

Pond and Reservoir Management Plan

24 July 2025

DOCUMENT CONTROL

Revision	Author	Organisation	Date	Approved
0	A. Hope	Engineering Geology Ltd	21 July 2025	
1	A. Hope	Engineering Geology Ltd	24 July 2025	C Low

D	OCUM	1ENT CONTROL	3
1.	INT	RODUCTION	7
	1.1.	Purpose and Objectives	7
	1.2.	Description of Facilities	7
	1.3.	Scope of Ponds and Reservoir Management Plan	8
	1.4.	Applicable Legislation and Regulations	8
	1.5.	Resource Consent Conditions	8
	1.6.	Compliance with Resource Consent Conditions	8
	1.7.	Building Consent Requirements	8
	1.8.	Alignment with Industry Standards and Guidelines	9
2.	ROI	LES AND RESPONSIBILITIES	.10
3.	DES	SIGN MANAGEMENT	.12
	3.1.	Design Philosophy and Objectives	.12
	3.2.	Potential Impact Classification (PIC)	.12
	3.3.	Design Standards and Criteria	.13
	3.4.	Independent Peer Review and Design Verification	.13
4.	CO	NSTRUCTION MANAGEMENT	.13
	4.1.	Construction Methodology, Staging, and Sequencing	.13
	4.2.	Construct dams using an experienced contractor	.14
	4.3.	Instrumentation Installation	.14
	4.4.	Quality Assurance and Quality Control (QA/QC)	.14
	4.5.	Supervision and Inspections	.14
	4.6.	Commissioning	.15
	4.7.	Change Management During Construction	. 15
	4.8.	Documentation, Certification, and As-Builts	.15
5.	OPE	ERATIONAL MANAGEMENT	.16
	5.1.	Pond and Water Management	.16
	5.2.	Access and trafficability	.16

5.3.	Maintenance	16
5.4.	Monitoring and Surveillance	17
5.5.	Dam Register	17
5.6.	Operations, Maintenance and Surveillance Manual (OMS)	17
6. D	ECOMMISSIONING/CLOSURE AND POST-CLOSURE MANAGEMENT	18
6.1.	Closure Objectives and Philosophy	18
6.2.	Integration with Mine Closure Plan	18
6.3.	Post-Closure Monitoring and Maintenance	18
6.4.	Closure Manual	18
7. E	MERGENCY PREPAREDNESS AND RESPONSE	19
7.1.	Emergency Action Plan	19
7.2.	Trigger Action Response Plans	19
7.3.	Emergency Response Training and Drills	19
7.4.	Communications and Notifications Protocols	19
7.5.	Interface with civil defence and downstream stakeholders	20
8. RI	ISK MANAGEMENT	20
8.1.	Purpose	20
8.2.	Risk Management Requirements	20
8.3.	Failure Modes and Effects Analysis (FMEA)	20
8.4.	Risk Register	21
8.5.	Critical Controls	21
8.6.	Integration with Site-Wide Risk Systems	21
9. D	AM SAFETY MANAGEMENT SYSTEM	21
10.	INDEPENDENT REVIEW AND AUDIT	23
10.1	Annual Compliance and Dam Safety Reporting	23
10.2	2. Independent Dam Safety Review Requirements	23
10.3	3. Regulatory Audits and Inspection Protocols	23
11.	CONTINUOUS IMPROVEMENT	23

12.	CHANGE MANAGEMENT	24
13.	AUDIT AND REVIEW OF THIS DOCUMENT	24
14.	REFERENCES	25

1. INTRODUCTION

1.1. Purpose and Objectives

The purpose of the Bendigo-Ophir Gold Project (BOGP) Pond and Reservoir Management Plan (PRMP) is to set the roles and responsibilities, practices and procedures for the safe design, construction, operation, and closure of ponds and reservoirs.

Its overarching objective is to ensure the protection of people, the environment, and the integrity of the ponds and reservoirs that form part of the BOGP.

This plan is a *living document* that evolves over the life of the mine, and reflects the changing nature of risk, design assumptions, and operational knowledge.

1.2. Description of Facilities

The BOGP site is located approximately 20 km northeast of Cromwell. The Rise and Shine and Come in Time gold deposits are located within a ridge between Shepherds Creek to the northeast and Rise and Shine Creek to the southwest. The Srex gold deposit is located on the southern slopes of Rise and Shine Valley. Watercourses in both valleys flow from a divide in the southeast to outlets in the northwest. The general location of the proposed site is shown in Figure 1.

The BOGP involves mining the identified gold deposits at Rise and Shine ("RAS"), Come in Time ("CIT"), Srex ("SRX") and Srex East ("SRE"). Both open pit and underground mining methods will be utilised within the project site to access the gold deposits. Infrastructure to support the project will be constructed in the lower Shepherds Creek Valley. The proposed site layout is shown in Figure 2.

Matakanui Gold Limited (MGL) is the owner of the proposed BOGP which will include various ponds and reservoirs. Ponds or reservoirs can be formed below the level of the surrounding ground (in a sump or pit) or with a dam constructed above the surrounding ground. A dam is defined as an artificial barrier, and its appurtenant structures, that is constructed to hold back water or other fluid under constant pressure so as to form a reservoir or pond and is used for the storage, control, or diversion of water or other fluid.

Pond or reservoirs formed below the surrounding ground with no potential failure mode present no risk of breach. Pond or reservoirs formed with a dam above the surrounding ground require management of the risk.

1.3. Scope of Ponds and Reservoir Management Plan

This PRMP applies to all phases of ponds and reservoirs including design, construction, operation, closure, and post-closure. This revision of the PRMP sets out the management requirements established at the fast-track application stage.

1.4. Applicable Legislation and Regulations

Ponds and reservoirs may be formed by a dam and will present a risk to people and the environment downstream of the dam. To manage these risks, all ponds and reservoirs shall be designed, constructed, operated, maintained, monitored, and reviewed to meet the requirements of the Resource Management Act 1991 (Ref. 1), Building Act 2004 (Ref. 2), and the Building (Dam Safety) Regulations 2022 (Ref. 3) and amendments (2023, 2024) (Ref. 4,5).

It is anticipated that resource consent for the project will be applied for under the Fast-track Approvals Act 2024 (Ref. 6).

1.5. Resource Consent Conditions

The following resource consent conditions are proposed for the management of the BOGP ponds and reservoirs:

- The ponds and reservoirs shall be designed, constructed, operated, maintained, monitored, and reviewed in accordance with the requirements of the approved BOGP Pond and Reservoir Management Plan (This document).
- 2. Updates to the approved PRMP shall be approved by the Regional Authority.

1.6. Compliance with Resource Consent Conditions

The Consent Holder shall ensure compliance with resource consent conditions including approved management plans.

1.7. Building Consent Requirements

Building consent is required by the Building Act 2004 for ponds and reservoirs meeting the definition of a Large Dam (Ref. 7).

A Large Dam is defined as a dam that has a height of 4 or more meters and holds 20 000 or more cubic meters volume of water or other fluid. The height of a dam is the vertical distance from the crest of the dam to the lowest elevation at the outside limit of the dam. The volume of water held is the volume from the lowest elevation of the outside limit of the dam to the crest of the dam (Ref. 7).

It is expected that some of the ponds and reservoirs will meet the definition of a Large Dam and will require a Building Consent.

1.8. Alignment with Industry Standards and Guidelines

Ponds and reservoirs formed by a Large Dam present a risk to people and the environment downstream of the dam. To manage the risk, ponds and reservoirs formed by a Large Dam shall be designed, constructed, operated, maintained, monitored, and reviewed in general accordance with the latest version of the New Zealand Dam Safety Guidelines (Ref. 7), unless otherwise defined in this management plan.

A dam means an artificial barrier, and its appurtenant structures, that is constructed to hold back water or other fluid under constant pressure so as to form a reservoir and is used for the storage, control, or diversion of water or other fluid.

2. ROLES AND RESPONSIBILITIES

The responsibility for ponds and reservoirs lies with the Owner and Consent Holder. Matakanui Gold Limited (MGL) are both the Owner and Consent Holder for the BOGP.

Key roles and responsibilities required of individuals for the management of ponds and reservoirs on the BOGP are summarized in Table 1.

Table 1: Key roles and responsibilities for the management of ponds and reservoirs.

Role	Responsibilities
General Manager	Protection of people and the environment
	 Safe pond and reservoir operation on site
Environmental Manager	 Obtaining resource consents
	 Compliance with resource consent conditions
	 Pond and Reservoir Management Plan updates
	 Pond and Reservoir Management Plan
	compliance
	 Environmental monitoring
	Environmental reporting
Technical Services Manager	 Register and location plan of all dams forming
	ponds and reservoirs on site.
	 Compliance with the Building Act 2004
	 Obtaining building consents (as required)
	 Compliance with building consent conditions
	 Design and documentation
	 Construction monitoring
	 Construction completion documentation and
	certification (as required)
	 Dam commissioning documentation (as required)
	 Operation, maintenance, and surveillance documentation
	 Emergency planning and documentation
	Routine dam surveillance
	 Intermediate Dam Safety Reviews (IDSR)
	 Comprehensive Dam Safety Reviews (CDSR)
	 Compliance with the Building (Dam Safety)
	Regulations 2022
Chartered Professional	 Professional engineering services for dam design
Engineer (CPEng) and Dam	construction, commissioning, operation,
Design Firm	maintenance, surveillance, emergency planning, and IDSRs.

	 Producer Statement (PS1) Design required for Large Dams defined by the Building Act 2004 Producer Statement (PS4) Construction Review required for Large Dams defined by the Building Act 2004
Recognised Engineer (PIC)	 Review and Certification of Potential Impact Classification (PIC) under the Building (Dam Safety) Regulations 2022 for all classifiable dams.
Recognised Engineer (DSAP)	 Review and Certification of Dam Safety Assurance Programme (DSAP) under the Building (Dam Safety) Regulations 2022 for all classifiable Medium and High PIC dams.
	 Review of compliance with the DSAP annually and issue of Annual Dam Compliance Certificate where compliant for all classifiable Medium and High PIC dams.
Peer Reviewer Design Chartered Professional Engineer (CPEng)	 Producer Statement (PS2) Design Review for Medium or High PIC dams.
Independent Reviewer - Dam Safety	 Comprehensive Dam Safety Reviews (CDSR) for Medium and High PIC dams.
Contractor or constructor	 Experience in dam construction Construction per the design Producer Statement (PS3) Construction for Large Dams defined by the Building Act 2004
Building Consent Authority for Dams (Environment Canterbury)	 Issue of building consents for dams at the BOGP Issue of code compliance certificates
Regional Authority (Otago Regional Authority)	 Acceptance of PIC Certification for classifiable dams Acceptance of DSAP for Medium and High PIC dams Acceptance of Annual Dam Compliance Certificate for Medium and High PIC dams

3. DESIGN MANAGEMENT

3.1. Design Philosophy and Objectives

The level of detail required for the design of ponds and reservoirs depends on the size of the risk. Low height dams generally present an acceptably low risk to people and the environment. Larger dams present greater risk and require higher levels of design and controls.

Low height ESC Sediment Retention Ponds with impounded water depths less than 2 m at the auxiliary spillway level can be designed using standard details in the guidance outlined in the BOGP Erosion and Sediment Control Management Plan ("ESCMP") (Ref. 8).

All other dams onsite shall have specific design.

3.2. Potential Impact Classification (PIC)

Dams forming ponds and reservoirs (greater than 4 m height and 20,000 m³ meeting the definition of a classifiable dam are required to comply with the Building (Dam Safety) Regulations 2022 (Ref. 3,4,5).

The height of a dam is the vertical distance from the crest of the dam to the lowest elevation at the outside limit of the dam (Ref. 7).

The volume of water held is the volume from the lowest elevation of the outside limit of the dam to the crest of the dam.

Compliance with the Building (Dam Safety) Regulations 2022 (Ref. 3,4,5) is the responsibility of the dam owner MGL.

Classifiable Dams require a Dam Classification Certificate with the certified PIC of Low, Medium or High to be submitted to the Regional Authority within 3 months after the dam is commissioned.

A Recognised Engineer (PIC) is required to certify the PIC.

MGL must review the dams PIC within 5 years after the Regional Authority approves the classification or if building work on the dam requires a building consent or could result in a change to the PIC.

3.3. Design Standards and Criteria

The design of ponds and reservoirs that meet the definition of a Large Dam shall be designed in general accordance with the New Zealand Dam Safety Guidelines (Ref. 7) unless otherwise defined in this management plan.

3.4. Independent Peer Review and Design Verification

The design of Ponds and reservoirs that meet the definition of a Large Dam will require a Producer Statement 1 for Design (PS1) provided by a Chartered Professional Engineer experienced in dam design and construction.

An independent peer review will be required to be completed for all Medium or High PIC dams and a Producer Statement 2 Design Review (PS2) provided by a Chartered Professional Engineer experienced in dam design and construction.

The design documentation for building consent shall define the level of construction monitoring, design verification, inspections, and any hold points required.

4. CONSTRUCTION MANAGEMENT

Low height ESC Sediment Retention Ponds shall be constructed following guidance documents in the BOGP ESCMP and general good earthwork practice.

Dams with a specific design shall be constructed to the design report, drawings and specification and in general accordance with the New Zealand Dam Safety Guidelines (Ref. 7).

4.1. Construction Methodology, Staging, and Sequencing

A construction plan shall be developed for each stage of the development of Large Dams. This plan will:

- Outline the construction method
- Define staging and sequencing of the surface water diversions, embankment and appurtenant structures, etc.

The construction plan shall be consistent with the approved design.

4.2. Construct dams using an experienced contractor

The ponds and reservoirs that are defined as large dams shall be constructed by a Contractor or MGL staff experienced in the construction of similar facilities.

4.3. Instrumentation Installation

All geotechnical and hydrogeological instrumentation shall be installed in accordance with the Design Drawings and Commissioning Plan. This may include:

- Piezometers, inclinometers, vibrating wire piezometers, survey monuments, and flow meters
- Installation logs and baseline data collection upon installation
- Verification of instrument calibration and integrity.

4.4. Quality Assurance and Quality Control (QA/QC)

A QA/QC programme will be implemented for ponds and reservoirs defined as a Large Dam that includes:

- Independent testing regimes for construction materials (e.g., fill compaction, filter gradation)
- Verification procedures for each construction activity
- Quality records submitted as part of construction documentation.

4.5. Supervision and Inspections

Large Dams require building consent and will require construction monitoring by the Technical Services Manager and construction review by the Chartered Professional Engineer (CPEng) and associated Dam Design Firm.

Construction of ponds and reservoirs shall be monitored and documented by the Technical Services Manager. They will be responsible for:

- Overseeing day-to-day construction activities
- Conducting inspections at hold points defined in the Design
- Confirming compliance with the Design and regulatory requirements
- Documenting any deviations from approved plans

The Designer will complete inspections and hold points defined in the design to meet the construction supervision requirements defined in the Design.

4.6. Commissioning

On first filling all ponds and reservoirs formed by dams shall have a visual inspection.

Large Dams will require a commissioning plan to be defined by the dam designer. The commissioning plan shall be in general accordance with the New Zealand Dam Safety Guidelines (Ref. 7) and be appropriate for the PIC of the dam.

4.7. Change Management During Construction

Changes to the design or execution of works during construction of Large Dams will follow a formal change control process. This will include:

- Review and sign-off by the Designer
- Documentation of design variations and rationale
- Notification to the Building Consent Authority and Regional Authority where required.

4.8. Documentation, Certification, and As-Builts

Low height ESC Sediment Retention Ponds do not require as-built records or certification.

All other dams will require records of construction to be maintained including:

- Site Diaries and photographic records
- · Test certificates and material conformance reports
- As-built drawings verified by the Designer
- Certification from the constructor (PS3), and construction reviewer (PS4) as required under the Building Act 2004

Construction of ponds and reservoirs shall be monitored and documented by the Technical Services Manager, and construction review undertaken by a Chartered Professional Engineer (CPEng) where this is defined in the Design Documents.

Large Dams with building consent will require a construction completion report and application for code compliance certificate. The application for a code compliance certificate will need to be supported by a Producer Statement (PS3) Construction from the

constructor and Producer Statement (PS4) Construction Review from the engineering firm reviewing the construction monitoring.

Construction monitoring records and as-built records shall be maintained and kept on record.

5. OPERATIONAL MANAGEMENT

This section sets out the operational requirements for the safe, effective, and compliant operation of the ponds and reservoirs throughout their active service life. Operational activities must preserve structural integrity, manage environmental impacts, and support long-term closure objectives.

5.1. Pond and Water Management

Operational freeboard and emergency spillway controls are to be monitored and maintained. The activities to achieve this may include:

- Monitoring of water levels, flow rates, and water quality
- Sediment removal and desilting
- Implementation of contingency plans for high rainfall events to manage excess water and ensure system integrity
- Maintaining emergency spillway locations clear of obstructions

5.2. Access and trafficability

Safe and reliable access for inspections, maintenance, ponds and reservoirs defined as Large Dams shall be maintained. This will include:

- Establishing and maintaining access tracks
- Ensuring vehicle access for emergency response and monitoring
- Prohibit heavy vehicle loading on embankment crests unless specifically designed for.

5.3. Maintenance

A planned maintenance programme shall be implemented to ensure the ongoing integrity and reliability of the ponds and reservoirs and their associated infrastructure. Maintenance

activities shall be scheduled in accordance with the Operations, Maintenance and Surveillance ("**OMS**") Manual and documented in a site maintenance log.

5.4. Monitoring and Surveillance

All operational activities shall be supported by a monitoring and surveillance programme described in the OMS Manual for the pond or reservoir. This may include:

- Instrumentation (e.g., piezometers, deformation markers, drain flow gauges, etc.)
- Visual inspections
- Photographic and survey records
- Key performance indicators (alert and alarm levels).

Daily and weekly visual inspections requirements shall be defined in the OMS and conducted by trained operational personnel. These may include:

- Embankment crests and slopes
- Impoundment slopes
- Spillways and appurtenant structures
- Access and security.

5.5. Dam Register

All dams forming ponds and reservoirs shall be identified and recorded on a register and location plan. The register shall include a unique identification, coordinates, normal operating volume, stored volume, dam height, spillway design criteria, large dam status, classifiable dam status, and PIC (where required). A pond or reservoir may be formed by multiple dams. The register and location plan shall be kept on file and be provided to Regional Authority annually as a record of compliance with this management plan.

5.6. Operations, Maintenance and Surveillance Manual (OMS)

Each Large Dam on site shall have a dam specific OMS Manual in general accordance New Zealand Dam Safety Guidelines (Ref. 7). If there are multiple dams forming a pond or reservoir only one manual is required.

All other dams shall follow a standardised BOGP Pond and Reservoir OMS Manual.

6. DECOMMISSIONING/CLOSURE AND POST-CLOSURE MANAGEMENT

6.1. Closure Objectives and Philosophy

The objectives of the decommissioning/closure of the ponds and reservoirs are:

- developing an acceptable and functional landform which integrates within the landscape
- providing acceptable, stable, post-closure landforms.

6.2. Integration with Mine Closure Plan

Closure of the ponds and reservoirs shall be integrated into the overall mine closure plan to ensure alignment of environmental, social, and land use outcomes. This integration shall:

- Reflect the sequencing and dependencies between the need for ponds and reservoirs and the broader site closure and rehabilitation
- Ensure consistency of closure assumptions, design criteria, and post-closure objectives
- Support the development of a single, cohesive post-mining landform
- Facilitate efficient use of monitoring, maintenance, and stakeholder engagement resources.

A cross-disciplinary closure planning team shall coordinate ponds and reservoirs and mine-wide closure design, budgeting, stakeholder consultation, and regulatory engagement.

6.3. Post-Closure Monitoring and Maintenance

It is not anticipated that there will be any requirement for post-closure monitoring and maintenance for ponds and reservoirs.

6.4. Closure Manual

It is not anticipated that there will be any requirement for a Closure Manual for ponds and reservoirs.

7. EMERGENCY PREPAREDNESS AND RESPONSE

7.1. Emergency Action Plan

Each Large Dam on site shall have a dam specific Emergency Action Plan (EAP) in general accordance with the New Zealand Dam Safety Guidelines (Ref. 7). If there are multiple dams forming a pond or reservoir only one EAP is required.

Ponds and reservoirs formed by dams not meeting the definition of a Large Dam shall follow the standardised BOGP Pond and Reservoir EAP.

7.2. Trigger Action Response Plans

Trigger Action Response Plans ("TARPs") shall be developed for Medimum or High PIC dams and implemented to provide early warnings and define pre-planned actions when monitoring data or visual inspections indicate abnormal conditions. TARPs shall:

- Include defined triggers based on instrument readings, water levels, deformation, or other key indicators
- Outline escalation steps for operational and emergency response levels
- Be cross-referenced with routine monitoring protocols and the EAP.

7.3. Emergency Response Training and Drills

Training and emergency simulation exercises shall be completed for all personnel with ponds and reservoir responsibilities on an annual basis. These drills shall:

- Test the effectiveness and clarity of the EAPs
- Periodically include coordination with external emergency responders (e.g., fire service, civil defence)
- Be reviewed and updated based on lessons learned from each exercise.

7.4. Communications and Notifications Protocols

MGL shall ensure that timely and accurate communication protocols are in place during emergencies. These shall:

- Be defined within the EAP
- Include contact lists for internal and external stakeholders (e.g., downstream landowners, iwi, emergency services, regional authorities)

Ensure that communication tools are functional and tested regularly.

7.5. Interface with civil defence and downstream stakeholders

The EAP and broader emergency preparedness system shall align with New Zealand's Civil Defence and Emergency Management (CDEM) framework. The owner shall:

- Engage proactively with the Otago Regional Council and local CDEM groups
- Integrate emergency planning into site-wide and district-level emergency response systems.

8. RISK MANAGEMENT

8.1. Purpose

The purpose of the risk management framework is to identify, assess, manage, and monitor risks associated with the design, construction, operation, and closure of ponds and reservoirs.

8.2. Risk Management Requirements

The owner shall establish a ponds and reservoirs risk management process that includes:

- Identification of potential failure modes
- Assessment of likelihood and consequence
- Risk classification (e.g., High, Medium, Low)
- Documentation of existing controls and mitigation strategies
- Implementation of additional controls where risk levels are deemed unacceptable.

8.3. Failure Modes and Effects Analysis (FMEA)

An FMEA shall be carried out for High PIC dams during design, reviewed after construction, and updated regularly through operation and closure. The FMEA shall:

- Identify potential failure modes
- Document causes, effects, and consequences
- Support prioritisation of monitoring and control measures.

8.4. Risk Register

The owner shall maintain a live risk register for the ponds and reservoirs defined as Large Dams. This register shall:

- Be updated at least annually or after significant changes to the TSF or downstream environment
- Include a summary of each risk, associated controls, and residual risk rating
- Be reviewed as part of the annual Dam Safety Review process.

8.5. Critical Controls

Each high-priority risk shall have defined critical controls. The owner shall:

- Establish performance standards and monitoring methods for critical controls
- Implement a verification process to confirm that controls are effective
- Develop TARPs where exceedance of critical control performance triggers specific actions.

8.6. Integration with Site-Wide Risk Systems

The risk management process shall be integrated into the broader site and corporate risk management frameworks. This ensures that:

- Dam risks are visible to senior management and the Board
- · Duplication of controls is minimised

Lessons learned from other facilities are incorporated into local risk management.

9. DAM SAFETY MANAGEMENT SYSTEM

The Dam Safety Management System (DSMS) is a formal, systematic approach that ensures dam owners identify, manage, and mitigate risks throughout the dam's lifecycle. It promotes continuous improvement in dam safety through structured processes, defined responsibilities, and integration with broader organisational management systems.

The NZDSG outlines the objectives of dam safety management and includes:

 A framework for the management of dam safety management activities, decision making, and supporting processes.

- Recommended competencies and training for personnel with responsibilities for dam safety management.
- Recommended practices for the development and implementation of an appropriate DSMS.
- Recommended practices for the ongoing review of a DSMS.

The NZDSG differentiates a DSMS from the minimum requirements of a Dam Safety Assurance Programme (DSAP) defined in the Building (Dam Safety) Regulations (2022).

Medium or High PIC dams will require a DSAP to be certified and submitted to the Regional Authority one year (High PIC) or two years (Medium PIC) after the date on which the Regional Authority approves the PIC.

A Recognised Engineer (DSAP) is required to certify the DSAP.

The DSAP is required to be reviewed with 5 years (High PIC) or 10 years (Medium PIC) after the date on which the Regional Authority approves the DSAP.

The DSAP must be kept on the dam or in another building in the region of the Regional Authority or in some other place agreed on by the Owner and Regional Authority and is available for inspection by the Regional Authority or any person or organisation who or that has a right to inspect the dam under the Building Act (2004).

An owner of a dam for which a DSAP has been approved, or is deemed to have been approved, must supply to the regional authority a dam compliance certificate on the annual anniversary of the approval of the DSAP.

The certificate must be signed by MGL and state that, except for the identified, minor items of non-compliance, all procedures in the dam safety assurance programme (DSAP) have been fully complied with during the previous 12 months.

It also requires a certificate from a Recognised Engineer (DSAP) confirming that the engineer has reviewed MGL's reports and other documents relating to the procedures in the DSAP that the owner has followed in the previous 12 months, and except for the identified minor items of non-compliance, all procedures in the DSAP have been complied with during the previous 12 months.

10. INDEPENDENT REVIEW AND AUDIT

10.1. Annual Compliance and Dam Safety Reporting

Annual reports documenting compliance with regulations shall be submitted to the Regional Authority.

10.2. Independent Dam Safety Review Requirements

Ponds and reservoirs formed by dams not meeting the definition of a Large Dam and Large Dams which are Low PIC do not require Intermediate Dam Safety Reviews (IDSR) under this management plan.

Medium and High PIC dams do require IDSR and CDSR as per the New Zealand Dam Safety Guidelines (Ref. 7).

10.3. Regulatory Audits and Inspection Protocols

Regulatory audits are to be scheduled and executed accordingly.

11. CONTINUOUS IMPROVEMENT

Regular review and update of key elements of the dam safety management systems shall be completed, including:

- The Dam Safety Management System (DSMS)
- The Operation, Maintenance, and Surveillance (OMS) Manual
- Risk registers, FMEAs, and TARPs
- Emergency Action Plans (EAPs)

Each of these documents shall be reviewed following:

- A material change to the design, operation, or hazard classification of the ponds and reservoirs
- Findings from audits or inspections
- Recommendations from the Designer or independent reviewers

12. CHANGE MANAGEMENT

A formal change management process is required to evaluate and document any modifications to the design, operation, or monitoring systems of Large Dams. This ensures that changes do not compromise the integrity and safety of the facility.

Changes shall be assessed against the resource consent granted by the Regional Authority and the approved building consent. Changes may require recertification. If the proposed changes extend beyond the scope of the original resource consent or building consent, amendments to those consents may need to be sought.

Changes within this PRMP shall be recorded in Table 2.

Table 2: PRMP Change Management Record

Item	Section	Summary of	Reason for change	Complexity	Date
		change		of change	
1.				☐ Minor	
				☐ Moderate	
				□ Major	
2.				☐ Minor	
				☐ Moderate	
				□ Major	
3.				☐ Minor	
				□ Moderate	
				□ Major	
4.				☐ Minor	
				□ Moderate	
				□ Major	

13. AUDIT AND REVIEW OF THIS DOCUMENT

This document shall be reviewed every year, or upon a major change to the operation such as a new or variation to the design of an existing facility. The management plan will only be updated and submitted for approval where there is a substantive change required.

14. REFERENCES

- 1 Resource Management Act 1991. (1991). *Public Act 1991 No. 69*. New Zealand Government.
- 2 Building Act 2004. (2004). *Public Act 2004 No. 72*. New Zealand Government.
- 3 Building (Dam Safety) Regulations 2022. (2022). *LI 2022/133*. New Zealand Government.
- 4 Building (Dam Safety) Amendment Regulations 2023. (2023). *Ll* 2023/60. New Zealand Government.
- 5 Building (Dam Safety) Amendment Regulations 2024. (2024). *LI 2024/58*. New Zealand Government.
- 6 Fast-track Approvals Act 2024. (2024). *Government Bill 31-2*. New Zealand Government.
- 7 New Zealand Society on Large Dams (NZSOLD). (2024). *New Zealand Dam Safety Guidelines*. Wellington, New Zealand.
- 8 Engineering Geology Ltd. (2025). *Bendigo-Ophir Gold Project Erosion and Sediment Control Report.*