| 4398 | CULVERT CHECKLIST Auckland Council SW CoP | CHECK OK | Culvert 1
COMMENTS | CHECK OK | Culvert 2
COMMENTS | CHECK OK | Culvert 3 COMMENTS | CHECK OK | Culvert 4
COMMENTS | CHECK OK | Culvert 5 | CHECK OK | Culvert 6
COMMENTS | |----------|--|----------|---|----------|---|----------|---|----------|---|----------|---|-----------|---| | V.J.J.J. | | CILCROX | Bottom to top of embankment more than 4m, | JINGS OA | Bottom to top of embankment more than 4m, | LINCO OR | Bottom to top of embankment more than 4m, | and of | Bottom to top of embankment more than 4m, | JINCH OK | Bottom to top of embankment more than 4m, | - ILCA OK | Bottom to top of embankment more than 4m, | | | If the culvert embankment can be considered a dam under
the dam safety regulations, the requirements of those
regulations shall take precedence over those stated here. The
following thresholds under the AUP apply:
1)Vertical height from the downstream to of the
embankment to the top is more than 4 m and | | storage less than 20,000m3. | | storage less than 20,000m3. | | storage > 20000m3. | | storage > 20000m3. | | storage less than 20,000m3. | | storage > 20000m3. | | a) | embankment to the top is more than 4 m and
2) The total stored volume of fluid is more than 20,000 m3 | Y | | Υ | | N | | N | | Y | | N | | | b) | The culvert shall be designed to cater for the flows and water
levels generated by the 1% AEP event without adversely
affecting upstream or downstream property. | v | Caters to flows up to 1% AEP. Effect on
neighbouring properties to be determined in flood
model | v | Caters to flows up to 1% AEP. Effect on
neighbouring properties to be determined in flood
model | Y | Caters to flows up to 1% AEP. Effect on
neighbouring properties to be determined in flood
model | v | Caters to flows up to 1% AEP. Effect on
neighbouring properties to be determined in flood
model | Y | Caters to flows up to 1% AEP. Effect on
neighbouring properties to be determined in flood
model | v | Caters to flows up to 1% AEP. Effect on
neighbouring properties to be determined in flood
model | | 1 | | | Headwater < 3m above embedment invert. | | Headwater < 3m above embedment invert. | | Headwater < 3m above embedment invert. | | Headwater <3m above embedment invert. | | Headwater < 3m above embedment invert. | | Headwater < 3m above embedment invert. | | | The headwater point created by the culvert during the 15% AEP cent shall have a depth of exceeding 3.0 in above the insert of the pipe and shall provide 500 mm freeboard to the edge of the said of the road (or similar feature) at the top of the embalment. For case where the approach velocity is greater than 2 m/s, the freeboard shall be at least 1.5 times the velocity lead at the entrance. The headwater point created by the 10% AEP event shall not be higher than the soffict of the pipe. | | Freeboard satisfied. 10% AEP headwater lower than soffit | | Freeboard satisfied.
10% AEP headwater lower than soffit | | Freeboard satisfied.
10% AEP headwater lower than soffit | | Freeboard satisfied. 10% AEP headwater lower than soffit. | | Freeboard satisfied.
10% AEP headwater lower than soffit | | Freeboard satisfied. 10% AEP headwater lower than soffit | | | users to use pupil. University shall be designed such that the maximum velocity within the culvert generated by the 1% AFP event does not exceed 6.0 m/s. Higher velocities in culverts require approval from Aucthand Countil. High collect velocities are likely to cause scour and erosion of natural channels and reference shall be made to Aucthand Countil technical report. TR.D.013/LIB. Note that energy discipation shall be required at far lower velocities than the maximum allowed within the | | Velocity < 6m/s | | Velocity < 6m/s | , | velocity < 6m/s | , | Velocity < 6m/s | | Velocity < 6m/s | , | Velocity < 6m/s | | d) | conduit stated above.
Culverts shall be designed such that for the 50% AEP design | Y | Minimum > 0.6m/s | Υ | Minimum > 0.6m/s | Y | Minimum > 0.6m/s | | e) | storm, an absolute minimum velocity of 0.6 m/s and desired
minimum of 1.0 m/s is achieved.
Culverts shall have a minimum internal diameter of 375 mm
(for vehicle crossing standards refer to the Auckland
Transport Code of Practice and Auckland Transport Technical | Y | | Υ | | Y | | Y | | у | | Y | | | f) | Design Manual). A suitable transition structure is required at both the Inlet and untilet to the proposed culvert which shall ensure that there is no scour or erosion in the watercourse, private property and/or the road formation (refer to the Auckland Transport Code of Practice and Auckland Transport Technical Design | Y | | Y | | Y | | Y | | Υ | | Y | | | g) | Manual for special requirements adjacent to roads) | Y | Culvert has capacity if 50% blocked | Υ | Culvert has capacity if 50% blocked | Y | Culvert overtops if 50% blocked. Road to be | Y | Culvert overtops if 50% blocked. Road to be | Y | Culvert has capacity if 50% blocked | Y | Culvert has capacity if 50% blocked | | | A secondary flow path shall be kept unobstructed at all times.
The secondary flow path design shall assume the total
blockage of the culvert in cases where it is less than DN1,500,
and 50% capacity reduction if the culvert is greater than or
equal to DN1,500 (1.77m ² 2), unless demonstrated by specific
design to Auckland Council's approval that a lower blockage
factor can be applied. | Y | | Y | , | Y | specially designed to allow overtopping | Υ | specially designed to allow overtopping | Ψ | | Y | | | | Allowance for 100% blockage of pipes greater than DN1,500 may be necessary in some circumstances. The risk of blockage creating from the contributing cathemat shall be assessed on a case-by-case basis (this includes situations where a safety grille or debtris screen is used) to determine if specific cubert design including consideration of a secondary intel is | | | | | | | | | | | | | | 1) | required. No obtrusive brand names on proprietary devices and other visible components of the stormwater system shall be visible | N/A | | | ۵ | once constructed. For culverts whose inlets may be difficult to locate if submerged, green retro-reflective raised pavement markers shall be required to mark the presence of the culvert under the roadway. For all culverts associated with roads, markingshall be in accordance with Auctioan Transport Code for | N/A | Not required | | | Practice and Auckland Transport Technical Design Manual | 21/2 | | 21/2 | | 21/2 | | 21/2 | | **/* | | M/A | | | ., | Provision of safety measures may be required, e.g. a barrier along the culvert headwall (refer to the Auckland Transport Code of Practice and Auckland Transport Technical Design Manual for special requirements adjacent to roads). | WA. | Details TBC | n/n | Details TBC | WA. | Details TBC | N/A | Details TBC | w/A | Details TBC | N/A | Details TBC | | | Culverts under road fencing or barriers are to be designed to
Auckland Transport requirements. | | Details TBC | v | Details TBC | | Details TBC | , | Details TBC | v | Details TBC | v | Details TBC | | | Adequate provision shall be made for maintenance. This shall
include, but not be limited to, access to inlet and outlet for
inspection, debris removal and scour protection maintenance,
and any other activities stated in the operation and
maintenance manual. | | Details TBC | | | Fish passage shall be provided in accordance with Section | | Details TBC | | 0) | 4.2.8. The need for debris screens shall be subject to specific design, considering the likelihood of debris flowing from the upstream catchment and potential impact on the culvert. | Y
N/A | Not required | Y
N/A | Not required | N/A | Not required | N/A | Not required | Y
N/A | Not required | N/A | Not required | | - | Culverts shall be single-barrelled unless specific design is | | Single box culvert | | Single box culvert | | Single bax culvert | | Single box culvert | | Single box culvert | | Single box culvert | | q) | approved by Auckland Council. NES Everburger Standards | Y | | Υ | | Y | | Y | | Y | | Y | | | | The culvert must provide for the same passage of fish
upstream and downstream as would exist without the culvert,
except as required to carry out the works to place, alter, | | | | | | | | | | | | | | a) | extend, or reconstruct the culvert The culvert must be laid parallel to the slope of the bed of the | Y | | Y | | Y | | Y | | Y | | Y | | | c) | river or connected area The mean cross-sectional water velocity in the culvert must be no greater than that in all immediately adjoining river reaches | Y | | Y | | Y | | Y | | Y | | y | | | d) | The culvert's width where it intersects with the bed of the river or connected area (s) and the width of the bed at that location (w) , both measured in metres, must compare as follows: (i) where $w \le 3$, $s \ge 1.3 \times w$: (ii) where $w > 3$, $s \ge (1.2 \times w) + 0.6$ | Y | | Y | | Y | | Y | | Υ | | Y | | | | The culvert must be open-bottomed or its invert must be
placed so that at least 25% of the culvert's diameter is below | | | | | | | | | | | | | | e)
f) | the level of the bed The bed substrate must be present over the full length of the culvert and stable at the flow rate at or below which the water flows for 80% of the time | Y
Y | | Y
Y | | Y | | Y
Y | | Y
Y | | y
y | | | | The culvert provides for continuity of geomorphic processes | | | | | | | | | | | | | | g) | (such as the movement of sediment and debris) | Y | | Υ | | Y | <u> </u> | Υ | l | Υ | | Υ | | | | CULVERT CHECKLIST | | Culvert 7 | Culvert 8 | | | Culvert 9 | | Culvert 10 | | Culvert 11 | | Culvert 12 | | Culvert 13 | |---|--|--|--|-----------|--|----------|---|----------|--|----------|--|----------|---|----------|---| | 4.3.9.8 | Auckland Council SW CoP | CHECK OK | COMMENTS Bottom to top of embankment more than 4m, | CHECK OK | COMMENTS | CHECK OK | COMMENTS | CHECK OK | COMMENTS Bottom to top of embankment more than 4m, | CHECK OK | COMMENTS | CHECK OK | COMMENTS Bottom to top of embankment less than 4m, | CHECK OK | COMMENTS Bottom to top of embankment more than 4m, | | af
ti | f the culvert embankment can be considered a dam under
the dam safety regulations, the requirements of those
egulations shall take precedence over those stated here. The | | Bottom to top of embankment more than 4m,
storage less than 20,000m3. | | Bottom to top of embankment more than 4m,
storage less than 20,000m3. | | Bottom to top of embankment more than 4m,
storage less than 20,000m3. | | Bottom to top of embankment more than 4m,
storage less than 20,000m3. | | Bottom to top of embankment more than 4m,
storage less than 20,000m3. | | Bottom to top of embankment less than 4m,
storage less than 20,000m3 | | Bottom to top of embankment more than 4m,
storage less than 20,000m3. | | fc
1 | following thresholds under the AUP apply: [)Vertical height from the downstream toe of the embankment to the top is more than 4 m and [) The total stored volume of fluid is more than 20,000 m3 | , | | Y | | Y | | Y | | Y | | Y | | Y | | | le | The culvert shall be designed to cater for the flows and water
evels generated by the 1% AEP event without adversely
affecting upstream or downstream property. | , | Caters to flows up to 1% AEP. Effect on
neighbouring properties to be determined in flood
model | Y | Caters to flows up to 1% AEP. Effect on
neighbouring properties to be determined in flood
model Headwater > 3m above embedment invert. | Y | Caters to flows up to 1% AEP. Effect on
neighbouring properties to be determined in flood
model | Y | Caters to flows up to 1% AEP. Effect on
neighbouring properties to be determined in flood
model | γ | Caters to flows up to 1% AEP. Effect on
neighbouring properties to be determined in flood
model Headwater > 3m above embedment invert. | Y | Caters to flows up to 1% AEP. Effect on
neighbouring properties to be determined in flood
model | γ | Caters to flows up to 1% AEP. Effect on
neighbouring properties to be determined in flood
model | | e
0
0
0
0
0
0
0
0
0
0 | The headwater pond created by the culvert during the 1% AEP
venet shall have a depth not exceeding 3.0 m above the invert
of the pipe and shall provide 500 mm freeboard to the edge
of the seal of the road (or similar feature) at the top of the
meaniment. For cases where the approach velocity is
yeater than 2 m/s, the freeboard shall be at least 15.5 times
he velocity head at the entrance. The headwater pond
resided by the 10% AEP event shall not be higher than the
offit of the pipe. | , | Headwater - 3m above embedment invert.
Freebeard statified.
10% AEP headwater lower than sofflit | N | Headwater 3 and above emboarnest invert.
Freeboard statified. 10% AEP headwater greater than soffit. | N | Neadwater > 3m above embedment invert.
Freeboard satisfied
10% AEP headwater greater than soffit | N | Headwater - 3m above embodment invert.
Freeboard sattlifed.
10% AEP headwater less than soffit | N | resolouster > sm above emboanment invert.
Freeboard statified frees than soffit
100% AEP headwater less than soffit
the deep water area is very limited, specific inlet
design will be done later. | ¥ | Headwater 4 Im above embedment invert.
Freeboard salfel.
10% AEP headwater lower than soffit | Y | Headwater 3 m above embedment invert.
Freeboard satisfied 10% AEP headwater lower than soffit | | si
fi
d) | Lulverts shall be designed such that the maximum velocity
within the culvert generated by the 1% AFP event does not
recorded 5.0 m/s. High velocities in culverts require approval
from Auckland Council. High outlet velocities are likely to
suuse scour and erotion of natural channels and reference
shall be made to Auckland Council technical report
TRZD31078. Note that energy dissipation shall be required at
air lower velocities than the maximum allowed within the
conduit stated above. | , | Velocity < 6m/s | Y | Velocity < 6m/s | Y | Velocity < 6m/s | Υ | Velocity < 6m/s | Υ | Velocity < 6m/s | Y | Velocity < 6m/s | Υ | Velocity < 6m/s | | st
C | Culverts shall be designed such that for the 50% AEP design storm, an absolute minimum velocity of 0.6 m/s and desired | , | Minimum > 0.6m/s | Y | Minimum > 0.6m/s | N | Minimum < 0.6m/s | N | Minimum < 0.6m/s due to backwater effects | Y | Minimum > 0.6m/s | N | Minimum < 0.6m/s | Y | Minimum > 0.6m/s | | Ti | Infilmum to 1.0 mys a sourcevou. Universt shall have a minimum internal diameter of 375 mm for whiche crossing standards refer to the Auckland Fransport Code of Practice and Auckland Transport Technical Design Manual). | , | | Y | | Y | | Y | | Y | | Y | | Υ | | | n | A suitable transition structure is required at both the inlet and
outlet to the proposed culvert which shall ensure that there is
to scour or erosion in the watercourse, private property
only for the road formation (refer to the Auckland Transport
Code of Practice and Auckland Transport Technical Design
Manual for special requirements adjacent to roads) | r | | Y | | Y | | Y | | Y | | Y | | Y | | | Ti
b
ai | A secondary flow path shall be kept unobstructed at all times.
The secondary flow path design shall assume the total
slockage of the culver lin cases where it it less than DMI, 500,
and 50% capacity reduction if the culvert is greater than or
qual to DMI, 500 (177m²2), unless demonstrated by specific
lesign to Audiand Council's approval that a lower blockage
store can be applied. | r | Culvert has capacity if 50% blocked | Y | Culvert headwater will back up into existing
wetland area if blocked. The spillway is the road
which is lower than upstream lot levels. Existing
stream area will provide basin function. The effect
for up/down stream property is less than minor. | Y | Culvert headwater will back up into existing
wetland area if blocked. The spillway is the road
which is lower than upstream to levels. Existing
stream area will provide basin function. The effect
for up/down stream property is less than minor. | Y | Culvert headwater will back up into existing
wetland area if blocked. The spillway is the road
which is lower than upstream lot levels. Existing
stream area will provide basin function. The effect
for up/down stream property is less than minor. | Υ | Culvert overtops if 50% blocked. Existing stream
area will provide basin function. The effect for
up/down stream property is less than minor. | Y | Road to be specially designed to allow overtopping
if completely blocked | Υ | Culvert has capacity if 50% blocked | | o
sa
co | bllowance for 100% blockage of pipes greater than DN1,500 may be necessary in some circumstances. The risk of blockage setuling from the contributing catchment shall be assessed on a case-by-case basis (this includes situations where a affety grille or debriss zeren is usued) to determine if specific subsert design (including consideration of a secondary inlet) is required. | N/A | |)) o | No obtrusive brand names on proprietary devices and other
visible components of the stormwater system shall be visible
once constructed. | N/A | | si
tt
si | For culverts whose inlets may be difficult to locate if
ubmerged, green retro-reflective raised pavement markers
shall be required to mark the presence of the culvert under
the roadway. For all culverts associated with roads, markings
that be in accordance with Auckland Transport Code of
Practice and Auckland Transport Technical Design Manual
sequirements. | N/A | Not required | N/Δ | Not required | N/Δ | Not required | N/A | Not required | | P
a
c | Provision of safety measures may be required, e.g. a barrier
solong the culvert headwall (refer to the Auckland Transport
code of Practice and Auckland Transport Technical Design | | Details TBC , c | Manual for special requirements adjacent to roads). Culverts under road fencing or barriers are to be designed to Auckland Transport requirements. | | Details TBC | | Details TBC | | Details TBC | | Details TBC | v | Details TBC | | Details TBC | , | Details TBC | | A ir | Adequate provision shall be made for maintenance. This shall
include, but not be limited to, access to inlet and outlet for
inspection, debris removal and scour protection maintenance,
and any other activities stated in the operation and
maintenance may be appropriated to the contraction of the
propriate and the provision of the provision of the
provision of the provision of the provision of the
provision of
provision of
provi | , | Details TBC | v | Details TBC | Y | Details TBC | | p) | Fish passage shall be provided in accordance with Section | , | Details TBC | Y | Details TBC | γ | Details TBC | v | Details TBC | v | Details TBC | Y | Details TBC | v | Details TBC | | TI CI | The need for debris screens shall be subject to specific design,
considering the likelihood of debris flowing from the | N/A | Not required | N/4 | Not required | N/A | Not required | 11/4 | Not required | w/6 | Not required | N/A | Not required | N/A | Not required | | С | upstream catchment and potential impact on the culvert. Culverts shall be single-barrelled unless specific design is approved by Auckland Council. | N/A | Single box culvert | N/H | Single box culvert | v v | Single circular culvert | N/H | Single circular culvert | v. | Single box culvert | nyA
v | Single circular culvert | v v | Single circular culvert | | H) 3 | pproved by Auckland Council. NES Freshwater Standards The culvert must provide for the same passage of fish | | | | | | | | | | | | | | | | a) e | Ine cuivert must provide for the same passage or rish
paptream and downstream as would exist without the cuivert,
except as required to carry out the works to place, alter,
extend, or reconstruct the cuivert
The cuivert must be laid parallel to the slope of the bed of the
liver or connected area | <u>, </u> | | Y | | Y | | y
v | | Y | | Y | | Y | | | Ti
b | inver or connected area The mean cross-sectional water velocity in the culvert must be no greater than that in all immediately adjoining river eaches | , | | Y | | Υ | | Y | | Y | | Y | | Y | | | ri
lo
fo
d) × | The culvert's width where it intersects with the bed of the
iver or connected area (s) and the width of the bed at that
ocation (w), both measured in metres, must compare as
oillows: (i) where $w \le 3$, $s \ge 1.3 \times w$: (ii) where $w > 3$, $s \ge 1.2 \times w$: (ii) where $w \ge 3$, $s \ge 1.3 \times w$: (iii) where $w \ge 3$, $s \ge 1.3 \times w$: (iii) where $w \ge 3$, $s \ge 1.3 \times w$: (iii) where $w \ge 3$, $s \ge 1.3 \times w$: (iii) where $w \ge 3$, $s \ge 1.3 \times w$: (iii) where $w \ge 3$, $s \ge 1.3 \times w$: (iii) where $w \ge 3$, $s \ge 1.3 \times w$: (iii) where $w \ge 3$, $s \ge 1.3 \times w$: (iii) where $w \ge 3$, $s \ge 1.3 \times w$: (iii) where $w \ge 3$, $s \ge 1.3 \times w$: (iii) where $w \ge 3$, $s \ge 1.3 \times w$: (iii) where $w \ge 3$, $s \ge 1.3 \times w$: (iii) where $w \ge 3$, $s \ge 1.3 \times w$: (iii) where $w \ge 3$, $s \ge 1.3 \times w$: (iii) where $w \ge 3$, $s \ge 1.3 \times w$: (iii) where $w \ge 3$, $s \ge 1.3 \times w$: (iii) where $w \ge 3$, $s \ge 1.3 \times w$: (iii) where $w \ge 3$, $s \ge 1.3 \times w$: (iii) where $w \ge 3$, $s \ge 1.3 \times w$: (iiii) where $w \ge 3$, $s \ge 1.3 \times w$: (iiii) where $w \ge 3$, $s \ge 1.3 \times w$: (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii | N | Located in wide flat area. Impractical to span the bed completely | Y | | N | Located in wide flat area. Impractical to span the bed completely | N | Located in wide flat area. Impractical to span the bed completely | Υ | | Y | | Υ | | | p) | The culvert must be open-bottomed or its invert must be
placed so that at least 25% of the culvert's diameter is below
the level of the bod | , | | Y | | Y | | Y | | Y | | Y | | Y | | | f) ci | The bed substrate must be present over the full length of the
culvert and stable at the flow rate at or below which the
water flows for 80% of the time | | | Y | | Y | | Y | | Y | | Y | | Y | | | g) (: | The culvert provides for continuity of geomorphic processes
such as the movement of sediment and debris) | , | | Υ | | Y | | Y | | Y | | Y | | Y | |