as mg/kg
Screening value for chromium (VI)
* ANZECC SQG-H value used in absence of an Eco-SGV. Screening value for chromium is based on chromium (III).

Table 7 - Summary of Analytical Results – TCLP/Leachate Analysis

Sample Location	Depth (mm)	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc	Aldrin	Dieldrin	Endrin	Total DDT	Total HCH@
KV10	0-75	0.046	0.029	-	-	0.0122	-	14.3	-	-	-	-	-
KV11	0-75	0.26	-	-	-	0.0122	-	0.9	< 0.00010	0.037	0.00037	< 0.0002	< 0.0002
KV12	0-75	0.47	0.051	< 0.011	-	0.01	-	0.77	< 0.00010	0.059	0.00107	< 0.0002	< 0.0002
KV14	0-75	0.163	0.022	< 0.011	-	0.021	-	2.2	0.00036	0.099	0.00064	< 0.0002	0.0004
KV20	0-75	-	-	< 0.011	-	-	0.046	-	< 0.00010	0.00156	< 0.00010	< 0.0002	< 0.0002
KV21	0-75	-	-	-	-	-	-	-	< 0.00010	0.0023	< 0.00010	< 0.0002	< 0.0002
KV22	0-75	-	-	-	-	0.007	-	2.9	-	-	-	-	-
KV24	0-75	-	-	< 0.011	0.195	-	0.169	1.92	-	-	-	-	-
KV26	0-75	-	-	< 0.011	-	-	0.04	1.27	-	-	-	-	-
KV29-2	300-375	0.57		< 0.011		0.0116		0.85	< 0.00010	0.02	0.00021	< 0.0002	< 0.0002
York Valley Lan	dfill Acceptance Limit	5	0.5	5	10	5	10	10	0.00008*	0.4*	0.02	NA*^	0.4

Notes: - All concentrations expressed as mg/L

* Class A landfill limits (MfE 2004)

^ No leachate value set. Acceptance limit is a soil concentration of 500 mg/kg.

Table 8 - Water Sample Results

Sample Location	As	Cd	Cr	Cu	Pb	Ni	Zn	Aldrin	DDT	Dieldrin	Lindane
Sump (KVS1)	< 21	2.5	< 11	< 11	6.8	< 11	164	< 0.4	< 0.4	< 0.4	< 0.4
Standpipe (KTV2)	2,400	181	340	760	9,900	310	540,000	29	< 0.4	3.6	< 0.4
Guideline Value	140	0.8	40	2.5	9.4	17	31	0.001	0.04	0.01	1

Notes: - All concentrations expressed as µg/L

- Water samples were analysed for total metals, rather than filtered.
- Guideline values are the Australian and New Zealand Guidelines for Fresh and Marine Water Quality. The 80% species protection levels were used.

Please note that these results are being presented for reference purposes only but should not be fully relied on as the configuration of the standpipe and the method of sampling were not formally undertaken

5.5 Discussion

5.5.1 Woolshed Area

Soil Samples

The former treatment area shows significant impact from arsenic and dieldrin. Several results around the treatment and runout areas exceed recreational human health standards by an order of magnitude. The highest concentrations were recorded in the vicinity of the sump. Arsenic, dieldrin, and zinc are the contaminants most commonly recorded at significantly elevated concentrations. Concentrations of arsenic and dieldrin around the woolshed area are presented in Figure 8 and Figure 9, respectively.

The depth of impact has not been fully delineated in this phase of investigation. Exceedances of recreational SCS were recorded in the deepest samples collected from the sump (600-700 mm bgl) and runout areas (300-375). In some areas, arsenic appears to have migrated through the hardfill layer into the upper river deposits where concentrations have been recorded in excess of surface concentrations. In contrast to arsenic, dieldrin's affinity for organic matter seems to have reduced its downward migration with all depth samples showing reduced concentrations relative to those at surface.

Contaminant concentrations were also compared to residential standards to determine the soil's suitability for reuse on residential parts of the site. Shallow soil from the majority of the area is not considered suitable for shallow usage on normal residential lots. Some may be suitable for usage in high-density residential areas.

All samples analysed exceed cleanfill acceptance criteria for at least one analyte, indicating that no shallow soil from the woolshed area is suitable for disposal to a cleanfill facility.

Several samples exceed the ecological guideline values, indicating that some of the soil may not be suitable for usage in a riparian environment, such as that envisaged by the proposed development. As the ecological guideline values are similar to human health standards, it is likely that remediation required to address potential human health risks will also address potential ecological risks.

The results indicate that naturally elevated concentrations of nickel, chromium, and possibly copper are present at the site. Nickel and chromium are not usually associated with sheep dip or spray use. Nickel is naturally occurring on the site at concentrations above ecological guideline value of 52 mg/kg. Where analytes are not elevated above background levels, they are not considered to pose a potential ecological risk.

As several soil samples exceeded landfill screening levels, leachate analysis was carried out. The results indicate that most of the soil is suitable for disposal at York Valley Landfill; however, two samples from the treatment area exceeded acceptance limits.

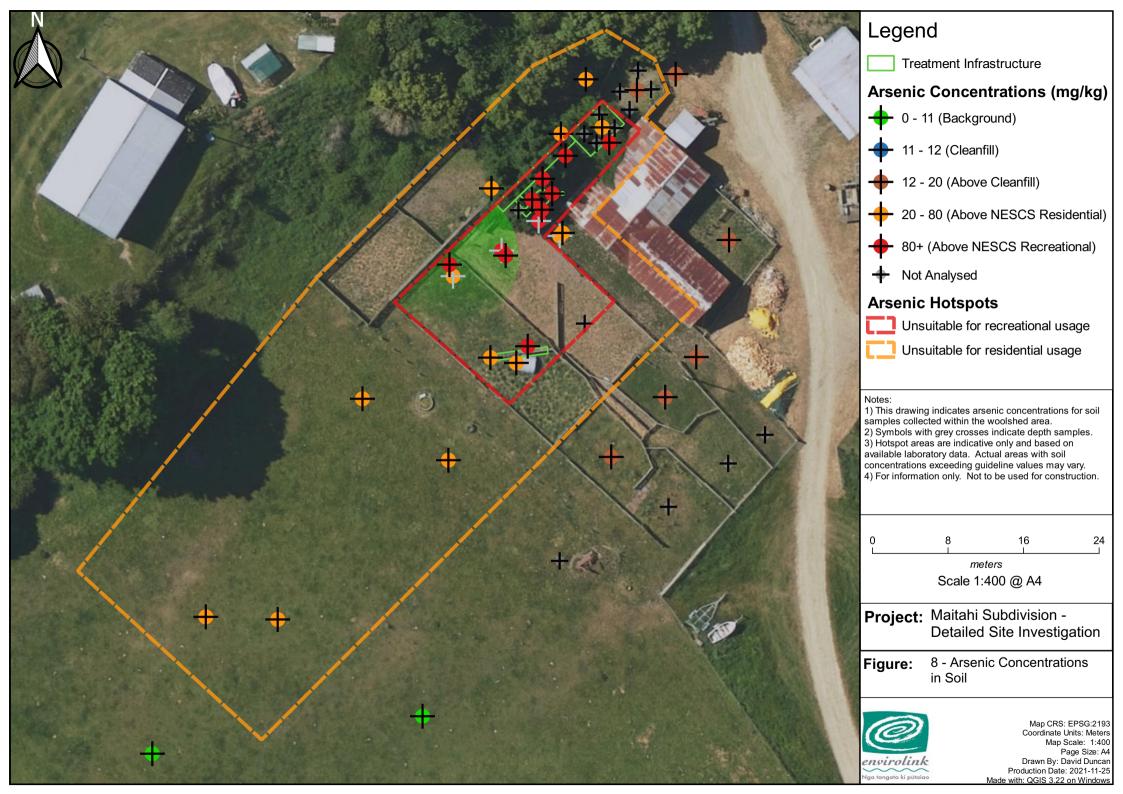
Water Samples

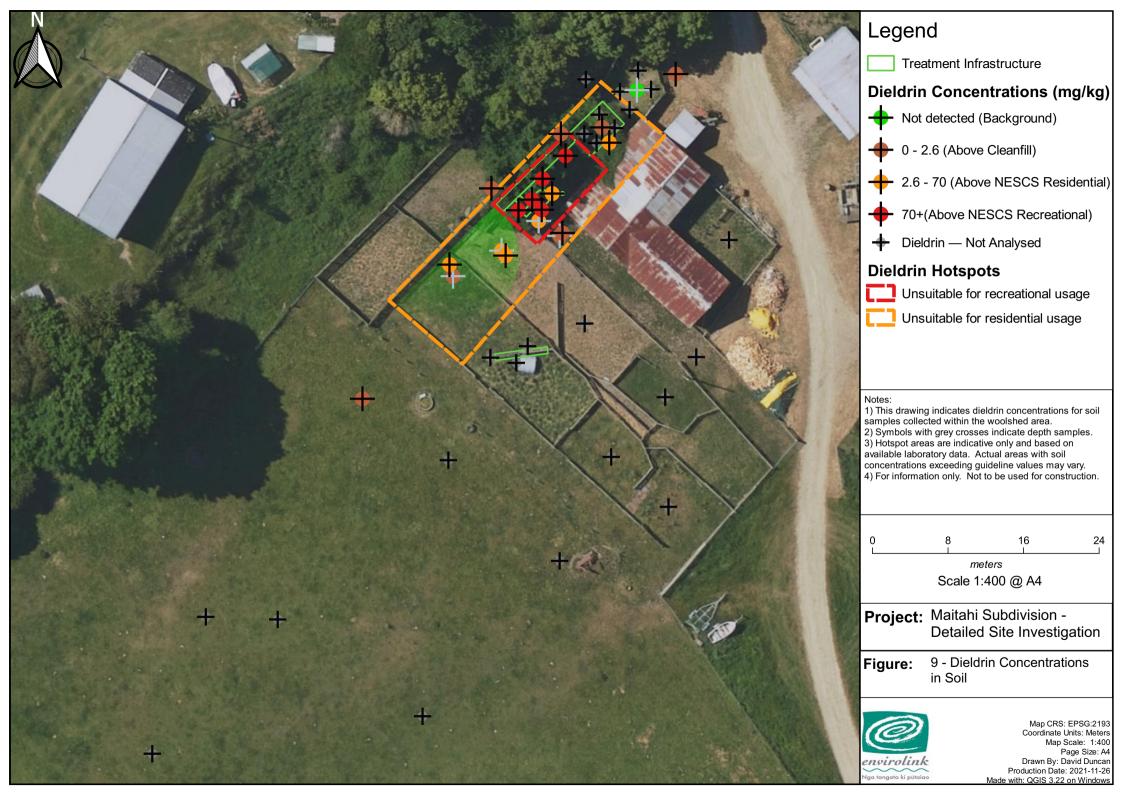
Analysis of the water results suggests that the water contained within the concrete sump is not grossly contaminated and requires no special disposal, though it should not be discharged directly to a surface watercourse. The tank was full of water to the ground surface on both site visits. During the collection of deeper soil samples on 3 November 2021, it was noted that the groundwater table was unlikely to be a depth shallower than 1 m bgl. The level of the sump water above groundwater likely indicates that there is limited, if any, connectivity with groundwater and that the sump has filled with rainwater over the years.

Water collected from the standpipe has elevated concentrations of all analytes above ANZECC values. It is noted that the high sediment load in the sample combined with analysis of total (rather than filtered) analytes is likely to have resulted in unrepresentatively high contaminant concentrations in the water.

The results indicate that further assessment of groundwater may be necessary to inform treatment requirements should dewatering of excavations be required during earthworks. In addition to chemical analysis of groundwater, it is recommended that hydraulic conductivity be assessed in order to more accurately estimate flow rates and volumes that may require treatment.

As the development plan involves redirecting Kaka Stream through this area, it is likely that excavations will intersect the groundwater table.


5.5.2 Paddock Area


Two samples, both located in the northwest corner of the paddock, exceed residential human health standards for arsenic, but not recreational standards. These two samples are likely to be associated with the run-out area from the sheep pens and will be included in the woolshed area for subsequent discussion.

The remainder of the samples are below NESCS standards. Some analytes, particularly chromium and nickel, appear to be naturally elevated. Only one chromium result marginally exceeds the region's higher background levels for naturally elevated areas. As chromium is unlikely to be of anthropogenic origin, it is most likely to be chromium (III) rather than chromium (VI). All copper results exceed background levels but are below cleanfill criteria or human health standards. This may be the result of naturally elevated levels or historical application of copper-based pesticides.

The 95% upper confidence limit (UCL) of the mean has been calculated by the ProUCL statistical software package in order to assess the likelihood of chromium concentrations in site topsoil exceeding the cleanfill acceptance. The 95% UCL was also calculated for other heavy metals. These calculations exclude samples KV27 and KVP1/2 as they are to be included in the woolshed area. ProUCL worksheets are included as Appendix E.

On the basis of the results and 95%UCL calculations, the paddock soil is suitable for classification as cleanfill. While nickel concentrations exceed ecological guideline values, they are at background levels, so are not considered to pose a potential risk to ecological receptors.

6.0 CONCEPTUAL SITE MODEL

The conceptual site model (CSM) has been developed from an assessment of contaminant sources, potential exposure pathways, and feasible receptors. A risk is present if a complete pathway is present between the source of contamination and the receptors.

Future site users are considered to be the primary on-site receptors from a human health perspective. The woolshed area is intended for recreational usage and the paddock area is to be a mix of recreational and high-density residential usage. Should the development plan change, potential risk should be reassessed.

Chronic risk to construction workers is not considered under the NESCS as long-term exposures are considered negligible. Good hygiene practices and appropriate PPE should minimise risk posed where construction workers may encounter contaminated soil. Current site usage as production land is not considered under the NESCS.

Risk to human health via groundwater ingestion has been discounted as there appears to be no abstraction of downgradient groundwater for human consumption. Groundwater is, thus, only considered as a contaminant pathway to surface water receptors.

Table 9 presents the potential contaminant exposure linkages for the woolshed area. For the purposes of this assessment, the samples in the northwest corner of the paddock are included in the woolshed area as the arsenic concentrations are likely associated with sheep treatment rather than horticultural usage.

Table 9 - Conceptual Site Model - Linkage Assessment - Sheep Pen Area

Source (HAIL Category)	Primary Contaminants of concern	Pathway		Receptor	Linkage Active?
	•	Inhalation Ingestion Dermal Contact	•	Future site users	Yes, concentrations of arsenic and dieldrin exceed human health standards for recreational usage.
Sheep Treatment – A8	ArsenicZincDieldrin	Leaching of contaminants into water if soil disposed of improperly	•	Surface water	Possibly, cleanfill criteria widely exceeded. Excavated soil will require appropriate management to mitigate potential risks.
	•	Dissolution and migration of soluble contaminants from in-situ soil	•	Surface water	Possibly, depending on the final development plant.

Table 10 presents the potential contaminant exposure linkages for the paddock area.

Table 10 - Conceptual Site Model - Linkage Assessment - Paddock Area

Source (HAIL Category)	Associated Contaminants	Pathway	Receptor	Linkage Active?
	Chromium	InhalationIngestionDermal ContactConsumption of homegrown produce	Future site users	No, contaminants of concern present at concentrations below NESCS standards.
Horticulture – A10 (unconfirmed)	CopperLeadNickelZinc	 Leaching of contaminants into water if soil disposed of improperly 	 Surface water 	Unlikely, cleanfill assessment criteria not exceeded.
		Dissolution and migration of soluble contaminants from in-situ soil	Surface water	No, contaminants of concern typically present at concentrations below background levels.

The CSM for the former homestead area has not been updated as this area was not investigated but will be undertaken prior to Stage 2 of the development commencing.

On the basis of the proposed development plan, remediation will be required in the woolshed area in order to reduce potential risk posed to future recreational users of the area by concentrations of arsenic and dieldrin in soil. Due to its affinity for organic matter and reduced solubility, elevated dieldrin concentrations appear to be less widespread than arsenic. Their differing fate and transport characteristics mean that both will require consideration when assessing remediation options.

The development plan involves rerouting Kaka Stream through the woolshed area, which has the potential to put a watercourse in direct contact with contaminated soil. As such, the potential ecological risk posed by contaminants in soil has been assessed. The area with soil contaminant concentrations in excess of ecological criteria is similar to the area with arsenic values above recreational human health standards. The area assessed to potentially pose ecological risk, on the basis of the data collected to date, is presented in Figure 10 and Figure 11.

Generally, it is likely remediation to minimise human health risk will also address potential ecological risk.

The paddock area does not contain any contaminant concentrations posing potential human health risk based on the development plan.

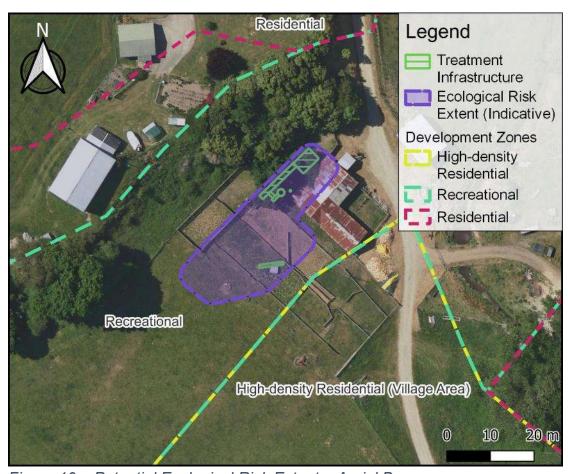


Figure 10 – Potential Ecological Risk Extent – Aerial Basemap

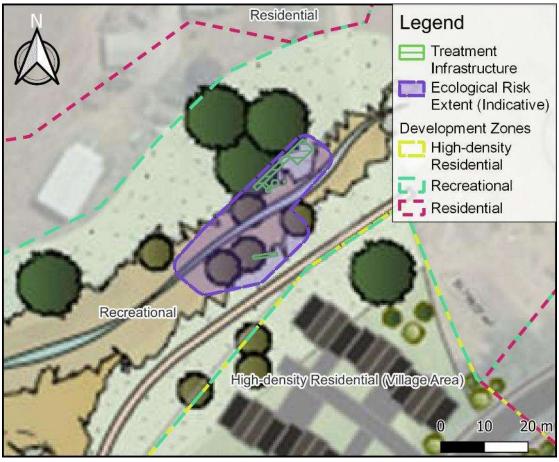


Figure 11 – Potential Ecological Risk Extent – Development Plan

6.1 Soil Management

No samples from the woolshed area are classifiable as cleanfill and the only realistic off-site disposal option for this soil would be York Valley Landfill if it cannot be retained on-site. Soil in the hotspot areas exceeds York Valley's initial screening criteria. TCLP testing indicates that most soil is suitable for disposal at York Valley; however, two samples from around the treatment area exceed acceptance limits for aldrin and zinc. Pre-treatment of soil from that area may be required before landfill acceptance.

If soil exceeding recreational human health standards was to be retained on site, it would need to be managed in a way to minimise risks posed to human health and the environment.

Soil from the woolshed area not requiring remediation should not be reused in residential areas without further assessment.

Naturally elevated concentrations of chromium and nickel are noted, though observed concentrations were generally below cleanfill acceptance limits. Soil in the paddock area appears to be classifiable as cleanfill.

It is considered likely that the village area of the development may need to be raised for flood risk mitigation. If soil from the woolshed area, meeting residential standards, can be re-used, this may reduce the volume of excess soil requiring management.

7.0 PLANNING CONSIDERATIONS

This report has identified HAIL activities having been undertaken on the site and, as such, it is considered to be a 'piece of land' under the NESCS.

The DSI indicates that contaminants in soil exceed the NESCS soil contaminant standards in the woolshed area. As such, subdivision, change of use, and soil disturbance are considered to be restricted discretionary activities under Regulation 10 of the NESCS and a resource consent is therefore required.

As contaminant concentrations exceed human health standards, a remediation action plan (RAP) will be a likely condition of a resource consent. The RAP will provide a methodology to reduce potential risks posed to human health and environmental receptors to acceptable levels.

The NESCS may likely remain applicable to activities carried out on the developed lots unless it can be demonstrated that soil contaminant concentrations do not exceed background levels. Demonstration that the concentrations of heavy metals recorded in the paddock area represent naturally elevated may be worthwhile to avoid future planning requirements for the village area. Given, the concentrations of contaminants in the woolshed area, remediation to background would likely to be both very expensive and difficult, and therefore is not advisable.

The standard residential lots are located outside the area of identified HAIL activities and activities in these areas should not require NESCS resource consents.

The appropriate management of contaminated soil during redevelopment works will be essential to ensure that cross-contamination of "clean" areas does not occur as this may impose future constraints on them.

If soil with significantly elevated contaminant concentrations is to be managed on-site, a resource consent for contaminant discharge under the NRMP may be required.

It should also be noted that while the existing buildings and associated curtilage areas have not been assessed as part of this investigation as they have not been directly associated with any hazardous activities or industries. However, prior to removing any building outside of the area that has been assessed, it is recommended the buildings are surveyed for the presence of asbestos, by a suitably qualified company, before they are demolished or removed. Likewise, the former homestead area on the terrace to the northeast of the woolshed has not been investigated. Shallow soil samples should be collected from the area to assess potential impacts related to the demolition (possible fire) of the former structures.

8.0 ASSESSMENT OF REMEDIAL OPTIONS

As arsenic and dieldrin concentrations in soil exceed the relevant guideline values, a potential risk is posed to future site users. Mitigation measures are, therefore, required to manage the risk. As treatment options for arsenic and dieldrin are limited, the most practical approaches for risk mitigation are the removal of the contaminant or the prevention of site users being exposed to it by covering the contaminant with a layer of pavement or soil.

The extent of remediation required is partially dependent on the client's objectives. Based on the current development plan, significant excavation will be required in the woolshed area to reroute Kaka Stream. Once the contaminated soil is excavated, it could either be disposed of at York Valley Landfill or placed in a containment cell on the site.

Soil exceeding recreational standards and retained on site would need to be placed in such a way that site users would not be exposed to it. Additionally, it would need to be placed away from watercourses and the groundwater table to avoid leaching of contaminants into groundwater and surface waters. The site has not been assessed for the siting of a possible containment cell but would likely need to be placed on an elevated part of the site. Given the other development constraints and a shortage of flat land at higher elevation, off-site disposal may be the most cost-effective option.

Pre-treatment of the soil in the vicinity of the sump may be required before it can be accepted by a landfill. As exceedances were only recorded in two samples, blending of the soil from the area may be sufficient to reduce contaminant concentrations in leachate. If blending was not sufficient, additions of organic matter and/or pH adjustment would likely be required to reduce contaminant leachability. Any pre-treatment would require benchtop trials to confirm its effectiveness before implementation.

The shallow hardfill in the woolshed area is noted to contain a significant fraction of coarse-grained content. Contaminants are typically found adsorbed to finer-grained soil particles and organic matter. There may be an opportunity to "sieve" soil on site to recover the coarse fraction for re-use on site, leaving a reduced volume requiring treatment and off-site disposal. This approach would require further assessment and benchtop trials as well as appropriate site plant to implement.

Excavations associated with contaminated soil removal and the rerouting of Kaka Stream may intersect the groundwater table. Given the contaminant concentrations recorded in soil and in the water sample collected from the standpipe, treatment of water pumped from excavations will likely be required prior to discharge. Should dewatering be necessary, further assessment of contaminants in groundwater in the hotspot area should be undertaken to inform treatment requirements. As both heavy metals and organics are likely to be present, a combination of coagulation/flocculation and filtration through a reactive media (activated carbon) is likely to be the most effective treatment method if required.

The area and depth of soil requiring remediation has not been fully delineated due to the soil type and limits of hand excavation. Further investigation is recommended to reduce uncertainty around scope and costs.

If any soil with contaminant concentrations above human health standards remains on site (in the case of management using a capping layer), an 'ongoing site management plan' will be required and future activities in those areas may require resource consents.

Further details on remediation and validation requirements will be included in the RAP once a remediation strategy is chosen. The RAP should be prepared by a suitably qualified and experienced practitioner – land contamination (SQEP).

9.0 CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

The site has operated as a farm since the earliest available aerial photograph (1940s); previously stocking sheep and cattle. A woolshed and associated sheep pens are present in much the same configuration as in the 1940s photograph and sheep treatment infrastructure has been observed on site. While no horticulture was noted in any aerial photographs, anecdotal evidence suggests that hops were grown at the site.

A site investigation was undertaken to assess potential impacts from the identified HAIL activities historically undertaken in the area. The investigation targeted the woolshed area as well the paddocks south of the woolshed, which is considered a likely location for crops to have been grown.

Samples were collected from topsoil in both areas and analysed for the relevant contaminants of concern. Additional samples were collected from shallow subsoil in the woolshed area to assist in delineating elevated contaminant concentrations.

No samples collected from the paddock (excepting the samples associated with sheep exiting the treatment area) contained concentrations of contaminants above human health standards. Some metals, particularly nickel, appear to be naturally elevated, but within background levels.

The former sheep treatment area shows significant impact from arsenic and dieldrin with several samples containing concentrations above human health standards for recreational usage and ecological screening levels. As such, soil contamination in this area poses a potential risk to human health and ecological receptors given the proposal to reroute Kaka Stream through this area. Remediation and management will be required to mitigate these potential risks. The affected area includes some of the pens around the woolshed. The area which soil would be unsuitable for residential usage extends out into the paddock, likely from where treated sheep exited the pens.

It is considered likely that remediation measures taken to minimise human health risk will appropriately address potential ecological risks, in particular the removal of the most heavily contaminated soil around the treatment area. For this reason, further assessment of the ecological risk posed by contaminated soil would only be recommended if the soil were to remain in-situ.

As a "piece of land", the site will require a NESCS resource consent for subdivision, change of use, and/or soil disturbance. Due to the exceedance of NESCS standards in the area, the activity would likely be considered a restricted discretionary activity. A likely condition of a resource consent would be the preparation of a RAP. The RAP should be prepared by a SQEP.

The RAP will provide a methodology to reduce potential risks posed to human health and environmental receptors to acceptable levels.

Remedial options are highly dependent on the proposed development as the capping of contaminated soil may not be appropriate in the vicinity of watercourses.

Some options that may be applicable to the development are:

- The excavation of soil exceeding human health standards; and
 - Off-site disposal and/or
 - Management in another part of the development (such as a recreational reserve) away from watercourses.
- Capping of soil exceeding human health standards with "clean" cover soil.
- Solidification and stabilisation of contaminated soil to prevent leaching and reduce bioavailability.
- The redesign of the development to minimise disturbance of contaminated soils.

If excavations of greater depth than 1 m are required, groundwater may be intercepted and require dewatering. Water pumped from excavations may require additional treatment to addressed dissolved-phase contaminants. Contaminant concentrations in groundwater have not been assessed.

It may be possible to reduce the volume of soil requiring off-site disposal by "sieving out" the coarse (gravel) fraction of the hardfill in the sheep pens. Further soil analysis would be required to assess the feasibility of this option and it may not be cost-effective.

Discussions should be held with the project's geotechnical consultant to assess the feasibility of re-using soil from the assessed areas in other areas of the development.

Appropriate soil management will be required to avoid cross-contamination of "clean" soil. It appears that the majority of the site has contaminant concentrations at background levels. The contamination of these areas by the mixing or managing of soil from contaminated areas may result in future planning constraints.

The remediation objectives and methodologies will be detailed in the RAP following discussions with the client and NCC.

9.2 Recommendations

To facilitate the residential development, we recommend to:

- Obtain a resource consent under the NESCS for the required works;
- Undertake additional site assessment to close the relevant data gaps and reduce cost uncertainties;
- Determine the most appropriate remediation methodology based on client and council requirements;
- Produce a RAP for council approval; and
- Undertaken earthworks in accordance with the RAP and resource consent conditions.

Further site investigation is recommended to better understand areas and media impacted to assist in managing development costs and constraints. Discussions should be held prior to scoping to determine the client's objectives regarding risk management.

The following are data gaps that may be required to support specific remediation options and better define financial implications:

- The maximum depth of soil requiring remediation is unknown.
 - While excavation deeper than 600 mm below finished ground level is not likely to be necessary to manage human health risk, it may be required as part of the development with regard to the realignment of Kaka Stream. Understanding the cost of managing this soil would reduce uncertainties.
- Contaminant concentrations in shallow groundwater are unknown;
 - Where excavations in the woolshed area intersect groundwater, dewatering may be necessary. An understanding of contaminant concentrations in groundwater as well as the likely yield would allow planning and budgeting for required treatment.
- The treatability of shallow soil has not been investigated.
 - Physical separation may reduce off-site disposal costs. Particle size assessment and chemical analysis of the different size fractions would be required to determine the feasibility of this option.
 - The most contaminated soil may require pre-treatment in order to be accepted by York Valley Landfill. Pre-treatment would likely consist of solidification and stabilisation of soil to reduce leachability of contaminants. A "bench trial" would be required to determine the effectiveness of this option prior to full-scale implementation.
- Potential contaminants in shallow soil in the former or current homestead area have not been assessed as part of this investigation.
 - Shallow soil should be sampled and analysed for potential contaminants associated with the possible fire and demolition of the former homestead and associated structures prior to the disturbance of this area.

To facilitate the construction of non-HAIL parts of the site, it is recommended that the consents associated with the development include a condition stating that:

- No construction work will be undertaken in the woolshed area until the RAP is submitted to Council for approval. The woolshed area is defined as the area exceeding residential standards as indicated in Figure 8;
- No construction work will be undertaken in the former or current homestead area (shown in Figure 12, below) until the RAP, including assessment of this area, is submitted to Council for approval.
- Construction work associated with the development outside of the woolshed and former homestead areas can continue.

Figure 12 – Former Homestead Area

10.0 LIMITATIONS

This report has been prepared solely for the purposes of CCKV MAITAI DEV CO LP and Nelson City Council. The information contained herein is confidential and shall not be passed on to any third party without prior written permission of Envirolink. No responsibility is accepted for any use outside the scope of this report.

This report has been prepared based on site conditions as they exist at the time of the investigation. If subsequent investigations or remedial actions are undertaken from the date of this report then certain aspects of this report may no longer be relevant or require amendment. In addition, if HAIL activities occur on the site after the date of this report, then the conclusions and recommendations presented in this report may no longer be relied on.

Discussion on the sampling methods and results in this report are based on current recognised guidelines and trigger values. These methods and assessment criteria may change and concentrations of a contaminant, which are currently deemed acceptable, may in the future become subject to new or updated standards. This may cause the contaminant concentrations to become unacceptable and require further management or remediation to enable the site to be deemed suitable for existing or proposed land use activities.

It is not practicable for any investigation to be so complete that it can accurately detect all contaminants and establish a detailed record of their concentrations throughout a site. However, the current investigation has been carried out to provide a level of characterisation commensurate with an acceptable assessment of site conditions.

This investigation was carried out solely for the purpose of assessing contaminants in the soil associated with the land being suitable for human occupation only. It has purposely not assessed the possible impacts of contaminants on ecological values that may be associated with the site. Any other investigations that are required to determine the suitability of this property are outside the scope of this report.

Appendix A Proposed Development Plans

Appendix B Site Photographs

Photo 1: View of the woolshed and paddock areas from the terrace containing the former homestead.

Photo 2: Area of the former homestead.

Photo 3: Building material in the vicinity of the former homestead, presumably stone walls.

Photo 4: View of the paddock area facing west.

Photo 5: View of the paddock from the approximate area of sample KV27, facing south.

Photo 6: The woolshed and pens, facing north. The treatment area is on the left (western) side. The footbath is out of the photo, to the right.

Photo 7: View of the pre-treatment holding area, facing north.

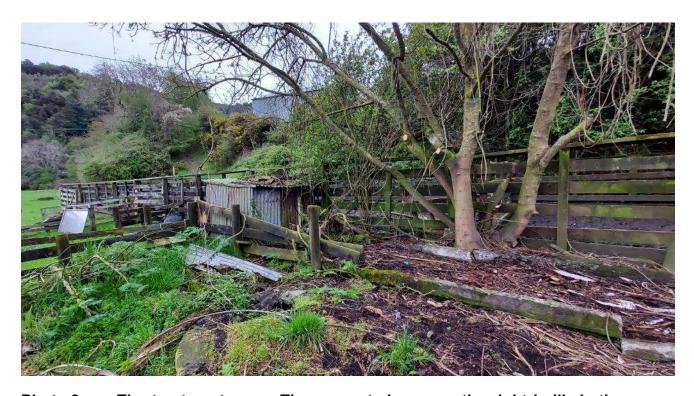


Photo 8: The treatment area. The concreted area on the right is likely the spray area. A grass-covered concrete sump is present in the foreground of the photo.

Photo 9: The treatment area facing southwest. The orange oval indicates the location of the standpipe. The red oval indicates the location of the sump.

Photo 10: The treatment area facing northeast. The orange oval indicates the location of the standpipe. The red oval indicates the location of the sump.

Photo 11: The footbath in front of the woolshed.

Photo 12: Sample locations KV22 and KV30.

Photo 13: Hardfill from KV30.

Photo 14: KV30 0-500 mm below ground level.

Photo 15: Sample locations KV20 and KV32.

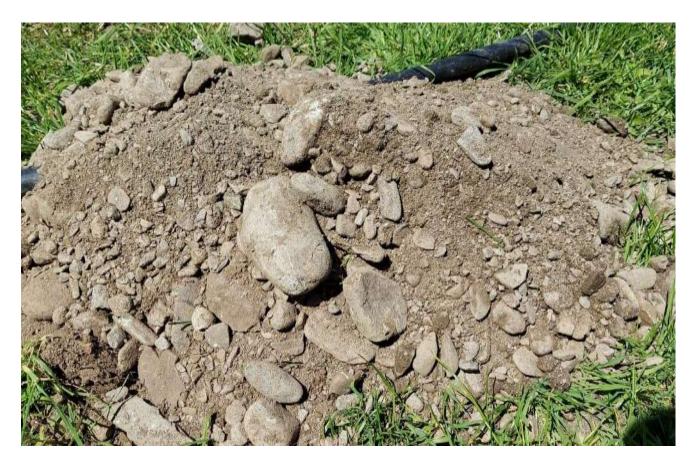
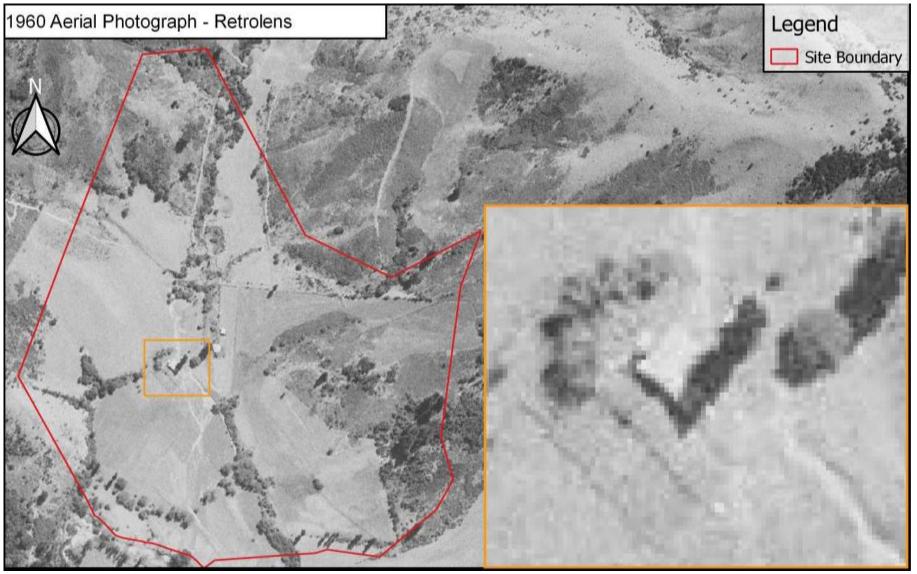
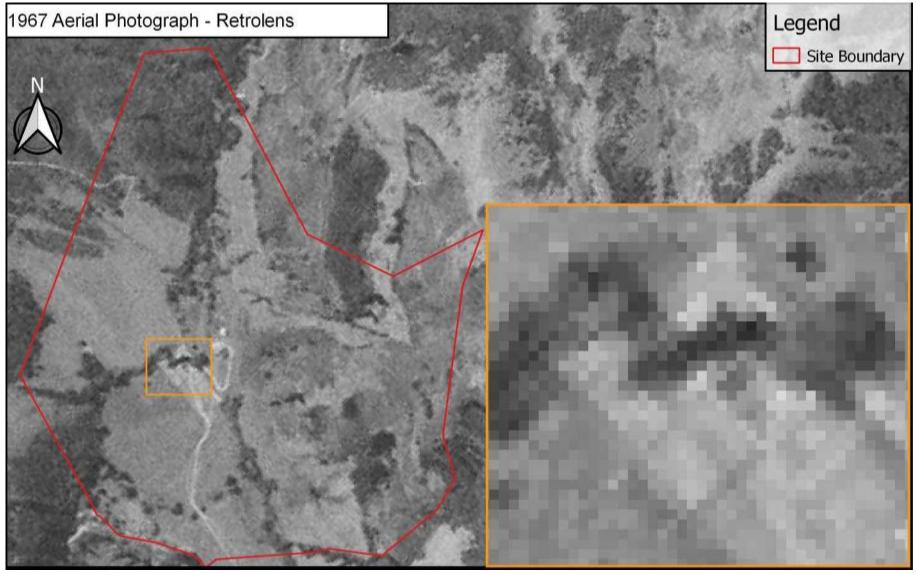
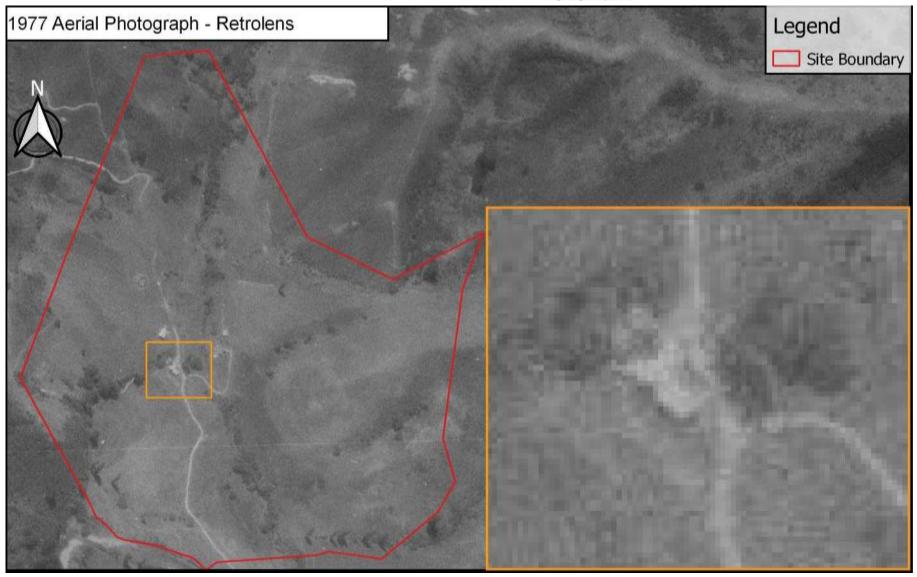


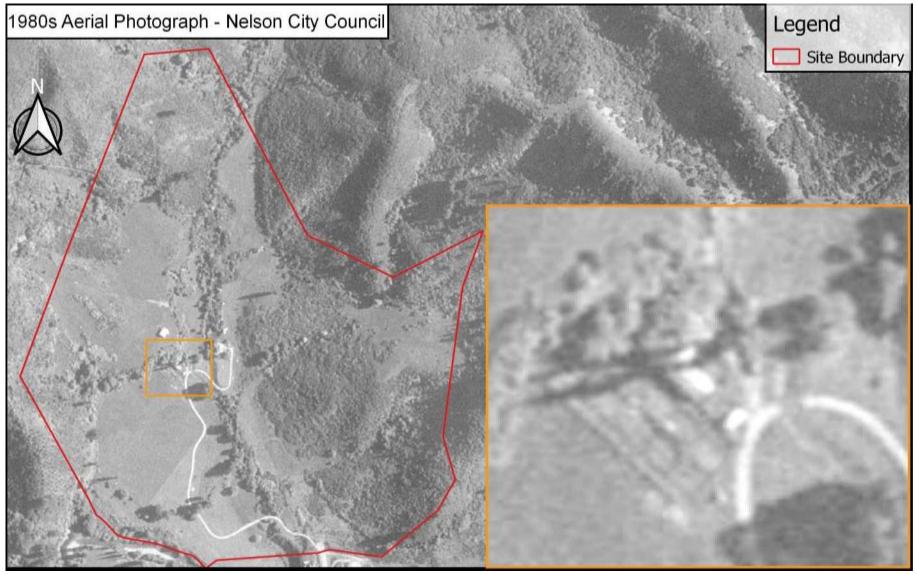
Photo 16: Hardfill from KV32.

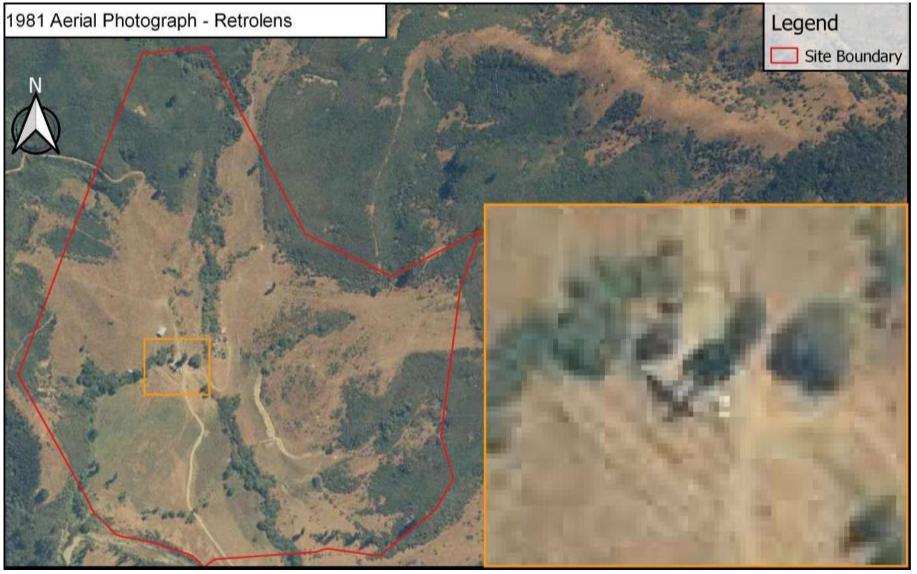


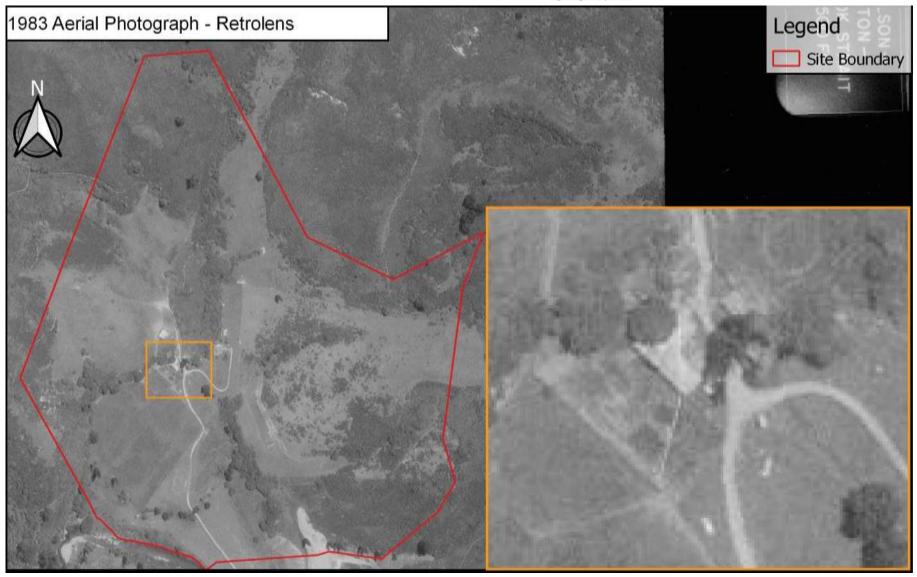
Appendix C Historical Aerial Photography

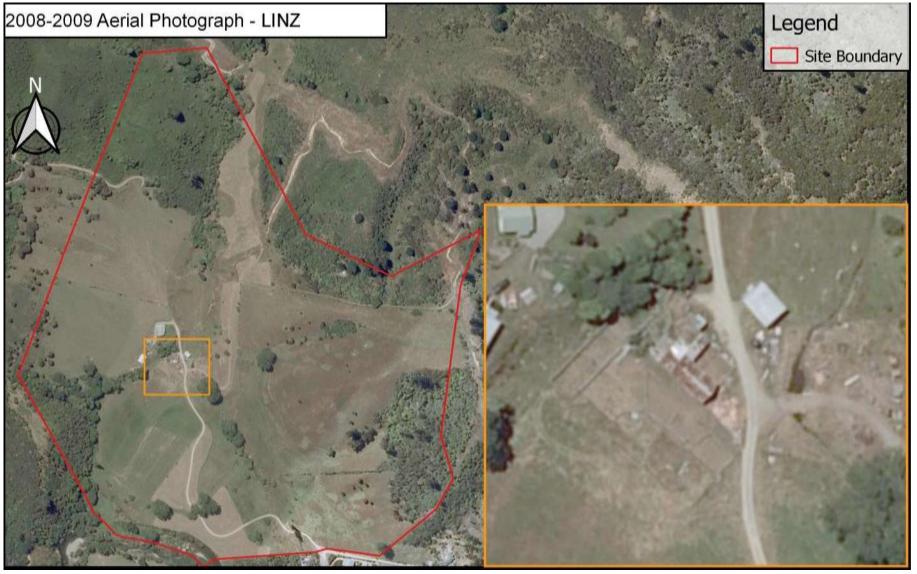














Appendix D Laboratory Certificates of Analysis

Private Bag 3205

T 0508 HILL LAB (44 555 22) +64 7 858 2000 E mail@hill-labs.co.nz W www.hill-laboratories.com

Certificate of Analysis

Page 1 of 7

Client: **Envirolink Limited** Contact: Marty O'Cain

C/- Envirolink Limited 20 Stafford Drive Ruby Bay Mapua 7005

Lab No: **Date Received: Date Reported: Quote No:**

2730159 08-Oct-2021 01-Dec-2021 114280

(Amended)

SPv3

Order No:

Client Reference:

J000300 - Kaka Valley

Submitted By: David Duncan

Sample Type: Soil						
S	ample Name:	KV9 06-Oct-2021	KV10	KV11	KV12	KV13
		.=	06-Oct-2021	06-Oct-2021	06-Oct-2021	06-Oct-2021
	Lab Number:	2730159.13	2730159.14	2730159.15	2730159.16	2730159.17
Individual Tests		T	1	1		
Dry Matter	g/100g as rcvd	77	42	76	65	68
TCLP Weight of Sample Taken		-	50	50	50	-
TCLP Initial Sample pH	pH Units	-	7.0	7.2	7.4	-
TCLP Acid Adjusted Sample ph	H pH Units	-	1.9	1.7	1.7	-
TCLP Extractant Type*		-	NaOH/Acetic acid at pH 4.93 +/- 0.05	NaOH/Acetic acid at pH 4.93 +/- 0.05		-
TCLP Extraction Fluid pH	pH Units	-	4.9	4.9	4.9	-
TCLP Post Extraction Sample p	H pH Units	-	5.0	5.0	5.0	-
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	17	108	450	580	270
Total Recoverable Cadmium	mg/kg dry wt	0.19	10.4	9.8	16.3	3.6
Total Recoverable Chromium	mg/kg dry wt	77	89	98	104	107
Total Recoverable Copper	mg/kg dry wt	55	81	96	124	72
Total Recoverable Lead	mg/kg dry wt	20	200	390	152	179
Total Recoverable Nickel	mg/kg dry wt	63	73	90	82	53
Total Recoverable Zinc	mg/kg dry wt	188	5,500	610	480	900
Organochlorine Pesticides Scre	ening in Soil	1				
Aldrin	mg/kg dry wt	< 0.013	< 0.03	0.077	0.62	0.020
alpha-BHC	mg/kg dry wt	< 0.013	< 0.03	0.129	0.131	< 0.015
beta-BHC	mg/kg dry wt	< 0.013	< 0.03	0.143	0.124	0.018
delta-BHC	mg/kg dry wt	< 0.013	< 0.03	0.024	0.018	< 0.015
gamma-BHC (Lindane)	mg/kg dry wt	< 0.013	< 0.03	0.033	0.028	< 0.015
cis-Chlordane	mg/kg dry wt	< 0.013	< 0.03	< 0.013	< 0.015	< 0.015
trans-Chlordane	mg/kg dry wt	< 0.013	< 0.03	< 0.013	< 0.015	< 0.015
2,4'-DDD	mg/kg dry wt	< 0.013	< 0.03	0.037	0.46	0.080
4,4'-DDD	mg/kg dry wt	< 0.013	< 0.03	0.033	0.127	0.040
2,4'-DDE	mg/kg dry wt	< 0.013	< 0.03	< 0.013	< 0.015	< 0.015
4,4'-DDE	mg/kg dry wt	< 0.013	< 0.03	0.068	0.80	0.064
2,4'-DDT	mg/kg dry wt	< 0.013	< 0.03	0.025	0.150	0.025
4,4'-DDT	mg/kg dry wt	< 0.013	< 0.03	0.103	2.7	0.135
Total DDT Isomers	mg/kg dry wt	< 0.08	< 0.15	0.27	4.2	0.34
Dieldrin	mg/kg dry wt	0.024	3.2	78	240	36
Endosulfan I	mg/kg dry wt	< 0.013	< 0.03	< 0.013	< 0.015	< 0.015
Endosulfan II	mg/kg dry wt	< 0.013	< 0.03	< 0.013	< 0.015	< 0.015
Endosulfan sulphate	mg/kg dry wt	< 0.013	< 0.03	< 0.013	< 0.015	< 0.015
Endrin	mg/kg dry wt	< 0.013	< 0.03	0.63	2.9	0.34
Endrin aldehyde	mg/kg dry wt	< 0.013	< 0.03	< 0.013	< 0.015	< 0.015
Endrin ketone	mg/kg dry wt	< 0.013	< 0.03	0.29	0.64	0.183

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Sample Type: Soil						
Sar	nple Name:	KV9 06-Oct-2021	KV10 06-Oct-2021	KV11 06-Oct-2021	KV12 06-Oct-2021	KV13 06-Oct-2021
Li	ab Number:	2730159.13	2730159.14	2730159.15	2730159.16	2730159.17
Organochlorine Pesticides Screen	ning in Soil					
Heptachlor	mg/kg dry wt	< 0.013	< 0.03	< 0.013	< 0.015	< 0.015
Heptachlor epoxide	mg/kg dry wt	< 0.013	< 0.03	< 0.013	< 0.015	< 0.015
Hexachlorobenzene	mg/kg dry wt	< 0.013	< 0.03	< 0.013	< 0.015	< 0.015
Methoxychlor	mg/kg dry wt	< 0.013	< 0.03	< 0.013	< 0.015	< 0.015
Sar	mple Name:	KV14 06-Oct-2021	KV15 06-Oct-2021	KV16 06-Oct-2021	KV17 06-Oct-2021	KV18 06-Oct-2021
1:	ab Number:	2730159.18	2730159.19	2730159.20	2730159.21	2730159.22
Individual Tests	ab Hullibel.	2700100.10	2700100.10	2700100.20	2700100.21	2700100.22
	g/100g as rcvd	71	55	74	_	69
TCLP Weight of Sample Taken	-	100	-	-	_	-
TCLP Initial Sample pH	g pH Units	6.3	<u>-</u>	-	-	_
<u>' '</u>	· · · · · · · · · · · · · · · · · · ·	1.8	-			
TCLP Acid Adjusted Sample pH	pH Units	_	-	-	-	-
TCLP Extractant Type*		NaOH/Acetic acid at pH 4.93 +/- 0.05	-	-	-	-
TCLP Extraction Fluid pH	pH Units	4.9	-	-	-	-
TCLP Post Extraction Sample pH	pH Units	4.9	-	-	-	-
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	420	158	-	31	35
Total Recoverable Cadmium	mg/kg dry wt	15.6	11.5	-	0.42	0.34
Total Recoverable Chromium	mg/kg dry wt	109	85	-	142	87
Total Recoverable Copper	mg/kg dry wt	67	96	-	51	49
Total Recoverable Lead	mg/kg dry wt	176	200	-	37	22
Total Recoverable Nickel	mg/kg dry wt	89	65	-	210	147
Total Recoverable Zinc	mg/kg dry wt	750	1,440	-	550	300
Organochlorine Pesticides Screen	ning in Soil	1		1		1
Aldrin	mg/kg dry wt	9.9	0.69	1.50	_	< 0.015
alpha-BHC	mg/kg dry wt	0.050	< 0.019	0.67	-	< 0.015
beta-BHC	mg/kg dry wt	0.21	0.049	7.4	-	< 0.015
delta-BHC	mg/kg dry wt	< 0.014	< 0.019	0.096	-	< 0.015
gamma-BHC (Lindane)	mg/kg dry wt	< 0.014	< 0.019	0.131	_	< 0.015
cis-Chlordane	mg/kg dry wt	< 0.014	< 0.019	< 0.013	_	< 0.015
trans-Chlordane	mg/kg dry wt	< 0.014	< 0.019	< 0.013	-	< 0.015
2,4'-DDD	mg/kg dry wt	0.81	1.96	0.36	-	< 0.015
4,4'-DDD	mg/kg dry wt	0.145	0.96	0.102	_	< 0.015
2,4'-DDE	mg/kg dry wt	< 0.014	< 0.019	< 0.013	_	< 0.015
4,4'-DDE	mg/kg dry wt	0.081	0.36	1.23	_	< 0.015
2,4'-DDT	mg/kg dry wt	< 0.014	< 0.019	0.195	_	< 0.015
4,4'-DDT	mg/kg dry wt	0.150	0.184	3.4	_	< 0.015
Total DDT Isomers	mg/kg dry wt	1.19	3.5	5.3	-	< 0.015
Dieldrin	mg/kg dry wt	620	153	400	_	0.153
Endosulfan I	mg/kg dry wt	< 0.014	< 0.019	< 0.013	-	< 0.015
Endosulfan II	mg/kg dry wt	< 0.014	< 0.019	< 0.013	<u>-</u>	< 0.015
		< 0.014	< 0.019	< 0.013	-	< 0.015
Endosulfan sulphate	mg/kg dry wt				-	
Endrin oldobydo	mg/kg dry wt	3.9	0.59	5.8	-	< 0.015
Endrin aldehyde	mg/kg dry wt	< 0.014	< 0.019	< 0.013	-	< 0.015
Endrin ketone	mg/kg dry wt	1.25	0.21	0.50	-	< 0.015
Heptachlor	mg/kg dry wt	< 0.014	< 0.019	< 0.013	-	< 0.015
Heptachlor epoxide	mg/kg dry wt	< 0.014	< 0.019	< 0.013	-	< 0.015
Hexachlorobenzene	mg/kg dry wt	< 0.014	< 0.019	< 0.013	-	< 0.015
Methoxychlor	mg/kg dry wt	< 0.014	< 0.019	< 0.013	-	< 0.015
	nple Name: ab Number:	KV19 06-Oct-2021 2730159.23	KV20 06-Oct-2021 2730159.24	KV21 06-Oct-2021 2730159.25	KV22 06-Oct-2021 2730159.26	KV24 06-Oct-2021 2730159.28

Sample Type: Soil						
Sa	mple Name:	KV19 06-Oct-2021	KV20 06-Oct-2021	KV21 06-Oct-2021	KV22 06-Oct-2021	KV24 06-Oct-2021
L	.ab Number:	2730159.23	2730159.24	2730159.25	2730159.26	2730159.28
Individual Tests						
Dry Matter	g/100g as rcvd	81	68	63	-	-
TCLP Weight of Sample Taken	g	-	50	100	50	50
TCLP Initial Sample pH	pH Units	-	6.3	6.4	6.6	6.1
TCLP Acid Adjusted Sample pH	pH Units	-	1.7	1.8	1.6	1.5
TCLP Extractant Type*		-	NaOH/Acetic acid at pH 4.93 +/- 0.05		NaOH/Acetic acid at pH 4.93 +/- 0.05	NaOH/Acetic acid at pH 4.93 +/- 0.05
TCLP Extraction Fluid pH	pH Units	-	4.9	4.9	4.9	4.9
TCLP Post Extraction Sample pH	l pH Units	-	4.9	4.9	4.9	4.9
Heavy Metals, Screen Level	l.					
Total Recoverable Arsenic	mg/kg dry wt	31	89	90	53	86
Total Recoverable Cadmium	mg/kg dry wt	0.30	0.49	0.52	1.10	0.32
Total Recoverable Chromium	mg/kg dry wt	124	127	113	119	149
Total Recoverable Copper	mg/kg dry wt	43	97	88	119	450
Total Recoverable Lead	mg/kg dry wt	19.0	31	50	137	43
Total Recoverable Nickel	mg/kg dry wt	195	240	185	128	200
Total Recoverable Zinc		190	260	230	680	590
	mg/kg dry wt	190	200	230	000	590
Organochlorine Pesticides Scree				T	T	T
Aldrin	mg/kg dry wt	< 0.013	< 0.015	< 0.016	-	-
alpha-BHC	mg/kg dry wt	< 0.013	< 0.015	< 0.016	-	-
beta-BHC	mg/kg dry wt	< 0.013	0.016	< 0.016	-	-
delta-BHC	mg/kg dry wt	< 0.013	< 0.015	< 0.016	-	-
gamma-BHC (Lindane)	mg/kg dry wt	< 0.013	< 0.015	< 0.016	-	-
cis-Chlordane	mg/kg dry wt	< 0.013	< 0.015	< 0.016	-	-
trans-Chlordane	mg/kg dry wt	< 0.013	< 0.015	< 0.016	-	-
2,4'-DDD	mg/kg dry wt	< 0.013	< 0.015	< 0.016	-	-
4,4'-DDD	mg/kg dry wt	< 0.013	< 0.015	< 0.016	-	-
2,4'-DDE	mg/kg dry wt	< 0.013	< 0.015	< 0.016	-	-
4,4'-DDE	mg/kg dry wt	< 0.013	< 0.015	< 0.016	-	-
2,4'-DDT	mg/kg dry wt	< 0.013	< 0.015	< 0.016	-	-
4,4'-DDT	mg/kg dry wt	< 0.013	< 0.015	< 0.016	-	-
Total DDT Isomers	mg/kg dry wt	< 0.08	< 0.09	< 0.10	-	-
Dieldrin	mg/kg dry wt	0.074	4.0	9.5	-	-
Endosulfan I	mg/kg dry wt	< 0.013	< 0.015	< 0.016	-	_
Endosulfan II	mg/kg dry wt	< 0.013	< 0.015	< 0.016	_	_
Endosulfan sulphate	mg/kg dry wt	< 0.013	< 0.015	< 0.016	_	_
Endrin	mg/kg dry wt	< 0.013	0.016	0.036	-	_
Endrin aldehyde	mg/kg dry wt	< 0.013	< 0.015	< 0.016	_	_
Endrin ketone	mg/kg dry wt	< 0.013	0.018	0.057	_	_
Heptachlor	mg/kg dry wt	< 0.013	< 0.015	< 0.016	_	_
Heptachlor epoxide	mg/kg dry wt	< 0.013	< 0.015	< 0.016	_	_
Hexachlorobenzene	mg/kg dry wt	< 0.013	< 0.015	< 0.016	_	_
Methoxychlor		< 0.013	< 0.015	< 0.016	-	-
Metroxychiol	mg/kg dry wt	< 0.013	< 0.015	< 0.016	-	-
	mple Name:	KV25 06-Oct-2021	KV26 06-Oct-2021	KV27 06-Oct-2021	KV28 06-Oct-2021	KV-DUP1 06-Oct-2021
	.ab Number:	2730159.29	2730159.30	2730159.31	2730159.32	2730159.33
Individual Tests						,
TCLP Weight of Sample Taken	g	-	50	-	-	-
TCLP Initial Sample pH	pH Units	-	6.2	-	-	-
TCLP Acid Adjusted Sample pH	pH Units	-	1.5	-	-	-
TCLP Extractant Type*		-	NaOH/Acetic acid at pH 4.93 +/- 0.05	-	-	-
TCLP Extraction Fluid pH	pH Units	-	4.9	-	-	-
TCLP Post Extraction Sample pH	l pH Units	-	4.9	-	-	-

Sample Type: Soil						
	Sample Name:	KV25	KV26	KV27	KV28	KV-DUP1
	Lab Number:	06-Oct-2021 2730159.29	06-Oct-2021 2730159.30	06-Oct-2021 2730159.31	06-Oct-2021 2730159.32	06-Oct-2021 2730159.33
Heavy Metals, Screen Level	Lab Hambon					
Total Recoverable Arsenic	mg/kg dry wt	49	39	30	5	78
Total Recoverable Cadmium	mg/kg dry wt	0.26	0.3	0.29	0.13	13.7
Total Recoverable Chromium		173	123	70	148	83
Total Recoverable Copper	mg/kg dry wt	85	108	55	54	67
Total Recoverable Lead	mg/kg dry wt	35	29	84	6.3	155
Total Recoverable Nickel	mg/kg dry wt	197	200	53	69	88
Total Recoverable Zinc	mg/kg dry wt	760	670	176	68	4,700
	Sample Name:	KV-DUP2 06-Oct-2021	Composite of KV1, KV2, KV3 and KV4	Composite of KV1-SS, KV2-SS, KV3-SS and KV4-SS	Composite KV5, KV6, KV7 and KV8	
	Lab Number:	2730159.34	2730159.35	2730159.36	2730159.37	
Individual Tests						
Dry Matter	g/100g as rcvd	-	76	90	56	-
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	46	20	8	32	-
Total Recoverable Cadmium	mg/kg dry wt	0.26	0.42	0.25	0.4	-
Total Recoverable Chromium	mg/kg dry wt	148	88	158	111	-
Total Recoverable Copper	mg/kg dry wt	86	58	42	44	-
Total Recoverable Lead	mg/kg dry wt	38	31	22	34	-
Total Recoverable Nickel	mg/kg dry wt	200	89	410	155	-
Total Recoverable Zinc	mg/kg dry wt	570	340	193	250	-
Organochlorine Pesticides So	creening in Soil					
Aldrin	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
alpha-BHC	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
beta-BHC	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
delta-BHC	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
gamma-BHC (Lindane)	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
cis-Chlordane	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
trans-Chlordane	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
2,4'-DDD	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
4,4'-DDD	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
2,4'-DDE	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
4,4'-DDE	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
2,4'-DDT	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
4,4'-DDT	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
Total DDT Isomers	mg/kg dry wt	-	< 0.08	< 0.07	< 0.11	-
Dieldrin	mg/kg dry wt	-	< 0.013	< 0.011	0.130	-
Endosulfan I	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
Endosulfan II	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
Endosulfan sulphate	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
Endrin	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
Endrin aldehyde	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
Endrin ketone	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
Heptachlor	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
Heptachlor epoxide	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
Hexachlorobenzene	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
Methoxychlor	mg/kg dry wt	-	< 0.013	< 0.011	< 0.018	-
Sample Type: Aqueous	6					
	Sample Name:	KV10 [TCLP extract]	KV11 [TCLP extract]	KV12 [TCLP extract]	KV14 [TCLP extract]	KV20 [TCLP extract]
	Lab Number:	2730159.38	2730159.39	2730159.40	2730159.41	2730159.42
Individual Tests				,	l	
Total Arsenic	g/m³	0.046	0.26	0.47	0.163	-
Total Cadmium	g/m³	0.029		0.051	0.022	

Sample Type: Aqueous	5					
	Sample Name:	KV10 [TCLP extract]	KV11 [TCLP extract]	KV12 [TCLP extract]	KV14 [TCLP extract]	KV20 [TCLP extract]
	Lab Number:	2730159.38	2730159.39	2730159.40	2730159.41	2730159.42
Individual Tests	<u>.</u>					
Total Chromium	g/m³	-	-	< 0.011	< 0.011	< 0.011
Total Lead	g/m³	0.0122	0.0122	0.0100	0.021	-
Total Nickel	g/m³	-	-	-	-	0.046
Total Zinc	g/m³	14.3	0.90	0.77	2.2	-
Organochlorine Pesticides So	creening in Water, By	y Liq/Liq				
Aldrin	g/m³	-	< 0.00010	< 0.00010	0.00036	< 0.00010
alpha-BHC	g/m³	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002
beta-BHC	g/m³	-	< 0.0002	< 0.0002	0.0004	< 0.0002
delta-BHC	g/m³	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002
gamma-BHC (Lindane)	g/m³	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002
cis-Chlordane	g/m³	-	< 0.00010	< 0.00010	< 0.00010	< 0.00010
trans-Chlordane	g/m³	-	< 0.00010	< 0.00010	< 0.00010	< 0.00010
2,4'-DDD	g/m³	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002
4,4'-DDD	g/m³	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002
2,4'-DDE	g/m³	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002
4,4'-DDE	g/m³	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002
2,4'-DDT	g/m³	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002
4,4'-DDT	g/m³	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Dieldrin	g/m³	-	0.037	0.059	0.099	0.00156
Endosulfan I	g/m³	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan II	g/m³	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan sulphate	g/m³	-	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endrin	g/m³	-	0.00037	0.00107	0.00064	< 0.00010
Endrin aldehyde	g/m³	-	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Endrin ketone	g/m³	-	0.0007	0.0010	0.0013	< 0.0002
Heptachlor	g/m³	-	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Heptachlor epoxide	g/m³	-	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Hexachlorobenzene	g/m³	-	< 0.0008	< 0.0008	< 0.0008	< 0.0008
Methoxychlor	g/m³	-	< 0.00010	< 0.00010	< 0.00010	< 0.00010
	Sample Name:	KV21 [TCLP	KV22 [TCLP	KV24 [TCLP	KV26 [TCLP	
	Lab Number:	extract] 2730159.43	extract] 2730159.44	extract] 2730159.45	extract] 2730159.46	
Individual Tests	Lab Namber.	2.00.000		2.00.000	2.00.000	l
Total Chromium	g/m³		_	< 0.011	< 0.011	_
Total Copper	g/m ³		_	0.195	-	_
Total Lead	g/m³		0.0070	-	_	-
Total Nickel	g/m³		-	0.169	0.040	_
Total Zinc	g/m ³	-	2.9	1.92	1.27	-
Organochlorine Pesticides So		v Lia/Lia				
Aldrin	g/m ³	< 0.00010	_	_	_	_
alpha-BHC	g/m³	< 0.00010	_	_	-	-
beta-BHC	g/m³	< 0.0002	_	_	_	-
delta-BHC	g/m³	< 0.0002	_	-	_	_
gamma-BHC (Lindane)	g/m³	< 0.0002	_	-	-	-
cis-Chlordane	g/m³	< 0.0002	_	_	-	_
trans-Chlordane	g/m³	< 0.00010	_	_	_	_
2,4'-DDD	g/m ³	< 0.0002	_	_	-	-
4,4'-DDD	g/m ³	< 0.0002	_	_	_	_
2,4'-DDE	g/m ³	< 0.0002	_	_	_	_
4,4'-DDE	g/m³	< 0.0002	-	_	-	-
2,4'-DDT	g/m³	< 0.0002	_	_	_	-
4,4'-DDT	g/m ³	< 0.0002	_	_	_	-
Dieldrin	g/m³	0.0023	_	_	_	-
Endosulfan I	g/m³	< 0.0023	-	-	-	_
Endosulfan II	g/m³	< 0.0002	_	_	_	_
	9,	J.JJJ_				

Sample Type: Aqueous							
Sam	ple Name:	KV21 [TCLP extract]	KV22 [TCLP extract]	KV24 [TCLP extract]	KV26 [TCLP extract]		
Lak	Number:	2730159.43	2730159.44	2730159.45	2730159.46		
Organochlorine Pesticides Screening	ng in Water, B	y Liq/Liq					
Endosulfan sulphate	g/m³	< 0.0002	-	-	-	-	
Endrin	g/m³	< 0.00010	-	-	-	-	
Endrin aldehyde	g/m³	< 0.00010	-	-	-	-	
Endrin ketone	g/m³	< 0.0002	-	-	-	-	
Heptachlor	g/m³	< 0.00010	-	-	-	-	
Heptachlor epoxide	g/m³	< 0.00010	-	-	-	-	
Hexachlorobenzene	g/m³	< 0.0008	-	-	-	-	
Methoxychlor	g/m³	< 0.00010	-	-	-	-	

Analyst's Comments

Total Arsenic

Amended Report: This certificate of analysis replaces report '2730159-SPv2' issued on 08-Nov-2021 at 10:26 am. Reason for amendment: At the client's request, TCLPs have been added.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Test	Method Description	Default Detection Limit	Sample No
Individual Tests	inculou bescription	Delaut Detection Limit	oumpie ite
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	13-19, 21-26, 28-37
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	13-20, 22-25, 35-37
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	13-19, 21-26, 28-37
Organochlorine Pesticides Screening in Soil	Sonication extraction, GC-ECD analysis. Tested on as received sample. In-house based on US EPA 8081.	0.010 - 0.06 mg/kg dry wt	13-20, 22-25, 35-37
TCLP Profile*	Extraction at 30 +/- 2 rpm for 18 +/- 2 hours, (Ratio 1g sample : 20g extraction fluid). US EPA 1311.	-	14-16, 18, 24-26, 28, 30
TCLP Profile			1
TCLP Weight of Sample Taken	Gravimetric. US EPA 1311.	0.1 g	14-16, 18, 24-26, 28, 30
TCLP Initial Sample pH	pH meter. US EPA 1311.	0.1 pH Units	14-16, 18, 24-26, 28, 30
TCLP Acid Adjusted Sample pH	pH meter. US EPA 1311.	0.1 pH Units	14-16, 18, 24-26, 28, 30
TCLP Extractant Type*	US EPA 1311.	-	14-16, 18, 24-26, 28, 30
TCLP Extraction Fluid pH	pH meter. US EPA 1311.	0.1 pH Units	14-16, 18, 24-26, 28, 30
TCLP Post Extraction Sample pH	pH meter. US EPA 1311.	0.1 pH Units	14-16, 18, 24-26, 28, 30
Sample Type: Aqueous			
Test	Method Description	Default Detection Limit	Sample No
Individual Tests	,	1	
Total Digestion of Extracted Samples*	Nitric acid digestion. APHA 3030 E (modified) 23 rd ed. 2017.	-	38-42, 44-46

Nitric acid digestion, ICP-MS, screen level. APHA 3125 B 23rd

ed. 2017.

0.021 g/m³

38-41

Sample Type: Aqueous			
Test	Method Description	Default Detection Limit	Sample No
Total Cadmium	Nitric acid digestion, ICP-MS, screen level. APHA 3125 B 23 rd ed. 2017.	0.0011 g/m ³	38, 40-41
Total Chromium	Nitric acid digestion, ICP-MS, screen level. APHA 3125 B 23 rd ed. 2017.	0.011 g/m ³	40-42, 45-46
Total Copper	Nitric acid digestion, ICP-MS, screen level. APHA 3125 B 23 rd ed. 2017.	0.011 g/m ³	45
Total Lead	Nitric acid digestion, ICP-MS, screen level. APHA 3125 B 23 rd ed. 2017.	0.0021 g/m ³	38-41, 44
Total Nickel	Nitric acid digestion, ICP-MS, screen level. APHA 3125 B 23rd ed. 2017.	0.011 g/m ³	42, 45-46
Total Zinc	Nitric acid digestion, ICP-MS, screen level. APHA 3125 B 23 rd ed. 2017.	0.021 g/m ³	38-41, 44-46
Organochlorine Pesticides Screening in Water, By Liq/Liq	Liquid / liquid extraction, GC-ECD analysis. In-house based on US EPA 8081.	0.00010 - 0.0008 g/m ³	39-43

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 12-Oct-2021 and 01-Dec-2021. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Herrison

Kim Harrison MSc

Client Services Manager - Environmental

T 0508 HILL LAB (44 555 22) +64 7 858 2000 E mail@hill-labs.co.nz W www.hill-laboratories.com

Certificate of Analysis

Page 1 of 3

SPv1

Client: **Envirolink Limited** Contact: Marty O'Cain

C/- Envirolink Limited 20 Stafford Drive Ruby Bay Mapua 7005

Lab No: **Date Received: Date Reported: Quote No:**

2757273 05-Nov-2021 12-Nov-2021 114280

Order No:

Client Reference: J000300 - Kaka Valley

		Submitted By:				
Sample Type: Soil						
	Sample Name:	KVP 1/1 03-Nov-2021	KVP 1/2 03-Nov-2021	KVP 1/3 03-Nov-2021	KVP 1/4 03-Nov-2021	KVP 1/5 03-Nov-2021
	Lab Number:	2757273.1	2757273.2	2757273.3	2757273.4	2757273.5
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	6	25	5	9	7
Total Recoverable Cadmium	mg/kg dry wt	0.22	0.19	0.20	0.23	0.15
Total Recoverable Chromium	mg/kg dry wt	79	112	87	76	96
Total Recoverable Copper	mg/kg dry wt	46	62	44	48	51
Total Recoverable Lead	mg/kg dry wt	59	21	47	60	19.5
Total Recoverable Nickel	mg/kg dry wt	81	66	94	49	57
Total Recoverable Zinc	mg/kg dry wt	149	125	121	148	95
	Sample Name:	KVP 1/6 03-Nov-2021	KVP 1/7 03-Nov-2021	KVP 1/8 03-Nov-2021	KVP 1/9 03-Nov-2021	KVP 1/10 03-Nov-2021
	Lab Number:	2757273.6	2757273.7	2757273.8	2757273.9	2757273.10
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	12	5	6	3	4
Total Recoverable Cadmium	mg/kg dry wt	< 0.2	0.21	0.17	0.18	0.15
Total Recoverable Chromium	mg/kg dry wt	126	140	116	135	138
Total Recoverable Copper	mg/kg dry wt	58	57	59	55	47
Total Recoverable Lead	mg/kg dry wt	13.3	6.4	5.3	5.6	5.8
Total Recoverable Nickel	mg/kg dry wt	55	62	56	62	68
Total Recoverable Zinc	mg/kg dry wt	88	68	68	77	65
	Sample Name:	KVP 1- Dup 03-Nov-2021				
	Lab Number:	2757273.13				
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	11	-	-	-	-
Total Recoverable Cadmium	mg/kg dry wt	0.16	-	-	-	-
Total Recoverable Chromium	mg/kg dry wt	121	-	-	-	-
Total Recoverable Copper	mg/kg dry wt	59	-	-	-	-
Total Recoverable Lead	mg/kg dry wt	12.3	-	-	-	-
Total Recoverable Nickel	mg/kg dry wt	56	-	-	-	-
Total Recoverable Zinc	mg/kg dry wt	84	-	-	-	-
Sample Type: Aqueous	5					
	Sample Name:	KVS 1 03-Nov-2021	KVT 2 03-Nov-2021			
	Lab Number:	2757273.11	2757273.12			

Sample Type. Aqueous	•		1			
Sam	ple Name:	KVS 1 03-Nov-2021	KVT 2 03-Nov-2021			
l ak	Number:	2757273.11	2757273.12			
Heavy metals, totals, screen As,Cd,				<u> </u>		l.
Total Arsenic	g/m ³	< 0.021	2.4	_	_	_
Total Cadmium	3		0.181	_	_	_
Total Chromium	g/m³	0.0025 < 0.011	0.34	_	_	_
Total Copper	g/m³	< 0.011	0.76	_	_	-
Total Lead	g/m³	0.0068	9.9	_	-	-
Total Nickel	g/m³	< 0.011	0.31	_	-	-
Total Zinc	g/m³	0.164	540	_	-	-
Organochlorine Pesticides Screenin			0.0			
Aldrin	g/m ³	< 0.0004	0.029	_	_	_
alpha-BHC	g/m³	< 0.0004	< 0.0004	_	_	_
beta-BHC	g/m³	< 0.0004	< 0.0004	_	_	_
delta-BHC	g/m³	< 0.0004	< 0.0004	_	_	_
gamma-BHC (Lindane)	g/m³	< 0.0004	< 0.0004	_	_	_
cis-Chlordane	g/m³	< 0.0004	< 0.0004	_	_	_
trans-Chlordane	g/m³	< 0.0004	< 0.0004	_	_	_
2,4'-DDD	g/m³	< 0.0004	< 0.0004	_	_	_
4,4'-DDD	g/m³	< 0.0004	< 0.0004	_	_	_
2,4'-DDE	g/m³	< 0.0004	< 0.0004	_	_	_
4,4'-DDE	g/m³	< 0.0004	< 0.0004	_	_	_
2,4'-DDT	g/m³	< 0.0004	< 0.0004	_	_	_
4,4'-DDT	g/m ³	< 0.0004	< 0.0004	_	-	-
Dieldrin	g/m³	< 0.0004	0.0036	_	-	-
Endosulfan I	g/m³	< 0.0004	< 0.0004	-	-	-
Endosulfan II	g/m³	< 0.0004	< 0.0004	_	_	_
Endosulfan sulphate	g/m³	< 0.0004	< 0.0004	_	_	-
Endrin	g/m³	< 0.0004	< 0.0004	-	-	-
Endrin aldehyde	g/m³	< 0.0004	< 0.0004	-	-	-
Endrin ketone	g/m³	< 0.0004	< 0.0004	-	-	-
Heptachlor	g/m³	< 0.0004	< 0.0004	-	-	-
Heptachlor epoxide	g/m³	< 0.0004	< 0.0004	-	-	-
Hexachlorobenzene	g/m³	< 0.0008	< 0.0008	-	-	-
Methoxychlor	g/m³	< 0.0004	< 0.0004	-	-	-
,	J			1	1	

Summary of Methods

Sample Type: Aqueous

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil										
Test	Method Description	Default Detection Limit	Sample No							
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-10, 13							
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	1-10, 13							

Sample Type: Aqueous			
Test	Method Description	Default Detection Limit	Sample No
Heavy metals, totals, screen As,Cd,Cr,Cu,Ni,Pb,Zn	Nitric acid digestion, ICP-MS, screen level. APHA 3125 B 23 rd ed. 2017.	0.0011 - 0.021 g/m ³	11-12
Organochlorine Pesticides Screening in Water, By Liq/Liq	Liquid / liquid extraction, GC-ECD analysis. In-house based on US EPA 8081.	0.00010 - 0.0008 g/m ³	11-12
Total Digestion	Nitric acid digestion. APHA 3030 E (modified) 23 rd ed. 2017.	-	11-12

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 10-Nov-2021 and 12-Nov-2021. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Carole Rodgers-Carroll BA, NZCS Client Services Manager - Environmental

Carole Roder-Canoll

Private Bag 3205

T 0508 HILL LAB (44 555 22) +64 7 858 2000 E mail@hill-labs.co.nz W www.hill-laboratories.com

Certificate of Analysis

Page 1 of 5

Client: **Envirolink Limited** Contact: Marty O'Cain

C/- Envirolink Limited 20 Stafford Drive Ruby Bay Mapua 7005

Lab No: **Date Received: Date Reported: Quote No:**

2757363 05-Nov-2021 30-Nov-2021

(Amended)

SPv2

114280

Order No:

Client Reference: Submitted By:

J000300 - Kaka Valley

David Duncan

			Jul	Jililitieu by.	David Durican	
Sample Type: Soil						
Sa	ample Name:	KV29-2 03-Nov-2021	KV29-3 03-Nov-2021	KV30-1 03-Nov-2021	KV30-2 03-Nov-2021	KV31-2 03-Nov-2021
	Lab Number:	2757363.2	2757363.3	2757363.5	2757363.6	2757363.9
Individual Tests						
Dry Matter	g/100g as rcvd	77	89	87	87	83
TCLP Weight of Sample Taken	g	50	-	-	-	-
TCLP Initial Sample pH	pH Units	6.8	-	-	-	-
TCLP Acid Adjusted Sample pH	pH Units	1.6	-	-	-	-
TCLP Extractant Type*		NaOH/Acetic acid at pH 4.93 +/- 0.05	-	-	-	-
TCLP Extraction Fluid pH	pH Units	4.9	-	-	-	-
TCLP Post Extraction Sample pl	H pH Units	5.0	-	-	-	-
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	810	141	-	71	430
Total Recoverable Cadmium	mg/kg dry wt	1.12	0.20	-	0.19	0.28
Total Recoverable Chromium	mg/kg dry wt	128	96	-	120	130
Total Recoverable Copper	mg/kg dry wt	97	67	-	107	130
Total Recoverable Lead	mg/kg dry wt	460	7.6	-	54	134
Total Recoverable Nickel	mg/kg dry wt	73	47	-	78	82
Total Recoverable Zinc	mg/kg dry wt	400	210	-	194	193
Organochlorine Pesticides Scree	ening in Soil					
Aldrin	mg/kg dry wt	0.20	0.016	< 0.012	< 0.012	< 0.012
alpha-BHC	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.012
beta-BHC	mg/kg dry wt	0.077	< 0.012	< 0.012	< 0.012	< 0.012
delta-BHC	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.012
gamma-BHC (Lindane)	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.012
cis-Chlordane	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.012
trans-Chlordane	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.012
2,4'-DDD	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.012
4,4'-DDD	mg/kg dry wt	0.030	< 0.012	< 0.012	< 0.012	< 0.012
2,4'-DDE	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.012
4,4'-DDE	mg/kg dry wt	0.026	< 0.012	< 0.012	< 0.012	< 0.012
2,4'-DDT	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.012
4,4'-DDT	mg/kg dry wt		< 0.012	< 0.012	< 0.012	< 0.012
Total DDT Isomers	mg/kg dry wt		< 0.07	< 0.07	< 0.07	< 0.08
Dieldrin	mg/kg dry wt		3.1	1.48	0.099	4.7
Endosulfan I	mg/kg dry wt		< 0.012	< 0.012	< 0.012	< 0.012
Endosulfan II	mg/kg dry wt		< 0.012	< 0.012	< 0.012	< 0.012
Endosulfan sulphate	mg/kg dry wt		< 0.012	< 0.012	< 0.012	< 0.012
Endrin	mg/kg dry wt		0.035	< 0.012	< 0.012	0.025
Endrin aldehyde	mg/kg dry wt		< 0.012	< 0.012	< 0.012	< 0.012
Endrin ketone	mg/kg dry wt	0.137	< 0.012	< 0.012	< 0.012	< 0.012

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Sample Type: Soil						
	Sample Name:	KV29-2 03-Nov-2021	KV29-3 03-Nov-2021	KV30-1 03-Nov-2021	KV30-2 03-Nov-2021	KV31-2 03-Nov-2021
	Lab Number:	2757363.2	2757363.3	2757363.5	2757363.6	2757363.9
Organochlorine Pesticides So						
Heptachlor	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.012
Heptachlor epoxide	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.012
Hexachlorobenzene	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.012
Methoxychlor	mg/kg dry wt	< 0.013	< 0.012	< 0.012	< 0.012	< 0.012
	Sample Name:	KV32-2	KV33	KV34	KV36	KV38
		03-Nov-2021	03-Nov-2021	03-Nov-2021	03-Nov-2021	03-Nov-2021
	Lab Number:	2757363.11	2757363.12	2757363.13	2757363.15	2757363.17
Individual Tests				T	T	T
Dry Matter	g/100g as rcvd	88	-	-	-	-
Heavy Metals, Screen Level						
Total Recoverable Arsenic	mg/kg dry wt	63	16	18	16	19
Total Recoverable Cadmium	mg/kg dry wt	0.20	0.50	0.43	0.19	0.20
Total Recoverable Chromium	3 3 7 7	120	95	123	125	154
Total Recoverable Copper	mg/kg dry wt	190	54	60	65	77
Total Recoverable Lead	mg/kg dry wt	69	67	40	26	33
Total Recoverable Nickel	mg/kg dry wt	163	42	146	98	177
Total Recoverable Zinc	mg/kg dry wt	124	198	230	136	200
Organochlorine Pesticides So	creening in Soil					1
Aldrin	mg/kg dry wt	< 0.012	-	-	_	-
alpha-BHC	mg/kg dry wt	< 0.012	_	_	_	_
beta-BHC	mg/kg dry wt	< 0.012	_	_	_	-
delta-BHC	mg/kg dry wt	< 0.012	_	-	-	-
gamma-BHC (Lindane)	mg/kg dry wt	< 0.012	_	_	_	_
cis-Chlordane	mg/kg dry wt	< 0.012	_	_	_	_
trans-Chlordane	mg/kg dry wt	< 0.012	_	_	_	_
2,4'-DDD	mg/kg dry wt	< 0.012			_	_
4,4'-DDD	mg/kg dry wt	, , ,	_	-	_	_
2,4'-DDE	mg/kg dry wt	< 0.012	-	_	_	-
4,4'-DDE	mg/kg dry wt	< 0.012	-	-	-	-
2.4'-DDE	0 0 ,	< 0.012	-	-	-	-
,	mg/kg dry wt		-	-	-	-
4,4'-DDT	mg/kg dry wt	< 0.012	-	-	-	-
Total DDT Isomers	mg/kg dry wt	< 0.07	-	-	-	-
Dieldrin	mg/kg dry wt	0.59	-	-	-	-
Endosulfan I	mg/kg dry wt	< 0.012	-	-	-	-
Endosulfan II	mg/kg dry wt	< 0.012	-	-	-	-
Endosulfan sulphate	mg/kg dry wt	< 0.012	-	-	-	-
Endrin	mg/kg dry wt	< 0.012	-	-	-	-
Endrin aldehyde	mg/kg dry wt	< 0.012	-	-	-	-
Endrin ketone	mg/kg dry wt	< 0.012	-	-	-	-
Heptachlor	mg/kg dry wt	< 0.012	-	-	-	-
Heptachlor epoxide	mg/kg dry wt	< 0.012	-	-	-	-
Hexachlorobenzene	mg/kg dry wt	< 0.012	-	-	-	-
Methoxychlor	mg/kg dry wt	< 0.012	-	-	-	-
	Sample Name:	KV41 03-Nov-2021	KV42 03-Nov-2021	KVP 2/1 03-Nov-2021	KVP 2/2 03-Nov-2021	KVP 2/3 03-Nov-2021
	Lab Number:	2757363.20	2757363.21	2757363.22	2757363.23	2757363.24
Individual Tests						,
Dry Matter	g/100g as rcvd	-	80	_	_	_
Heavy Metals, Screen Level	3 113 11 1					
Total Recoverable Arsenic	mg/kg dry wt	32	59	5	5	6
Total Recoverable Cadmium		0.23	0.37	0.17	0.15	0.16
	mg/kg dry wt					
Total Recoverable Conner	0 0 ,	130	121	132	117	144
Total Recoverable Copper	mg/kg dry wt	69	120	58	47	61
Total Recoverable Lead	mg/kg dry wt	46	32	6.9	10.7	9.0
Total Recoverable Nickel	mg/kg dry wt	61	164	56	56	63

Sample Type: Soil						
	Sample Name:	KV41 03-Nov-2021	KV42 03-Nov-2021	KVP 2/1 03-Nov-2021	KVP 2/2 03-Nov-2021	KVP 2/3 03-Nov-2021
	Lab Number:	2757363.20	2757363.21	2757363.22	2757363.23	2757363.24
Heavy Metals, Screen Level						
Total Recoverable Zinc	mg/kg dry wt	149	200	63	64	72
Organochlorine Pesticides S	creening in Soil					
Aldrin	mg/kg dry wt	-	< 0.013	-	-	-
alpha-BHC	mg/kg dry wt			-	-	
beta-BHC	mg/kg dry wt	-	< 0.013	-	-	-
delta-BHC	mg/kg dry wt	-	< 0.013	-	-	-
gamma-BHC (Lindane)	mg/kg dry wt	-	< 0.013	-	-	-
cis-Chlordane	mg/kg dry wt	-	< 0.013	-	-	-
trans-Chlordane	mg/kg dry wt	-	< 0.013	-	-	-
2,4'-DDD	mg/kg dry wt	-	< 0.013	-	-	-
4,4'-DDD	mg/kg dry wt	-	< 0.013	-	-	-
2,4'-DDE	mg/kg dry wt	-	< 0.013	-	-	-
4,4'-DDE	mg/kg dry wt	-	< 0.013	-	-	-
2,4'-DDT	mg/kg dry wt	-	< 0.013	-	-	-
4,4'-DDT	mg/kg dry wt	-	< 0.013	-	-	-
Total DDT Isomers	mg/kg dry wt	-	< 0.08	-	-	-
Dieldrin	mg/kg dry wt	-	1.32	-	-	-
Endosulfan I	mg/kg dry wt	-	< 0.013	-	-	-
Endosulfan II	mg/kg dry wt	-	< 0.013	-	-	-
Endosulfan sulphate	mg/kg dry wt	-	< 0.013	-	-	-
Endrin	mg/kg dry wt	-	< 0.013	-	-	-
Endrin aldehyde	mg/kg dry wt	-	< 0.013	-	-	-
Endrin ketone	mg/kg dry wt	-	< 0.013	-	-	-
Heptachlor	mg/kg dry wt	-	< 0.013	-	-	-
Heptachlor epoxide	mg/kg dry wt	-	< 0.013	-	-	-
Hexachlorobenzene	mg/kg dry wt	-	< 0.013	-	-	-
Methoxychlor	mg/kg dry wt	-	< 0.013	-	-	-
	Sample Name:	KVP 2/4 03-Nov-2021	KVP 2/5 03-Nov-2021	KVP 2/6 03-Nov-2021	KVP 2/7 03-Nov-2021	KVP 2/8 03-Nov-2021
	Lab Number:	2757363.25	2757363.26	2757363.27	2757363.28	2757363.29
Heavy Metals, Screen Level			Į		I.	I.
Total Recoverable Arsenic	mg/kg dry wt	5	5	5	4	5
Total Recoverable Cadmium	mg/kg dry wt	0.19	0.15	0.15	0.14	0.17
Total Recoverable Chromium		140	143	161	148	181
Total Recoverable Copper	mg/kg dry wt	54	51	57	57	64
Total Recoverable Lead	mg/kg dry wt	7.6	7.9	12.5	7.4	10.6
Total Recoverable Nickel	mg/kg dry wt	73	66	97	69	128
Total Recoverable Zinc	mg/kg dry wt	70	67	75	61	76
	Sample Name:	KVP 2/9 03-Nov-2021	KVP 2/10 03-Nov-2021	KVP 2- Dup 03-Nov-2021		
	Lab Number:	2757363.30	2757363.31	2757363.32		
Heavy Metals, Screen Level	Lub Huilibel.			2.3.003.02	1	1
Total Recoverable Arsenic	mg/kg dry wt	5	5	5	-	-
Total Recoverable Cadmium	mg/kg dry wt	0.13	0.19	0.15	_	_
Total Recoverable Chromium		151	200	139	_	_
Total Recoverable Copper	mg/kg dry wt	57	57	52	_	_
Total Recoverable Lead	mg/kg dry wt	5.5	7.3	7.5	_	-
Total Recoverable Nickel	mg/kg dry wt	87	172	69	_	_
Total Recoverable Zinc	mg/kg dry wt	61	77	66	_	_
	0 0 ,	<u> </u>				
Sample Type: Aqueous	Sample Name:	KV29-2 [TCLP				
	-	extract[
	Lab Number:	2757363.33				

Sample Type: Aqueous									
	Sample Name:	KV29-2 [TCLP							
		extract[
	Lab Number:	2757363.33							
Individual Tests				1		T			
Total Arsenic	g/m³	0.57	-	-	-	-			
Total Chromium	g/m³	< 0.011	-	-	-	-			
Total Lead	g/m³	0.0116	-	-	-	-			
Total Zinc	g/m³	0.85	-	-	-	-			
Organochlorine Pesticides	Screening in Water, B	sy Liq/Liq							
Aldrin	g/m³	< 0.00010	-	-	-	-			
alpha-BHC	g/m³	< 0.0002	-	-	-	-			
beta-BHC	g/m³	< 0.0002	-	-	-	-			
delta-BHC	g/m³	< 0.0002	-	-	-	-			
gamma-BHC (Lindane)	g/m³	< 0.0002	-	-	-	-			
cis-Chlordane	g/m³	< 0.00010	-	-	-	-			
trans-Chlordane	g/m³	< 0.00010	-	-	-	-			
2,4'-DDD	g/m³	< 0.0002	-	-	-	-			
4,4'-DDD	g/m³	< 0.0002	-	-	-	-			
2,4'-DDE	g/m³	< 0.0002	-	-	-	-			
4,4'-DDE	g/m³	< 0.0002	-	-	-	-			
2,4'-DDT	g/m³	< 0.0002	-	-	-	-			
4,4'-DDT	g/m³	< 0.0002	-	-	-	-			
Dieldrin	g/m³	0.020	-	-	-	-			
Endosulfan I	g/m³	< 0.0002	-	-	-	-			
Endosulfan II	g/m³	< 0.0002	-	-	-	-			
Endosulfan sulphate	g/m³	< 0.0002	-	-	-	-			
Endrin	g/m³	0.00021	-	-	-	-			
Endrin aldehyde	g/m³	< 0.00010	-	-	-	-			
Endrin ketone	g/m³	0.0004	-	-	-	-			
Heptachlor	g/m³	< 0.00010	-	-	-	-			
Heptachlor epoxide	g/m³	< 0.00010	-	-	-	-			
Hexachlorobenzene	g/m³	< 0.0008	-	-	-	-			
Methoxychlor	g/m³	< 0.00010	-	-	-	-			

Analyst's Comments

Amended Report: This certificate of analysis replaces report '2757363-SPv1' issued on 10-Nov-2021 at 11:13 am. Reason for amendment: At the client's request, a TCLP has been added.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Individual Tests			
Environmental Solids Sample Drying*	Air dried at 35°C Used for sample preparation. May contain a residual moisture content of 2-5%.	-	2-3, 6, 9, 11-13, 15, 17, 20-32
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. (Free water removed before analysis, non-soil objects such as sticks, leaves, grass and stones also removed). US EPA 3550.	0.10 g/100g as rcvd	2-3, 5-6, 9, 11, 21
Heavy Metals, Screen Level	Dried sample, < 2mm fraction. Nitric/Hydrochloric acid digestion US EPA 200.2. Complies with NES Regulations. ICP-MS screen level, interference removal by Kinetic Energy Discrimination if required.	0.10 - 4 mg/kg dry wt	2-3, 6, 9, 11-13, 15, 17, 20-32
Organochlorine Pesticides Screening in Soil	Sonication extraction, GC-ECD analysis. Tested on as received sample. In-house based on US EPA 8081.	0.010 - 0.06 mg/kg dry wt	2-3, 5-6, 9, 11, 21
TCLP Profile*	Extraction at 30 +/- 2 rpm for 18 +/- 2 hours, (Ratio 1g sample : 20g extraction fluid). US EPA 1311.	-	2
TCLP Profile			
TCLP Weight of Sample Taken	Gravimetric. US EPA 1311.	0.1 g	2

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
TCLP Initial Sample pH	pH meter. US EPA 1311.	0.1 pH Units	2
TCLP Acid Adjusted Sample pH	pH meter. US EPA 1311.	0.1 pH Units	2
TCLP Extractant Type*	US EPA 1311.	-	2
TCLP Extraction Fluid pH	pH meter. US EPA 1311.	0.1 pH Units	2
TCLP Post Extraction Sample pH	pH meter. US EPA 1311.	0.1 pH Units	2

Sample Type: Aqueous	Sample Type: Aqueous										
Test	Method Description	Default Detection Limit	Sample No								
Individual Tests											
Total Digestion of Extracted Samples*	Nitric acid digestion. APHA 3030 E (modified) 23 rd ed. 2017.	-	33								
Total Arsenic	Nitric acid digestion, ICP-MS, screen level. APHA 3125 B 23 rd ed. 2017.	0.021 g/m ³	33								
Total Chromium	Nitric acid digestion, ICP-MS, screen level. APHA 3125 B 23 rd ed. 2017.	0.011 g/m ³	33								
Total Lead	Nitric acid digestion, ICP-MS, screen level. APHA 3125 B 23 rd ed. 2017.	0.0021 g/m ³	33								
Total Zinc	Nitric acid digestion, ICP-MS, screen level. APHA 3125 B 23 rd ed. 2017.	0.021 g/m ³	33								
Organochlorine Pesticides Screening in Water, By Liq/Liq	Liquid / liquid extraction, GC-ECD analysis. In-house based on US EPA 8081.	0.00010 - 0.0008 g/m ³	33								

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 08-Nov-2021 and 30-Nov-2021. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Human

Kim Harrison MSc

Client Services Manager - Environmental

Appendix E ProUCL Worksheets

	Α	В	С	D	Е	F	G	Н	I	J	K	L
1					UCL Statis	stics for Unce	ensored Full	Data Sets	; -			
2		Llaav Cala	-t	_								
3	Data	Time of Co	cted Options		.11/12/2021	3:15:16 nm						
4	Date	/ Time or Co	From File			JCL Input.xls					-	
5		Full	I Precision	OFF	By ICVI T TOC	OCE IIIput.xis						
6 7	С	onfidence (95%	_						-	
8	Number of			2000								
9												
10												
	Arsenic											
12											•	
13						General	Statistics					
14			Total	Number of 0	Observations	20			Number	of Distinct O	bservations	7
15									Number	of Missing O	bservations	0
16					Minimum						Mean	5.6
17					Maximum						Median	5
18					SD					Std. Er	ror of Mean	0.432
19				Coefficien	t of Variation	0.345					Skewness	2.246
20						NI 1 C	NOT T1					
21			<u> </u>	nonire Mari	Toot Otation	Normal C	or rest		Chanire M	₩ ○○□ Т- -	_	
22					Test Statistic Critical Value				•	lk GOF Tes S% Significat		
23			5% 51		Test Statistic			Data Not		GOF Test	ice Levei	
24			50		Critical Value			Data Not		5% Significa	nce Level	
25				70 LIIIIEIOI3 C		t Normal at 5	% Significar		i Nomiai at s	J/0 Olgrillical	ice Level	
26 27					Data No.	t Hormar at o	70 Olgrinical	ICC ECVCI				
28					As	suming Norr	nal Distribut	ion				
29			95% N	ormal UCL		- In the second			UCLs (Adju	sted for Ske	wness)	
30					ident's-t UCL	6.346	_		· ·	I-CLT UCL (· · · · · · · · · · · · · · · · · · ·	6.542
31							-		-	d-t UCL (Joh	*	6.382
32												
33						Gamma (GOF Test					
34				A-D	Test Statistic	1.846	_	Ander	son-Darling	Gamma GC	F Test	
35				5% A-D (Critical Value	0.742	Data	a Not Gamı	ma Distribut	ed at 5% Sig	nificance Le	vel
36				K-S	Test Statistic	0.31	-	Kolmogo	orov-Smirno	ov Gamma C	OF Test	
37					Critical Value					ed at 5% Sig	nificance Le	√el
38				Da	ta Not Gam	ma Distribute	ed at 5% Sig	nificance L	_evel			
39							_					
40						Gamma	Statistics					
41					k hat (MLE)					tar (bias corr	•	9.865
42					eta hat (MLE)				Theta st	tar (bias corr	·	0.568
43					nu hat (MLE)					nu star (bia	-	394.6
44			ML	.⊏ iviean (bia	as corrected)	5.6		Α.		MLE Sd (bias	-	1.783
45			۰:۸	tod Lovel of	Cianificana	0.020		Al		Chi Square \		349.6
46			Aujus	LEU LEVEI OT	Significance	0.038			Adj	usted Chi So	quare value	346.2
47					Δο	suming Gam	ma Dietribut	tion			•	
48	95%	Approxima	ate Gamma	UCI (IISA W	/hen n>=50)		ina Distribut		sted Gamm	a UCL (use	when n<50)	6.383
49 50	33 /0	, Approxime	alo Gamina	JOE (USE N		0.022		JO 70 Auju	otou Gaillill	a oor (use		
50						Lognormal	GOF Test					
52			SI	napiro Wilk	Test Statistic	-		Shap	iro Wilk Loc	normal GO	- Test	
53					Critical Value		-	•	· ·	t 5% Signific		
54				-	Test Statistic					ormal GOF		
55			59		Critical Value				•	t 5% Signific		
56					Data Not L	⊥ _ognormal at						
57												
											_	

	Α	В	С	D	E	F	G	Н	ı	J	K	L				
58						Lognorma	Statistics					1.070				
59					Logged Data	1.099					logged Data	1.679				
60				Maximum of	Logged Data	2.485				SD of	logged Data	0.289				
61						mina Loano	rmal Diatrib	ution			_					
62					95% H-UCL	ming Logno 6.316	rmai Distrib	ution	00%	Shahuahau /	MVUE) UCL	6.672				
63			05%	Chohychov	(MVUE) UCL	7.169				-	(MVUE) UCL	7.857				
64				•	(MVUE) UCL	9.211			97.5%	Jilebysilev ((INIVOE) OCL	7.657				
65			3370	Chebyshev	(IVIVOL) OCL	3.211										
66 67					Nonparamet	ric Distribut	ion Free UC	CL Statistic	<u> </u>		_					
68					Data do not fo											
69											_					
70					Nonpara	ametric Dist	ribution Fre	e UCLs								
71				9	5% CLT UCL	6.31				95% Ja	ckknife UCL	6.346				
72			95%	% Standard B	ootstrap UCL	6.302				95% Boo	otstrap-t UCL	6.996				
73				95% Hall's B	ootstrap UCL	10.29			95% P	ercentile Bo	ootstrap UCL	6.35				
74				95% BCA B	ootstrap UCL	6.5										
75			90% C	chebyshev(Me	ean, Sd) UCL	6.895			95% Che	ebyshev(Me	ean, Sd) UCL	7.481				
76			97.5% C	chebyshev(Me	ean, Sd) UCL	8.296			99% Che	ebyshev(Me	ean, Sd) UCL	9.895				
77					<u> </u>						<u> </u>					
78		Suggested UCL to Use 95% Student's-t UCL 6.346 or 95% Modified-t UCL														
79				95% Stu	udent's-t UCL	6.346				or 95% Mo	odified-t UCL	6.382				
80											_					
81	Note	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skewness.														
82						·										
83											, and Lee (200	•				
84	Howev	er, simulatio	ons result	s will not cov	er all Real Wo	orld data set	s; for addition	onal insight	the user ma	ay want to d	consult a statis	tician.				
85											_					
86	Chromium															
- 07	Cilionilani										_					
88 89						General S	Statistics				_					
90			Tota	al Number of	Observations	20			Number	of Distinct (Observations	18				
91									Number	of Missing (Observations	0				
92					Minimum	76					Mean	132.9				
93					Maximum	200					Median	139				
94					SD	31.58				Std. E	rror of Mean	7.061				
95				Coefficier	nt of Variation	0.238					Skewness	-0.0841				
96																
97						Normal C	GOF Test									
98			-	Shapiro Wilk	Test Statistic	0.952			Shapiro W	ilk GOF Te	st					
99			5% 5	Shapiro Wilk	Critical Value	0.905		Data appe	ar Normal a	at 5% Signifi	cance Level					
100				Lilliefors	Test Statistic	0.139			Lilliefors	GOF Test						
				5% Lilliefors	Critical Value	0.192		Data appea	ar Normal a	at 5% Signifi	cance Level					
101						r Normal at	5% Signific	onee Level								
101 102					Data appea	Data appear Normal at 5% Significance Level										
102					Ass	uming Norn		tion								
102 103				Normal UCL	Ass			tion 95%	UCLs (Adju	usted for Sk						
102 103 104					Ass			tion 95% 95	UCLs (Adju	d-CLT UCL	(Chen-1995)	144.4				
102 103 104 105					Ass	uming Norn		tion 95% 95	UCLs (Adju	d-CLT UCL		144.4 145.1				
102 103 104 105 106					Ass	uming Norn	nal Distribu	tion 95% 95	UCLs (Adju	d-CLT UCL	(Chen-1995)					
102 103 104 105 106 107				95% Stu	Ass	145.1 Gamma (nal Distribu	tion 95% 95 9	UCLs (Adju 5% Adjustec 5% Modifie	d-CLT UCL d-t UCL (Jo	(Chen-1995) hnson-1978)					
102 103 104 105 106 107 108				95% Stu	Ass udent's-t UCL Test Statistic	145.1 Gamma C 0.668	nal Distribu	tion 95% 95 9 Anders	UCLs (Adju 5% Adjusted 5% Modifie son-Darling	d-CLT UCL d-t UCL (Jo g Gamma G	(Chen-1995) hnson-1978) OF Test	145.1				
102 103 104 105 106 107 108 109 110				95% Stu A-D 5% A-D	Ass Ident's-t UCL Test Statistic Critical Value	145.1 Gamma (0.668) 0.741	nal Distribu	tion 95% 95 9 Anders data appear	UCLs (Adju 5% Adjusted 5% Modifie son-Darling Gamma D	d-CLT UCL d-t UCL (Jo g Gamma G istributed at	(Chen-1995) hnson-1978) OF Test	145.1				
102 103 104 105 106 107 108 109 110				95% Stu A-D 5% A-D 6 K-S	Ass udent's-t UCL Test Statistic Critical Value Test Statistic	Gamma C 0.668 0.741 0.171	nal Distribu	tion 95% 95 9 Anders data appear Kolmogo	UCLs (Adjusted 5% Modifies son-Darling Gamma Depote Son-Smirned Depote	d-CLT UCL d-t UCL (Jo g Gamma G istributed at ov Gamma	(Chen-1995) hnson-1978) OF Test 5% Significan	145.1				
102 103 104 105 106 107 108 109 110				95% Stu A-D 5% A-D K-S 5% K-S	Ass Ident's-t UCL Test Statistic Critical Value	Gamma (0.668 0.741 0.171 0.194	nal Distribution of the Control of t	tion 95% 95 9 Anders data appear Kolmogo data appear	UCLs (Adjusted 5% Modifies 600 - Darling Gamma Dorov-Smirned 6 Gamma Dorov-Smirned 7 Gam	d-CLT UCL d-t UCL (Jo g Gamma G istributed at ov Gamma istributed at	(Chen-1995) hnson-1978) OF Test	145.1				

	А	В	С	D	E	F	G	Н	I	J	K	L
115						_						
116							Statistics					
117					k hat (MLE)	17.16				•	rrected MLE)	14.62
118					ta hat (MLE)	7.743			Theta	•	rrected MLE)	9.088
119			5.41		nu hat (MLE)						as corrected)	584.9
120			IVIL	E Mean (bla	s corrected)	132.9	_		^ nnrovimoto	· · · · · · · · · · · · · · · · · · ·	value (0.05)	34.75 529.8
121			Adiuct	od Lovol of	Significance	0.038		· · · · · · · · · · · · · · · · · · ·	• •		Square Value	529.8
122			Aujusi	eu Levei oi	Significance	0.036			A	ujusteu Crii c	square value	525.7
123					Δος	suming Gam	nma Distrihi	ıtion				
124	95%	Annroxima	te Gamma	JCL (use w	hen n>=50))		ina Distribe		iusted Gamr	ma UCL (use	when n<50)	147.9
125 126		,		002 (000	55//				, 40104 441111	0 0 2 (000		
127						Lognorma	I GOF Test				_	
128			Sh	apiro Wilk 1	Test Statistic	0.919		Sha	piro Wilk Lo	ognormal GC	OF Test	
129			5% Sh	apiro Wilk C	Critical Value	0.905					ificance Level	
130				Lilliefors T	Test Statistic	0.185		Li	lliefors Logi	normal GOF	Test	
131			5%	Lilliefors C	Critical Value	0.192	ificance Level					
132					Data appear	Lognormal	at 5% Signi	ficance Le	evel			
133											****	
134						Lognorma	l Statistics					
135			N	linimum of L	ogged Data	4.331				Mean of	logged Data	4.86
136			М	aximum of L	ogged Data	5.298				SD of	logged Data	0.256
137												
138		Assuming Lognormal Distribution										
139					95% H-UCL					•	(MVUE) UCL	156.2
140					MVUE) UCL	166.7			97.5%	Chebyshev	(MVUE) UCL	181.2
141			99% C	hebyshev (MVUE) UCL	209.7						
142					N. 1	ed - Distable	E II	01 01-11-11			_	
143					Nonparame					ou ol		
144				ата арреат	to follow a I	Jiscernible	DISTIDUTION	at 5% Sig	illicance Le	evei	_	
145					Nonnar	ametric Dis	tribution Fre	e IICI e				
146				95	% CLT UCL			DC GOES		95% Ja	ckknife UCL	145.1
147			95% 5		otstrap UCL	144.2					otstrap-t UCL	145
149					otstrap UCL	145.3			95% I		ootstrap UCL	144.2
150					otstrap UCL	144.2	-					
151			90% Che	byshev(Me	an, Sd) UCL	154.1			95% Ch	nebyshev(Me	an, Sd) UCL	163.7
152			97.5% Che	byshev(Me	an, Sd) UCL	177			99% Ch	nebyshev(Me	an, Sd) UCL	203.2
153												
154						Suggested	UCL to Use)				
155				95% Stu	dent's-t UCL	145.1						
156						,						
157	Note	: Suggestion	ns regarding	the selecti	on of a 95%	UCL are pr	ovided to he	elp the use	r to select th	ne most app	opriate 95% l	JCL.
158					ions are bas	•						
159											, and Lee (200	*
160	Howev	er, simulatio	ns results v	vill not cove	er all Real W	orld data se	ts; for additi	onal insigh	nt the user m	nay want to	consult a statis	stician.
161												
162	No			•			• •				na) may not b	е
163	reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.											
164											_	
165	0											
100	Copper										_	
167						Cana!	Statistic -					
168			Total N	dumber of C	Observations	General 20	Statistics		Numbe	r of Dictions (Observations	12
169			10(a) (vullibel of C	onsei vällölis	20					Observations Observations	0
170					Minimum	44			ivuilibel	o wissing (Mean	54.1
171					- IVIII III III III III	-7-7					IVICALI	J -1 . I

	Α	В	С	D	E	F	G	Н	I	J	K	L
172					Maximum	64					Median	56
173					SD	5.467				Std. E	rror of Mean	1.222
174				Coefficien	t of Variation	0.101					Skewness	-0.324
175												
176			0	L : \ \ \ ()	F4 O4-4:-4:-		GOF Test		Charina 14/	:II. OOF T		
177					Test Statistic Critical Value	0.941 0.905		Data anna	·	ilk GOF Tes t 5% Signific		
178			3% 31		Test Statistic	0.905		рата арре		GOF Test	cance Level	
179			5		Critical Value	0.202		Data No		5% Significa	nce I evel	
180					appear Appr		rmal at 5%			J 70 Olgrillica	TICE LEVEI	
181 182				Data	арроаі тіррі	oximato 140	indi di 070	orgrinioano	0 20701			
183					Ass	suming Norr	nal Distribu	tion				
184			95% N	lormal UCL				95%	UCLs (Adju	sted for Ske	ewness)	
185				95% Stu	dent's-t UCL	56.21		9	5% Adjusted	J-CLT UCL (Chen-1995)	56.02
186								Ş	95% Modifie	d-t UCL (Joh	nnson-1978)	56.2
187												
188						Gamma	GOF Test					
189					Γest Statistic	0.693		Ander	son-Darling	Gamma GO	OF Test	
190					Critical Value	0.74	Detected				5% Significa	nce Level
191					Test Statistic	0.212				ov Gamma (
192			-		Critical Value	0.193					gnificance Le	vel
193		Detected data follow Appr. Gamma Distribution at 5% Significance Level										
194						Gamma	Statiatia-					
195					k hat (MLE)	100.2	Statistics		k o	tar (bias cori	rooted MLEV	85.2
196				The	ta hat (MLE)	0.54				tar (bias con		0.635
197 198					nu hat (MLE)	4008			THOIG 5		s corrected)	3408
198			MI		s corrected)	54.1					s corrected)	5.861
200					,			A		•	Value (0.05)	3273
201			Adjus	ted Level of	Significance	0.038						3263
202					J		038 Adjusted Chi Square Value					
203					Ass	uming Gam						
204	95%	6 Approxima	ate Gamma	UCL (use w	hen n>=50))	56.33		95% Adju	ısted Gamm	a UCL (use	when n<50)	56.5
205												
206						Lognorma	GOF Test					
207			S	hapiro Wilk	Γest Statistic	0.931		Shap	oiro Wilk Log	gnormal GO	F Test	
208			5% SI		Critical Value	0.905	[•	_	ficance Leve	
209					Test Statistic	0.21				ormal GOF		
210			5'		Critical Value	0.192			_	t 5% Signific	cance Level	
211				Data a	opear Approx	kimate Logr	ormai at 5%	o Significar	nce Level			
212						Lognormo	l Statistics					
213				Minimum of I	ogged Data	3.784	olausuCS			Mean of	logged Data	3.986
214					Logged Data	4.159					logged Data	0.103
215 216			IN .		- Jagou Dala	7.100				35 01	. Jyyou Dala	0.100
216					Assu	ming Logno	rmal Distrib	ution				
217					95% H-UCL	56.39			90% C	Chebyshev (I	MVUE) UCL	57.86
219			95% (Chebyshev (MVUE) UCL	59.57				• `	MVUE) UCL	61.93
220			99% (Chebyshev (MVUE) UCL	66.57						
221												
222					Nonparame	tric Distribu	tion Free U	CL Statistic	cs			
223				Data appear	to follow a [low a Discernible Distribution at 5% Significance Level						
224												
225					•	ametric Dis	tribution Fre	e UCLs				
226					% CLT UCL	56.11					ckknife UCL	56.21
227					otstrap UCL	56.06					tstrap-t UCL	56.03
228			9	5% Hall's Bo	otstrap UCL	55.99			95% P	ercentile Bo	otstrap UCL	56.05
				·					·			

	Α	В	С	D	E	F	G	Н	l	J	K	L		
229					ootstrap UCL	55.95								
230					ean, Sd) UCL	57.77				ebyshev(Mea		59.43		
231			97.5% CI	hebyshev(Me	ean, Sd) UCL	61.73			99% Che	ebyshev(Mea	an, Sd) UCL	66.26		
232						C	1101 to 1100				_			
233				0E9/ C+		Suggestea 56.21	UCL to Use							
234				95% 511	udent's-t UCL	30.21								
235			When a d	lata set follov	vs an approxii	mate (e.g. i	normal) distri	hution nass	sing one of	the GOF test				
236 237	W	hen applica			use a UCL ba		·					L		
238						oou upo u		(0.9., 90	.a, passg					
239	Note	: Suggestic	ons regardi	ng the selec	tion of a 95%	UCL are pr	ovided to hel	p the user	to select the	e most appro	priate 95% l	JCL.		
240			F	Recommenda	ntions are base	ed upon dat	a size, data (distribution,	and skewn	ess.				
241	The	se recomn	nendations	are based u	pon the result	s of the sim	ulation studi	es summar	ized in Sing	gh, Maichle,	and Lee (200	06).		
242	Howev	er, simulati	ions results	s will not cov	er all Real Wo	orld data se	ts; for addition	nal insight	the user ma	ay want to co	onsult a statis	itician.		
243														
244	No	te: For hiç	jhly negati	vely-skewed	d data, confid	ence limits	(e.g., Chen,	Johnson,	Lognormal,	and Gamm	a) may not b	е		
245			reliable. (Chen's and .	Johnson's me	thods provi	de adjustme	nts for pos	itvely skew	ed data sets	5.			
246														
247														
248	Lead													
249		General Statistics												
250		General Statistics Total Number of Observations 20 Number of Distinct Observations 20												
251			lota	I Number of	Observations	20								
252					Minimum	5.3			Number	of Missing O		0 1F 69		
253					Maximum	60					Mean Median	15.68 7.75		
254					SD	17.58				Std Er	ror of Mean	3.932		
255 256				Coefficier	nt of Variation	1.121				Old. Li	Skewness	2.043		
257					it or variation						CROWIICOO			
257						Normal (GOF Test							
259			•	Shapiro Wilk	Test Statistic	0.597			Shapiro W	ilk GOF Test				
260				•	Critical Value	0.905			•	5% Significa				
261				Lilliefors	Test Statistic	0.354			Lilliefors	GOF Test				
262			Ę	5% Lilliefors	Critical Value	0.192		Data Not	Normal at	5% Significa	nce Level			
263					Data Not	Normal at 5	% Significar	nce Level						
264											_			
265					Ass	suming Nori	mal Distribut	ion						
266			95% I	Normal UCL				95%	UCLs (Adju	isted for Ske	ewness)			
267				95% Sti	udent's-t UCL	22.48		95	5% Adjusted	I-CLT UCL (Chen-1995)	24.07		
268								9	5% Modifie	d-t UCL (Joh	nson-1978)	22.78		
269							0057							
270					T10: " "		GOF Test	۸ - ۱	D- "	0	\C T!			
271					Test Statistic	2.398	5 :			Gamma GC				
272					Critical Value	0.758	Data				inificance Le	/ei		
273					Test Statistic Critical Value	0.266 0.197	Det			ov Gamma G		vol		
274					eta Not Gamn					eu ai 3% SIG	nificance Le	/CI		
275					ata INUL GAIIII	ia Distribut	ou at 0 /0 Oly	minoance L	.0 7 61		-			
276														
277					k hat (MLE)	1.487			ks	tar (bias corr	ected MLF)	1.298		
278 279				Th	eta hat (MLE)	10.54				tar (bias corr	*	12.08		
280					nu hat (MLE)	59.5				nu star (bias		51.91		
281			N		as corrected)	15.68				MLE Sd (bias		13.76		
282					,			Aŗ		Chi Square \		36.36		
283			Adju	sted Level of	Significance	0.038		<u>'</u>		usted Chi So	` '	35.33		
284							<u> </u>							
285					Ass	uming Gam	ıma Distribut	tion						
									_					

	АВ	C D	Е	F	G	Н	I J	K	L
286	95% Approxim	ate Gamma UCL (use w	hen n>=50))	22.39		95% Adju	usted Gamma UCL (use	when n<50)	23.04
287								_	
288					GOF Test				
289		Shapiro Wilk		0.785			piro Wilk Lognormal GC		
290		5% Shapiro Wilk (0.905			Lognormal at 5% Signifi		
291			Test Statistic	0.206 0.192			liefors Lognormal GOF		
292		5% Lilliefors (:5% Signific		Lognormal at 5% Signifi	cance Level	
293			Data NOLL	ognomiai at	. 5% Signific	ance Leve	1		
294				Lognorma	l Statistics				
295 296		Minimum of	ogged Data	1.668	Otationes		Mean of	logged Data	2.38
297		Maximum of		4.094				logged Data	0.778
298									
299			Assu	ming Logno	rmal Distrib	ution			
300			95% H-UCL	22.17			90% Chebyshev (MVUE) UCL	22.43
301		95% Chebyshev (MVUE) UCL	26.1			97.5% Chebyshev (MVUE) UCL	31.18
302		99% Chebyshev (MVUE) UCL	41.17					
303									
304			Nonparame	tric Distribu	tion Free U0	CL Statistic	CS .	_	
305			ata do not fo	ollow a Disc	ernible Dist	ribution (0.	05)		
306									
307			Nonpar	ametric Dist	tribution Fre	e UCLs			
308			5% CLT UCL	22.15				ckknife UCL	22.48
309		95% Standard Bo		22.02				tstrap-t UCL	25.62
310		95% Hall's Bo		21.42			95% Percentile Bo	otstrap UCL	22.54
311		95% BCA Bo	·	23.51					
312		90% Chebyshev(Me		27.47			95% Chebyshev(Me		32.82
313		97.5% Chebyshev(Me	an, Sa) UCL	40.23			99% Chebyshev(Me	an, Sd) UCL	54.8
314				Cuggootod	UCL to Use				
315		95% Chebyshev (Me		32.82					
316		95% Chebyshev (Me	an, ou) occ	32.02					
317 318	Note: Suggestic	ons regarding the select	on of a 95%	UCL are pro	ovided to he	In the user	to select the most appr	opriate 95% U	CL
319	. total daggeons						, and skewness.		
320	These recomm	nendations are based up						and Lee (200	6).
321		ions results will not cove						•	-
322							<u> </u>		
323									
	Nickel								
325									
326				General	Statistics			_	
327		Total Number of 0	Observations	20			Number of Distinct C	Observations	16
328							Number of Missing (Observations	0
329			Minimum	49				Mean	76
330			Maximum	172				Median	67
331			SD	29.37			Std. E	rror of Mean	6.568
332		Coefficien	t of Variation	0.387				Skewness	2.243
333					00F T :				
334		Objection Marrie	Foot Ot-41 **		GOF Test		Chanica Will COLT	_	
335		Shapiro Wilk		0.744		Dot- N	Shapiro Wilk GOF Tes		
336		5% Shapiro Wilk (ritical Value Fest Statistic	0.905 0.244		Data NO	t Normal at 5% Significa Lilliefors GOF Test	nice Level	
337		5% Lilliefors 0		0.244		Data No	t Normal at 5% Significa	ance I evel	
338		370 LIIIIGIOIS (% Significa		crionnal at 070 digitillo	ALICC LEVE	
339			Data NOC	. Johnar at J	.,o Cigillioa				
340 341			Ass	sumina Norr	nal Distribu	tion			
341		95% Normal UCL	,				UCLs (Adjusted for Sk	ewness)	
U4Z						•	, ,		

	Α	В	С	D	Е	F	G	Н	l J	K	L
343				95% Stud	dent's-t UCL	87.36		9	5% Adjusted-CLT UCL (0	Chen-1995)	90.32
344								9	95% Modified-t UCL (John	nson-1978)	87.91
345											
346						Gamma (GOF Test				
347				A-D T	est Statistic	1.178		Ander	son-Darling Gamma GO	F Test	
348				5% A-D C	ritical Value	0.742	Dat		ma Distributed at 5% Sig		/el
349				K-S T	est Statistic	0.224		Kolmog	orov-Smirnov Gamma G	OF Test	
350				5% K-S C	ritical Value	0.194	Dat	ta Not Gam	ma Distributed at 5% Sig	nificance Le	/el
351				Dat	a Not Gamr	na Distribute	ed at 5% Sig	gnificance l	_evel		
352											
353							Statistics				
354					k hat (MLE)				k star (bias corre		8.242
355					ta hat (MLE)				Theta star (bias corre	,	9.221
356					u hat (MLE)	386.3			nu star (bias	1	329.7
357			ML	E Mean (bia	s corrected)	76			MLE Sd (bias		26.47
358								Α	pproximate Chi Square V		288.6
359			Adjust	ed Level of	Significance	0.038			Adjusted Chi Sq	uare Value	285.6
360											
361						suming Gam	ıma Distribu				
362	95%	Approxima	te Gamma	UCL (use w	hen n>=50))	86.81		95% Adju	sted Gamma UCL (use v	when n<50)	87.74
363											
364							GOF Test				
365					est Statistic				iro Wilk Lognormal GOF		
366			5% Sh		ritical Value	0.905			ognormal at 5% Signification		
367					est Statistic				iefors Lognormal GOF T		
368			5%	6 Lilliefors C	ritical Value	0.192			ognormal at 5% Significa	ance Level	
369					Data Not L	ognormal at	5% Signific	ance Leve			
370										_	
371							l Statistics				
372					ogged Data	3.892				ogged Data	4.278
373			IVI	aximum of L	ogged Data	5.147			SD of ic	ogged Data	0.311
374					Λ		una al Diatuile				
375						ming Logno	rmai Distric	ution	000/ Chahuahau /N	N/UE\ UOL	01.40
376			050/ 0		95% H-UCL MVUE) UCL				90% Chebyshev (N 97.5% Chebyshev (N	,	91.49
377				, ,	MVUE) UCL				97.5 % Chebyshev (iv	IVUE) UCL	100.0
378			99 /0 C	ilebysilev (i	WIVUE) UCL	120.5					
379					Nonparame	trio Dietribu	tion Eroo III	∩ Statistic			
380					ata do not fo					_	
381					ata do not it	ollow a Disc	errible Dist	indution (o.			
382					Nonnar	ametric Dis	tribution Fre	e IICI s		_	
383				95	% CLT UCL		anbadon i re	C OOLS	95% Jac	kknife UCL	87.36
384			95%		otstrap UCL	86.32				strap-t UCL	96.6
385 386					otstrap UCL	136.7			95% Percentile Boo		87
386					otstrap UCL	90.65			23.0. 3.00.1.110 200		
387					an, Sd) UCL	95.7			95% Chebyshev(Mea	n. Sd) UCI	104.6
389				• `	an, Sd) UCL	117			99% Chebyshev(Mea	,	141.4
390) = 12 1 (o.	, ==, ===					,,	
391						Suggested	UCL to Use	.			
392				95% Stud	dent's-t UCL	87.36			or 95% Mod	lified-t UCL	87.91
393										- 1	
394	Note	Suggestion	ns regarding	the selecti	on of a 95%	UCL are pro	ovided to he	lp the user	to select the most appro	priate 95% l	ICL.
395								•	, and skewness.	-	
396	The	se recomm				· ·			rized in Singh, Maichle, a	and Lee (200	16).
397									the user may want to co	•	· ·
398								3 11	,		
399											
555											

	Α	В	С	D	Е	F	G	Н	I	J	K	L
400	Zinc	_		1			1	1	•		_	
401												
402							Statistics					
403			Total	Number of C	bservations	20					bservations	16
404									Number	of Missing C	Observations	0
405					Minimum	61	-				Mean	81.65
406					Maximum	149				044 5	Median	71
407				Coefficient	SD of Variation	26.77 0.328				Sta. E	rror of Mean Skewness	5.986 1.869
408				Coemicieni	or variation	0.326					Skewness	1.009
409						Normal (GOF Test					
410 411			S	Shapiro Wilk 1	est Statistic	0.705	101 1030		Shaniro W	ilk GOF Tes	<u> </u>	
411				hapiro Wilk C		0.905			·	5% Significa		
413				-	est Statistic	0.319				GOF Test		
414			5	% Lilliefors C	critical Value	0.192		Data Not		5% Significa	nce Level	
415							5% Significa					
416											-	
417					Ass	uming Nori	mal Distribu	tion				
418			95% N	Normal UCL				95%	UCLs (Adjı	usted for Sk	ewness)	
419				95% Stu	dent's-t UCL	92		95	5% Adjusted	d-CLT UCL	(Chen-1995)	94.17
420								9	5% Modifie	d-t UCL (Jo	nnson-1978)	92.42
421												
422												
423				A-D T	est Statistic	1.946		Ander	son-Darling	Gamma G	OF Test	
424				5% A-D C	Critical Value	0.742	Dat	ta Not Gamı	ma Distribu	ted at 5% Si	gnificance Le	vel
425					est Statistic	0.295				ov Gamma		
426					critical Value	0.194				ted at 5% Si	gnificance Le	vel
427				Dat	ta Not Gamm	na Distribut	ed at 5% Sig	gnificance L	_evel			
428												
429							Statistics					
430					k hat (MLE)	12.69				`	rected MLE)	10.82
431					ta hat (MLE)	6.434			Theta s		rected MLE)	7.546
432					nu hat (MLE)	507.6					s corrected)	432.8
433			IVII	LE Mean (bia	is corrected)	81.65		Λ.		·	s corrected)	24.82 385.6
434			۸dius	sted Level of	Significance	0.038	-	A			Value (0.05) quare Value	382.1
435			Aujus	sted Level Of	Significance	0.036			Au	justeu Chi G	quare value	J02.1
436					Δος	umina Gam	ıma Distribu	ıtion				
437 438	95%	6 Annroxima	te Gamma	a UCL (use w		91.65			sted Gamm	na LICL (use	when n<50)	92.49
439	007	отъргожина	ito dariirio	. 002 (000 11		01.00		007071030	otou damii	.u 002 (u00	Wiloli II '00')	
440						Lognorma	I GOF Test				-	
441			S	Shapiro Wilk 1	est Statistic	0.782		Shap	iro Wilk Lo	gnormal GC	F Test	
442				hapiro Wilk C		0.905	-	·		-	cance Level	
443					est Statistic	0.277				ormal GOF		
444			5	% Lilliefors C	ritical Value	0.192		Data Not L	ognormal a	t 5% Signifi	cance Level	
445					Data Not Lo	ognormal at	t 5% Signific					
446												
447						Lognorma	Statistics					
448				Minimum of L	ogged Data	4.111				Mean of	logged Data	4.363
449			N	Maximum of I	ogged Data	5.004				SD of	logged Data	0.273
450												
451						ming Logno	rmal Distrib	oution				
452					95% H-UCL	91.32			90% (Chebyshev (MVUE) UCL	96.32
453				Chebyshev (,	103.1	_		97.5% (Chebyshev (MVUE) UCL	112.6
454			99%	Chebyshev (MVUE) UCL	131.2						
455												
456					Nonparame	tric Distribu	tion Free U	CL Statistic	s			
	-											

	Α	В	С	D	Е	F	G	Н	I	J	K	L
457				Da	ata do not fo	llow a Disce	ernible Dist	ribution (0.0)5)			
458												
459					Nonpara	ametric Dist	ribution Fre	e UCLs				
460				959	% CLT UCL	91.5				95% Jac	kknife UCL	92
461			95% S	Standard Boo	tstrap UCL	91.27				95% Boots	strap-t UCL	97.75
462			95	% Hall's Boo	otstrap UCL	95.03			95% Pe	ercentile Boo	otstrap UCL	92.05
463			95	5% BCA Boo	otstrap UCL	93.45						
464			90% Che	byshev(Mea	n, Sd) UCL	99.61			95% Che	byshev(Mea	n, Sd) UCL	107.7
465			97.5% Che	byshev(Mea	n, Sd) UCL	119			99% Che	byshev(Mea	n, Sd) UCL	141.2
466												
467						Suggested l	JCL to Use	;				
468				95% Stud	ent's-t UCL	92				or 95% Mod	dified-t UCL	92.42
469												
470	Note	: Suggestio	ns regarding	the selection	on of a 95%	UCL are pro	ovided to he	lp the user	to select the	most appro	priate 95%	JCL.
471			Red	commendati	ons are base	ed upon data	a size, data	distribution,	and skewn	ess.		
472	The	se recomm	endations ar	e based upo	on the result	s of the sim	ulation stud	ies summar	ized in Sing	h, Maichle, a	and Lee (20	06).
473	Howev	er, simulation	ons results w	vill not cover	all Real Wo	orld data set	s; for addition	onal insight	the user ma	y want to co	nsult a stati	stician.
474												

	Α	В	С	D	E	F	G	Н	I	J	K	L
1					UCL Statis	stics for Data	Sets with I	Non-Detects	; -			
2		Llaan Cala	atad Ontiana	_								
3		User Select Time of Co	cted Options		11/12/2021	3:44:50 pm						
4	Date	rillie of Co	From File			JCL Input.xls	-				-	
5		Full	I Precision	OFF	ey KVI T TO	JOE IIIput.xis						
6	С	onfidence (95%							***	
7 8	Number of			2000								
9												
10												
	Cadmium											
12											-	
13						General	Statistics					
14			Total	Number of 0	Observation	s 19			Number	of Distinct O	bservations	11
15									Number	of Missing O	bservations	1
16					Minimun	n 0.13					Mean	0.171
17					Maximun	n 0.23					Median	0.17
18					SI					Std. E	ror of Mean	0.00677
19				Coefficien	t of Variation	n 0.173					Skewness	0.55
20												
21					.		GOF Test	_	01 : :::			
22				•	Test Statisti				•	ilk GOF Tes		
23			5% Sn		Critical Value Test Statistie			Data appe		t 5% Signific	ance Level	
24			EO		Critical Value			Data anna		GOF Test	onee Level	
25			- 57	% Lilleiois (ear Normal a	5% Signifi			t 5% Signific	ance Level	
26					Data appe	ai Nomiai a	1 3 76 Sigilili	cance Level				
27					As	ssuming Nori	nal Distribi	ıtion				
28 29			95% N	ormal UCL		Journing Hon	nai Biotribe		UCLs (Adiu	sted for Ske	ewness)	
30			307011		 ident's-t UC	L 0.182				I-CLT UCL (•	0.183
31										d-t UCL (Joh	•	0.182
32											,	
33						Gamma	GOF Test					
34				A-D	Test Statisti	c 0.404		Anders	son-Darling	Gamma GO	OF Test	
35				5% A-D (Critical Value	e 0.74	Detected	data appear	Gamma Di	istributed at	5% Significa	nce Level
36				K-S	Test Statisti	c 0.18		Kolmogo	orov-Smirno	ov Gamma (GOF Test	
37				5% K-S (Critical Value	e 0.198	Detected	data appear	Gamma Di	istributed at	5% Significa	nce Level
38				Detected	data appea	r Gamma Di	stributed at	5% Signific	ance Level			
39										_	_	
40							Statistics					
41					k hat (MLE					tar (bias cori	,	30.67
42					eta hat (MLE				Theta s	tar (bias corr		0.00556
43					nu hat (MLE						s corrected)	1166
44			ML	.E Mean (bia	as corrected	0.171				MLE Sd (bia		0.0308
45			* **		0: :-	0.000		Ap	•		Value (0.05)	1087
46			Adjust	ted Level of	Significance	e 0.0369			Adj	usted Chi S	quare Value	1081
47					Λ -	ecumina C==	ma Distrik	ution			•	
48	OE0/	Approving	ato Comme	HCL (vac:		suming Gam	ıma Distribi		stad Camer	a LICL /vac	whon n/EO\	0.184
49	95%	Approxima	ale Gamma	UCL (use V	vhen n>=50)	0.183		ສວ% Auju	sieu GalliM	a UCL (use	wileli II<50)	0.104
50						Loanorma	I GOF Test					
51			912	napiro Wilk	Test Statisti		1 401 1631		iro Wilk Lor	normal GO	F Test	
52				•	Critical Value			•			ficance Level	
53 54			570 011		Test Statisti					ormal GOF		
54 55			59		Critical Value				•		ficance Level	
56						r Lognormal						
57					uppou							
37												

	Α	В	С	D	E	F	G	Н	I	J	K	L
58						Lognorma	l Statistics					
59			M	inimum of L	ogged Data	-2.04				Mean of I	ogged Data	-1.783
60			Ma	aximum of L	ogged Data	-1.47				SD of I	ogged Data	0.17
61												
62					Assu	ming Logno	rmal Distrib	ution				
63				(95% H-UCL	0.183			90% C	hebyshev (N	IVUE) UCL	0.19
64			95% C	hebyshev (N	IVUE) UCL	0.2			97.5% C	hebyshev (N	IVUE) UCL	0.212
65			99% C	hebyshev (N	IVUE) UCL	0.237						
66												
67					•		tion Free UC					
68			D	ata appear	to follow a [Discernible I	Distribution a	at 5% Sign	ificance Le	vel .		
69												
70					Nonpar	ametric Dist	tribution Free	e UCLs				
71				959	% CLT UCL	0.182				95% Jac	kknife UCL	0.182
72			95% S	standard Boo	otstrap UCL	0.181				95% Boot	strap-t UCL	0.184
73			95	% Hall's Bo	otstrap UCL	0.183			95% P	ercentile Boo	otstrap UCL	0.181
74			95	5% BCA Boo	otstrap UCL	0.181						
75			90% Che	byshev(Mea	ın, Sd) UCL	0.191			95% Che	byshev(Mea	ın, Sd) UCL	0.2
76			97.5% Che	byshev(Mea	ın, Sd) UCL	0.213			99% Che	byshev(Mea	ın, Sd) UCL	0.238
77												
78						Suggested	UCL to Use					
79				95% Stud	ent's-t UCL	0.182						
80												
81	Note	: Suggestio	ns regarding	the selection	on of a 95%	UCL are pro	ovided to hel	p the user t	to select the	e most appro	priate 95% (UCL.
82			Red	commendati	ons are bas	ed upon data	a size, data d	distribution,	and skewn	ess.		
83	The	se recomm	endations ar	e based up	on the result	s of the sim	ulation studi	es summar	ized in Sing	jh, Maichle,	and Lee (20	06).
84	Howev	er, simulatio	ons results w	vill not cove	all Real Wo	orld data set	s; for additio	nal insight	the user ma	ay want to co	onsult a stati	stician.
85												