
**TE ARA HAUĀURU
NORTHWEST RAPID TRANSIT
ASSESSMENT OF GROUNDWATER AND
SETTLEMENT EFFECTS**

GREG SHEPPARD

15 DECEMBER 2025

Qualifications and experience of the author

My full name is Gregory Maitland Sheppard. I hold a Bachelor of Science degree in Geology (1993) and a Master of Science degree in Engineering Geology from University of Canterbury (1996). I work for Jacobs New Zealand Limited as a Principal Hydrogeologist. I have been in this position since August 2016. Prior to that I was employed as a Principal Hydrogeologist with RPS Aquaterra in both New Zealand and Australia, and prior to that I held several hydrogeological roles in Australia. I have a total of 29 years' experience as a hydrogeological consultant.

My experience relevant to this Application includes providing groundwater advice and completing groundwater assessments for numerous roading and linear infrastructure projects within New Zealand and Australia including:

- Lead hydrogeologist – M1 Pacific Motorway extension to Raymond Terrace, Transport for New South Wales. Groundwater Assessment in support of Environmental Impact Statement.
- Lead hydrogeologist – Penlink Tender Design, New Zealand Transport Agency Waka Kotahi. Groundwater input to tender design and resource consent investigations.
- Lead hydrogeologist – Quakers Hill to Prospect Reservoir purified recycled water pipeline, Sydney Water. Groundwater Assessment in support of Environmental Impact Statement.
- Lead hydrogeologist – Quakers Hill WRRF Advanced Treatment Upgrade Project and brine pipeline, Sydney Water. Groundwater Assessment in support of Review of Environmental Factors.
- Lead hydrogeologist – Khyber Pass Road Stormwater Upgrade, Auckland Council Healthy Waters. Groundwater Assessment of Effects in support of Assessment of Environmental Effects.
- Lead hydrogeologist – ANZAC Street Stormwater upgrade, Auckland Council Healthy Waters. Geotechnical and Groundwater Assessment of Effects in support of Assessment of Environmental Effects.

Although this matter is not before the Environment Court, I confirm that I have read the Code of Conduct for expert witnesses as contained in section 9 of the Environment Court Practice Note 2023. I agree to comply with that Code. My qualifications as an expert are set out above. I am satisfied that the matters which I address in this report are within my area of expertise, except where I state that I am relying on information provided by another person or expert. I have not omitted to consider material facts known to me that might alter or detract from the opinions I express.

Contents

Qualifications and experience of the author.....	ii
Contents	iii
Appendices	iv
Tables.....	iv
Figures	iv
Acronyms, definitions and abbreviations	vi
1. Introduction.....	1
1.1 Purpose and scope of this report	1
2. Assessment methodology.....	1
2.1 Desktop study.....	1
2.2 Site investigations	1
2.2.1 Permeability testing.....	2
2.2.2 Groundwater sampling and analysis.....	2
2.2.3 Groundwater level monitoring.....	3
2.3 Modelling	5
2.4 Ground settlement.....	5
2.5 Assessment of effects	5
3. Receiving environment.....	5
3.1 Surface water	5
3.2 Wetlands	5
3.3 Geology	6
3.4 Hydrogeology	8
3.4.1 Hydrostratigraphic units	8
3.4.2 Desktop study – permeability.....	8
3.4.3 Site investigations – permeability	9
3.4.4 Groundwater levels and flow	10
3.4.5 Groundwater quality.....	15
3.4.6 Groundwater users	19
3.5 Potential for settlement	21
4. Predicted Project interactions with groundwater	21
4.1 Project cuts anticipated to interact with groundwater	21
4.2 Groundwater seepage to excavations	25
4.2.1 Methodology and assumptions	25
4.2.2 Results	25
4.3 Groundwater drawdown and settlement	26
4.3.1 Methodology and assumptions	26
4.3.2 Results	26
4.4 Discussion of predicted changes to groundwater levels and groundwater diversion	29
5. Assessment of effects	30
5.1 Assessment of construction effects	30

5.1.1	Potential effects on other groundwater users	30
5.1.2	Potential effects on surface water bodies and wetlands.....	30
5.1.3	Potential settlement effects.....	30
5.2	Sensitivity testing of Indicative Design	31
5.3	Assessment of operational effects	31
5.4	Auckland Unitary Plan considerations	31
6.	Recommended measures to avoid, remedy or mitigate effects	33
6.1	Construction effects	33
7.	Conclusion	33
8.	References	34

Appendices

Appendix A. Borelogs

Appendix B. Permeability testing

Appendix C. Groundwater quality

Appendix D. Groundwater level observations

Appendix E. Seepage calculations

Appendix F. Seep/W Pore Pressure Profiles

Tables

Table 2-1: Monitoring bore summary.....	2
Table 3-1: Formation hydraulic conductivity	9
Table 3-2: Hydraulic testing summary	9
Table 3-3: Watson Avenue – median water quality parameters (2015 to 2019)	15
Table 3-4: Project water quality parameters.....	17
Table 3-5: Bores installed for domestic, stock or irrigation uses	19
Table 3-6: Indicative material stiffness – previous investigations.....	21
Table 4-1: Interaction of major cut areas with groundwater	23
Table 4-2: Groundwater seepage to cuttings - unmitigated	26
Table 4-3: Predicted groundwater drawdown and ground settlement - unmitigated.....	27
Table 5-1: Building damage assessment criteria	30
Table 5-2: Assessment of proposed activity against AUP groundwater provisions	31

Figures

Figure 2-1: Site investigations	4
Figure 3-1: Project Area geology	7
Figure 3-2: Indicative groundwater level contours.....	11
Figure 3-3: Groundwater level data	12
Figure 3-4: Project groundwater level observations	13

Figure 3-5: 6487007 - Selkirk Road Bore hydrograph.....	14
Figure 3-6: 6487009 - Leslie Road Bore hydrograph	14
Figure 3-7: Groundwater wells	20
Figure 4-1: Royal Road station – Groundwater drawdown and settlement – unmitigated.....	27
Figure 4-2: Huruhuru Road Underpass – Groundwater drawdown and settlement – unmitigated	28
Figure 4-3: Lincoln Road station – Groundwater drawdown and settlement – unmitigated.....	28
Figure 4-5: Point Chevalier station – Groundwater drawdown and settlement - unmitigated	29

Acronyms, definitions and abbreviations

Term	Definition
AEE	Assessment of Environmental Effects
ANZG	Australian and New Zealand guidelines for fresh and marine water quality
AUP	Auckland Unitary Plan (Operative in Part)
AVF	Auckland Volcanic Field
BH	Borehole
DGV	Default guideline value
ECBF	East Coast Bays Formation
FTAA	Fast-Track Approvals Act 2024
GSMCP	Groundwater and settlement monitoring and contingency plan
Indicative Design	The indicative design of the Project within the Project Area as shown on the Indicative Design drawings in Part 6 that will be confirmed during detailed design
Invert	The lowest elevation of a pipe, culvert, or channel, acting as the "floor" for water or material flow. In the context of this assessment, invert is used to describe the lowest elevation of an excavation used for assessing groundwater seepage
Kh	Horizontal Hydraulic Conductivity
Kv	Vertical hydraulic conductivity
m/s	Metres per second
mbgl	Metres below ground level
mg/L	Milligrams per litre
ML	Megalitre
MPa	Mega Pascals
NPS-FM	National Policy Statement for Freshwater Management (as amended October 2024)
NZGD	New Zealand Geotechnical Database
NZVD	New Zealand Vertical datum 2016
Project	Te Ara Hauāuru Northwest Rapid Transit
Project Area	The Proposed Designation and the extent of the coastal occupation permits sought
Proposed Designation	The area defined by the Proposed Designation boundary as shown on the Proposed Designation Plans in Part 6
RMA	Resource Management Act 1991
µS/m	micro-Siemens per metre

1. Introduction

1.1 Purpose and scope of this report

This technical assessment has been prepared to inform a substantive application for the Northwest Rapid Transit Project (the Project) under the Fast-Track Approvals Act 2024 (FTAA). It forms part of a suite of specialist reports that collectively support the applications for statutory approvals.

The purpose of this report is to evaluate the actual and potential effects of the Project on the environment in relation to groundwater and settlement. This report addresses the following matters:

- The potential for significant excavations to intersect the groundwater table, including:
 - assessment of groundwater seepage to excavations;
 - assessment of groundwater drawdown; and
 - assessment of consolidation settlement.
- Potential effects of groundwater drawdown on:
 - other groundwater users;
 - surface water bodies and wetlands; and
 - potential for settlement outside of the Proposed Designation (the area defined by the Proposed Designation boundary as shown on the Proposed Designation Plans in Part 6) boundary.

This report should be read alongside the Substantive Application including the Assessment of Environmental Effects (AEE) in Part 4, which contains further details on the context of the Project. The Substantive Application also contains a description of works to be authorised and the typical construction methodologies that will be used to implement this work (refer to Part 2). I have reviewed this and have been considered as part of my assessment of effects. As such, they are not repeated here. Where a description of an activity is necessary to understand the potential effects, it has been included in this report for clarity.

2. Assessment methodology

This assessment addresses the actual and potential groundwater effects arising from the Indicative Design (the indicative design of the Project within the Project Area as shown on the Indicative Design drawings in Part 6 that will be confirmed during detailed design), as well as potential movement of the Indicative Design within the Proposed Designation (the area defined by the Proposed Designation boundary as shown on the Proposed Designation Plans in Part 6).

The assessment was informed by a desktop study, Project specific groundwater investigations, and analytic and numerical modelling.

2.1 Desktop study

The desktop study characterised existing groundwater conditions across the Project Area (the Proposed Designation and the extent of the coastal occupation permits sought). The study reviewed publicly available databases and mapping, available scientific literature, and other relevant reports and investigations that have been undertaken in the broader area that may have collected groundwater information (e.g. geotechnical and contamination investigations). Information relating to geological conditions, groundwater levels and quality, formation hydraulic conductivity, surface water interaction, and other groundwater users, was reviewed as available.

2.2 Site investigations

Eleven monitoring bores were drilled and installed along the Indicative Design in areas of substantial cuttings, generally associated with either stations or underpasses. The borehole locations are shown on Figure 2-1. The borehole monitoring details are summarised in Table 2-1 and borelogs are provided in

Appendix A. BH007 was initially proposed as part of a cluster of bores with BH005 and BH006, but was ultimately not required and removed from the programme.

The following investigations were conducted at each borehole:

- Permeability testing;
- Groundwater sampling and analysis; and
- Groundwater level monitoring.

Site investigation methodologies are provided in Sections 2.2.1, 2.2.2 and 2.2.3. The field investigations confirmed the existing groundwater conditions along the Indicative Design.

Table 2-1: Monitoring bore summary

ID	Screen from (mbgl)	Screen to (mbgl)	Screened lithology
BH001	1.0	11.9	Residual Soil, Weathered ECBF
BH002	1.0	11.9	Residual Soil, Weathered ECBF
BH003	2.0	10.9	Takanini Formation, Residual Soil, Weathered ECBF
BH004	2.0	12.9	Takanini Formation, Residual Soil, Weathered ECBF
BH005	2.0	13.0	Fill, Takanini Formation, Residual Soil, Weathered ECBF
BH006	2.0	14.5	Takanini Formation
BH007	Borehole removed from programme		
BH008	2.8	13.9	Takanini Formation, Residual Soil, Weathered ECBF
BH009	2.0	13.9	Takanini Formation, minor Residual Soil
BH010	2.0	13.0	Weathered ECBF
BH011	2.0	7.7	Takanini Formation, Residual Soil
BH012	1.0	12.7	Takanini Formation, Residual Soil, Weathered ECBF

2.2.1 Permeability testing

Permeability testing (rising and falling head testing) was undertaken at the monitoring bores using a solid “slug” to displace a known volume of water and monitoring the water level recovery response.

The tests were completed by measuring the rate of rise and fall of the water column within the piezometer following insertion and removal of the solid slug. One falling and one rising head test was completed for each piezometer. Tests were not terminated until the water level in the piezometer recovered to at least 90% of the measured maximum displacement. Note, at the time of this report, no slug testing was undertaken in piezometers BH010 or BH011 due to the bores being dry.

Groundwater level responses were recorded with a water level data logger and the resulting water level recovery curves were analysed using the Hvorslev (1951) method.

The results of the permeability testing and analysis are provided in Section 3.4.3 with analyses provided in Appendix B.

2.2.2 Groundwater sampling and analysis

Groundwater samples for laboratory analysis were collected from each piezometer following construction and development of the monitoring bore. The monitoring bores were sampled using a low-flow peristaltic pump with a dedicated LDPE sample hose.

In-situ water quality parameters were tested using a multi-parameter sensor probe. The testing was done by filling a PVC jar with pumped groundwater and analysing the required parameters. The sensor probe was calibrated prior to the measurements. In between each piezometer measurement, the testing jar was flushed with distilled water to avoid cross-contamination.

Groundwater samples were then collected in laboratory provided containers. The samples were kept cool and dark and were delivered to Hill Laboratories Limited within 24 hours.

The results of the groundwater analysis are discussed in Section 3.4.5.2 with laboratory analyses provided in Appendix C.

2.2.3 Groundwater level monitoring

Groundwater levels were measured manually at monitoring bores throughout the field investigations with up to seven rounds of monitoring at the earliest installed monitoring bores and four rounds of monitoring at the latest monitoring bores.

Groundwater level monitoring results are discussed in Section 3.4.4.3 and groundwater level observations are attached in Appendix D.

Figure 2-1: Site investigations

2.3 Modelling

Analytical modelling of groundwater seepage to cuttings and excavations was undertaken using the methods of Mansur and Kaufman (1962) for the assessment of linear flow to excavations in an unconfined aquifer, as presented in Neville (2017).

Groundwater response to excavations below the water table was modelled using GeoStudies' Seep/W (Geo-Slope, 2015). Seep/W is a finite element software component of GeoStudio, used for modelling two-dimensional groundwater flow in porous media, considering both saturated and unsaturated conditions.

Groundwater seepage to excavations and the resulting groundwater drawdown are discussed in Section 4.2 and Section 4.3 respectively. Calculations and model outputs are provided in Appendix E and Appendix F.

2.4 Ground settlement

Potential formation consolidation and ground settlement resulting from groundwater drawdown was assessed using one-dimensional consolidation theory after CIRIA (2017) and is discussed in Section 4.3.

2.5 Assessment of effects

I assessed potential groundwater effects by:

- Assessing the magnitude of potential groundwater drawdown and settlement resulting from cuttings below the water table at the Proposed Designation boundary.
- Assessing the magnitude of potential groundwater drawdown at nearby sensitive receptors, such as groundwater users and surface water bodies (if any).
- Assessing the magnitude of potential groundwater settlement at nearby buildings with comparison to building damage assessment criteria.

3. Receiving environment

3.1 Surface water

There are a number of surface water bodies within and nearby to the Project Area. Surface water bodies may rely on groundwater in whole or in part to sustain their aquatic ecosystems.

In the western Project Area, the Project crosses Oratia Stream, Huruhuru Creek, and Rarawaru Stream. North of Royal Road Mānutewhau station, the Project crosses Tihema Stream and Rush Creek, and north of Westgate Te Waiarohia station, the Project crosses Tōtara Creek and Pikau Stream.

In the eastern Project Area, Western Springs Lake / Te Wai Ōrea is the major surface water feature, with Motions Creek to the east and Meola Creek to the west. Western Springs Lake / Te Wai Ōrea receives groundwater discharge from the Western Springs-Three Kings volcanic aquifer.

3.2 Wetlands

The AEE in Part 4 has identified two exotic wetlands within the Project Area that are consistent with the Resource Management Act 1991 (RMA) and National Policy Statement for Freshwater Management (NPS-FM) definition of a wetland / natural inland wetland, including:

- Wetland 1, located at 74 Trig Road, Whenuapai; and
- Wetland 2, located at Eric Armishaw Park, Point Chevalier.

While both of these exotic induced wetlands are within the Project Area, neither will be directly impacted by the Indicative Design and are away from areas of potential excavation and dewatering.

3.3 Geology

Geology is the dominant control on the presence and movement of groundwater. The geology of the Project Area is mapped in the 1:250,000 scale geological map “Geology of the Auckland Area” (Edbrooke, 2001) and is shown in Figure 3-1. The Project Area is underlain by three main geological units as follows:

- Holocene to Late Pliocene Tauranga Group alluvial and estuarine sediments:
 - Holocene alluvial and estuarine deposits. Comprising sand, silt mud and clay with local gravel and peat beds.
 - Puketoka Formation Late Pliocene to Middle Pleistocene pumiceous river deposits. Comprising pumiceous mud, sand and gravel with muddy peat and lignite: rhyolite pumice, including non-welded ignimbrite, tephra and alluvial pumice deposits; massive micaceous sand.
- More recent work in revising the formal stratigraphic framework or late Pliocene to recent sedimentary rocks and sediments (Barrell, et al. 2021) has resulted in reclassification of alluvial materials that used to be broadly classified under Tauranga Group, including the Puketoka Formation. These are now classified as Takaanini Formation and are referred to as such within the report.
- Late Pleistocene basaltic deposits of the Auckland Volcanic Field (AVF):
 - Grey to very dark grey, dense, fine grained olivine basalt or basanite lava flows.
- Early Miocene East Coast Bays Formation of the Waitematā Group:
 - Alternating sandstone and mudstone with variable volcanic content and interbedded volcaniclastic grits.

The Puketoka Formation (Takaanini Formation) and East Coast Bays Formation (ECBF) underly the bulk of the Project Area with Auckland Volcanic Field basalts limited to the vicinity of Western Springs (approximate chainages 70,300 to 71,400) (Figure 3-1).

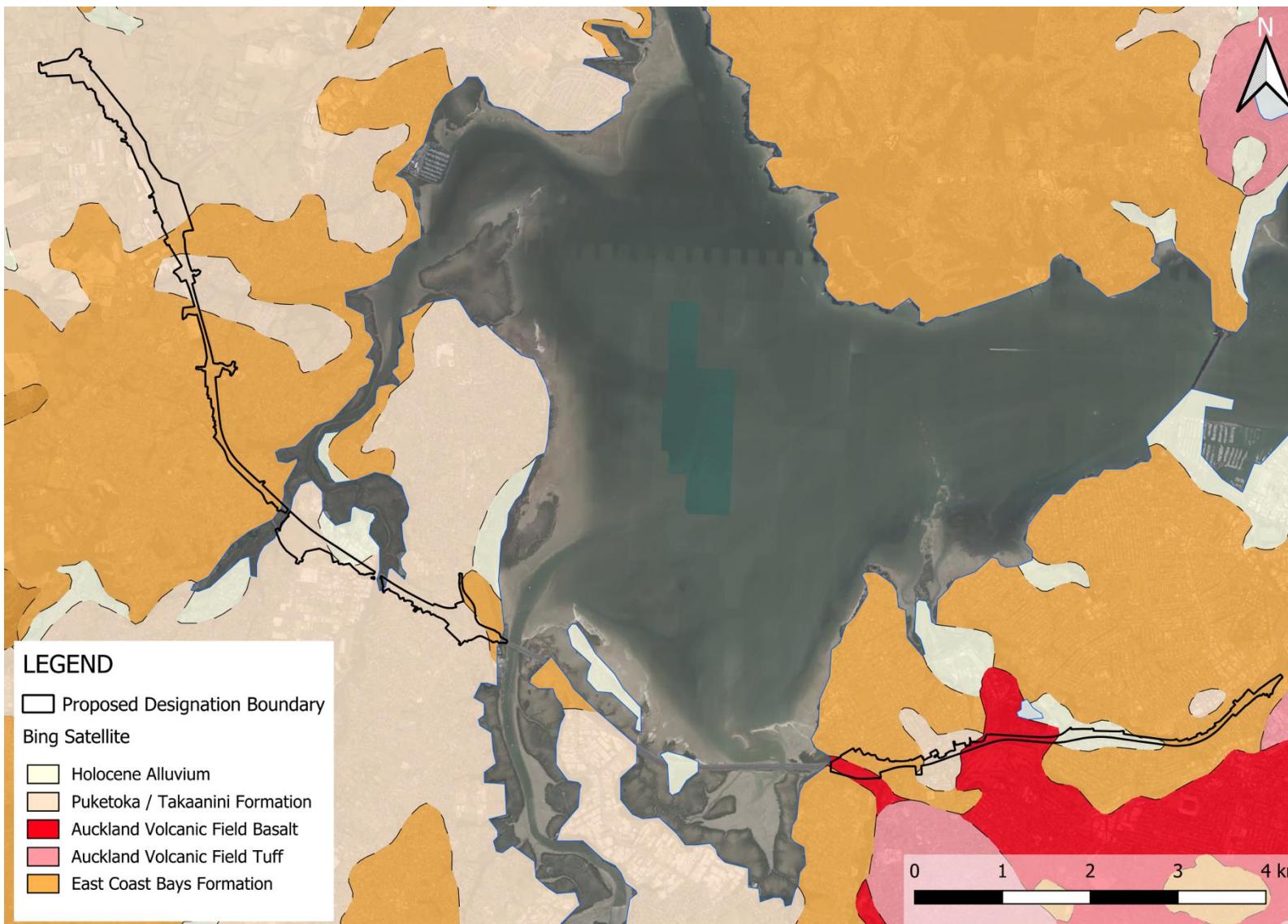


Figure 3-1: Project Area geology

3.4 Hydrogeology

The hydrogeological characteristics of the geological units along the Project Area are highly variable, ranging from relatively high yielding productive aquifers to low permeability aquitards.

3.4.1 Hydrostratigraphic units

Hydrostratigraphic units are geological units or groups of geological units with distinct groundwater flow characteristics, grouped based on their hydraulic properties such as permeability and porosity, and their ability to transmit or restrict groundwater flow. Key hydrostratigraphic units within the Project Area are summarised in the following sections.

3.4.1.1 Tauranga Group – Takaanini Formation

The undifferentiated Holocene alluvium and Takaanini Formation typically consist of low permeability and highly compressible sediments. The sediments can be highly heterogeneous ranging from sands and gravels thought to silt, clay and peat. In the Project Area, the Takaanini Formation has primarily been encountered as silts and clays.

3.4.1.2 Basalts

The basalt flows of the Auckland Volcanic Field form the major aquifers of the Auckland area, and the basalts that cross beneath the Project Area are part of the Western Springs - Three Kings Volcanic aquifer. The basalts are generally characterised by high transmissivity resulting from secondary porosity and fracturing. The basalt aquifers have high infiltration rates and throughflow, contributing to their important role in stormwater discharge via soakage (Auckland Council, 2021).

Recharge to the basalts is predominantly via rainfall infiltration in the unconfined areas of the aquifers, infiltration of stormwater from stormwater infiltration basins, and by vertical leakage and throughflow to the lower and confined aquifers (Auckland Council, 2021).

Groundwater flow in the Western Springs - Three Kings Volcanic aquifer is generally in a north-northwesterly direction, discharging to Waitematā Harbour at Meola Creek and Motions Creek. A component of groundwater from the Western Springs - Three Kings Volcanic aquifer also discharges to Western Springs Lake / Te Wai Ōrea. The lava flow is exposed along the edges of the lake displaying the columnar jointing through which the bulk of the groundwater moves (Auckland Council, 2020).

3.4.1.3 ECBF – Waitematā Group

The ECBF consists of relatively weak siltstones and sandstones that weather to firm to stiff residual silts and clays. Stratification in both residual soils and rock can lead to very low vertical hydraulic conductivity that can often result in a sequence of perched aquifers or multiple, vertically separated saturated horizons.

Residual soils of the ECBF generally have similar hydrogeological properties to the Holocene alluvium and Takaanini Formation.

While the siltstones and mudstones of the ECBF rock have very little in the way of effective primary porosity (and subsequent very low hydraulic conductivity), secondary porosity in the form of fracturing can result in moderate permeability in some areas. Although typically low yielding, in the greater Auckland area, the fractured Waitematā Group formations represent a significant regional aquifer.

3.4.2 Desktop study – permeability

Estimates of hydraulic conductivity for each formation from previous investigations (Beca, 2010; Tonkin and Taylor, 2012; Aurecon, 2025) are summarised in Table 3-1.

Table 3-1: Formation hydraulic conductivity

Geological Unit	Minimum Horizontal Hydraulic Conductivity (m/s)	Maximum Horizontal Hydraulic Conductivity (m/s)	Representative Horizontal Hydraulic Conductivity (m/s)
Tauranga Group Alluvium / Upper Puketoka Group	4E-09	2E-06	2E-07
Basalt	1E-06	1E-03	1E-04
Weathered ECBF	2E-08	2E-06	2E-07
ECBF Rock	2E-09	2E-06	2E-07
Fractured ECBF	6E-06	5E-04	1E-04

Vertical hydraulic conductivity can be significantly lower than horizontal hydraulic conductivity, particularly in highly stratified lithologies. The vertical anisotropy (vertical hydraulic conductivity divided by horizontal hydraulic conductivity; Kv/Kh) is typically in the order of 0.1 (one order of magnitude) but can be significant lower in highly stratified and unfractured ECBF rock (<0.01).

3.4.3 Site investigations – permeability

Hydraulic conductivity values derived from the rising and falling head tests are summarised in Table 3-2. Analyses are provided in Appendix B.

Table 3-2: Hydraulic testing summary

ID	Falling head hydraulic conductivity (m/s)	Rising head hydraulic conductivity (m/s)	Comment
BH001	4.5E-06	1.6E-06	
BH002	1.3E-05	-	Rising head test failed
BH003	4.4E-08	3.3E-08	
BH004	1.5E-05	1.3E-05	
BH005	5.8E-07	6.2E-07	
BH006	<i>Not tested at time of reporting</i>		
BH008	8.7E-08	-	Rising head test failed
BH009	1.0E-07	1.0E-07	
BH010	-	-	Dry
BH011	-	-	Dry
BH012	<i>Not tested at time of reporting</i>		

BH001, BH002 and BH004 display elevated permeability that I have attributed to fracturing within the weathered siltstone and sandstone. This fracturing is recorded below the following elevations (refer to Appendix A):

- 29m NZVD in BH001;
- 20m NZVD in BH002; and
- 15m NZVD in BH004.

The results from BH003, BH005, BH008 and BH009 are consistent with the anticipated low permeability.

The range of the recorded hydraulic conductivity values is generally consistent with those of previous investigations summarised in Section 3.4.2.

Excluding the elevated permeability attributed to fracturing within the ECBF, the average derived bulk hydraulic conductivity value for combined Takaanini Formation, residual soil and weathered ECBF is approximately 2.2E-07m/s and is very close to the indicative representative hydraulic conductivity from previous investigations of 2E-07m/s. A value of 2.2E-07m/s has therefore been adopted for the assessment of groundwater seepage to excavations and resulting groundwater drawdown.

3.4.4 Groundwater levels and flow

3.4.4.1 GNS Science national water table model

Figure 3-2 shows indicative groundwater level contours from the GNS Science national water table model (GNS, 2018). While not necessarily accurate at a local scale, the contours provide an indication of anticipated water table elevation and groundwater flow directions. The groundwater contours indicate the water table to generally follow topography. Groundwater flow direction is down-gradient perpendicular to the contour lines and is generally from areas of high topographic relief to areas of low topographic relief.

Groundwater recharge will occur as rainfall infiltration on open areas and as infiltration from surface water features and stormwater drains. Groundwater discharge will generally be to surface water features in lower lying areas and to the Waitematā Harbour.

3.4.4.2 NZGD water levels

Boreholes from the New Zealand Geotechnical Database¹ (NZGD) in the vicinity of the Project Area and with available water level data are shown in Figure 3-3 in green.

The recorded water levels indicate the range of water levels that might be expected within the Project Area, but may not be indicative of true, or current, groundwater levels because:

- The water level observations are often taken during drilling, at the beginning or end of shift, or at end of hole. As such, water levels may not have had time to equilibrate in low permeability formations.
- The date of water level observations is variable with earliest observations from 1999.

The recorded water levels range from 0 to 13.1 metres below ground level (mbgl), with an average recorded depth to water of 2.9mbgl and a median water level depth of 2.5mbgl.

¹ <https://identity.beca.digital/cdn/beyon-nzgd/pdfs/About%20NZGD.pdf>

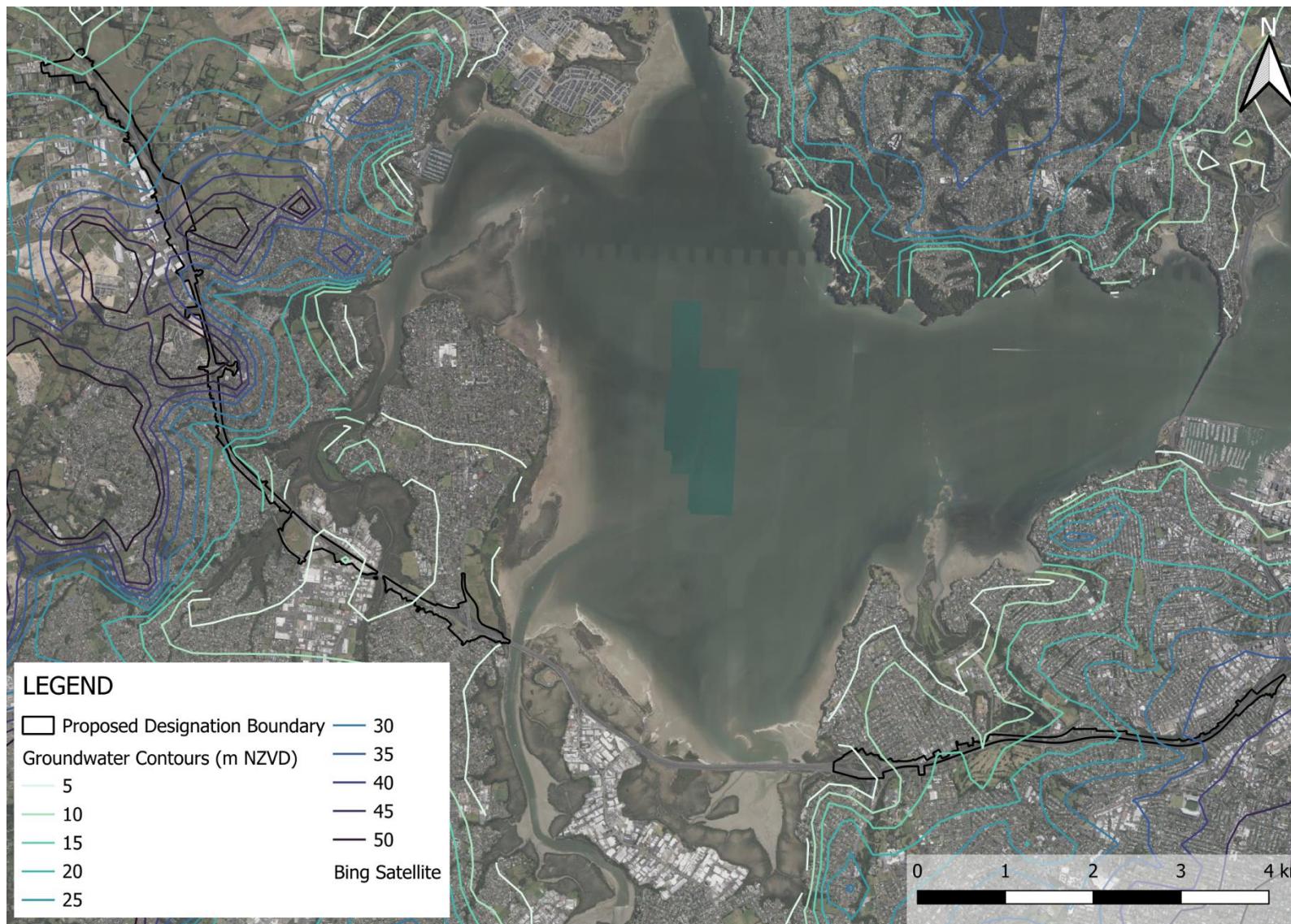


Figure 3-2: Indicative groundwater level contours

Figure 3-3: Groundwater level data

3.4.4.3 Site investigations – groundwater levels

Groundwater level observations from site investigations are shown on Figure 3-4 with data provided in Appendix C.

Groundwater levels are highly variable along the Project Area with observed depths to groundwater ranging from approximately 1.0 to 6.3mbgl, with an average observed depth to groundwater of approximately 3.85mbgl.

Two of the monitoring bores (BH010 and BH011) are recorded as being dry to depths of 13.0mbgl and 7.5mbgl respectively, while BH012 was not accessible for monitoring at time of writing.

BH001 and BH003 display an equilibration response following drilling, with water levels rising over a period of weeks before settling-in to what is considered to be a representative water level. BH004 displays an initial equilibration period of declining water levels.

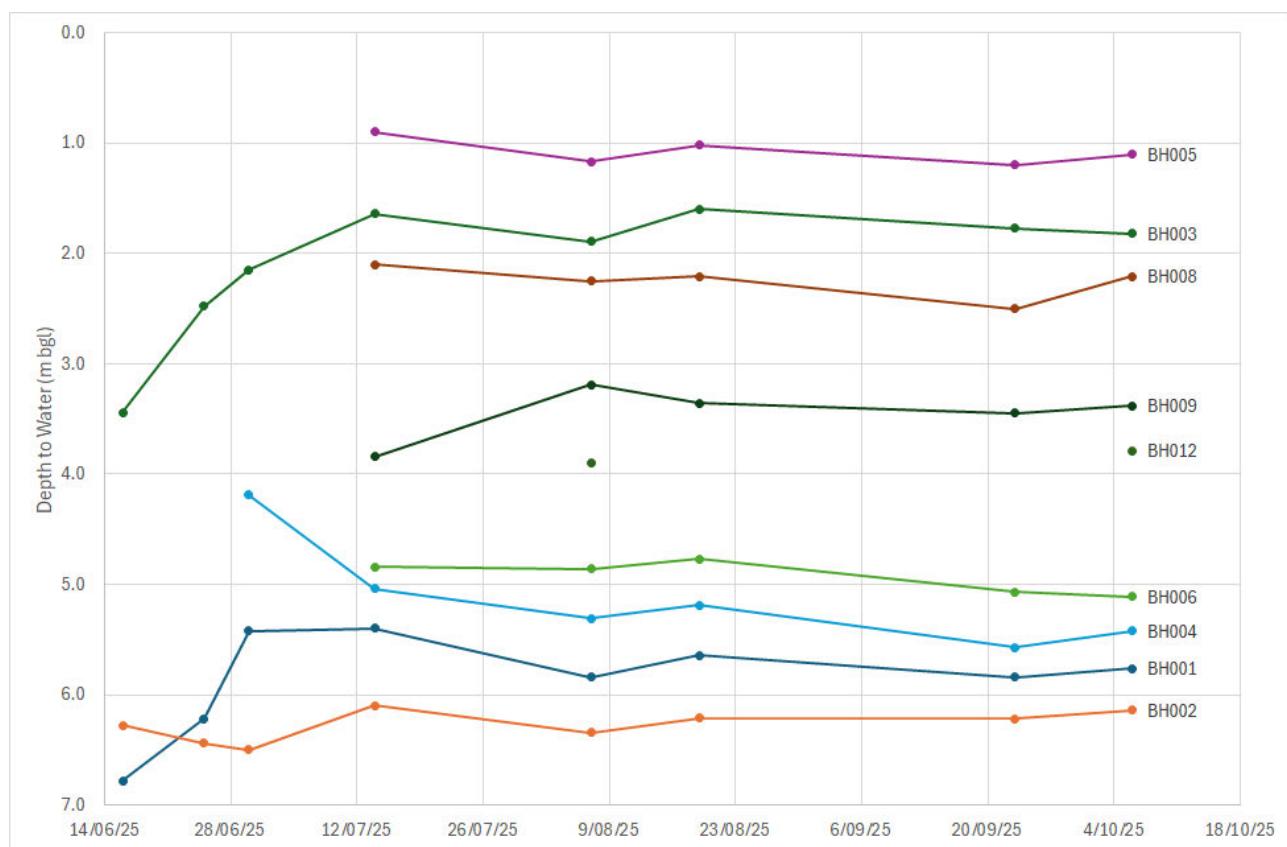


Figure 3-4: Project groundwater level observations

3.4.4.4 Seasonal groundwater fluctuations

Auckland Council manage a number of groundwater monitoring bores in the vicinity of the Project Area with data available through the Environmental Data Portal.² The nearest bores with complete data records are located approximately 1km south of the Indicative Design and are located in the Western Springs – Three Kings Volcanic aquifer. These bore locations are shown in Figure 3-3 in orange.

Average daily groundwater level hydrographs for the Selkirk Road Bore (ID 6487007) and the Leslie Road Bore (ID 6487009) over the past ten years are plotted in Figure 3-5 and Figure 3-6, respectively, along with median and 95th percentile (high) water levels. The bores are installed in the basalt aquifer and as such will have a “flashier” groundwater level response compared to groundwater levels in low permeability formations such as the Takaanini Formation and ECBF. A “flashier” groundwater level response means, in general, the

² <https://environmentauckland.org.nz/Data/Map/Parameter/GW%20Level/Statistic/LASTRECORD/Interval/Latest> - accessed July 2025.

water levels will display more rapid fluctuations with recharge and subsequent regression and are expected to have a greater seasonal variation in water levels compared to the less permeable formations. However, both bores display higher than average water levels during July 2025, indicating the water levels measured as part of the Project site investigations during July and August 2025 can be considered to be representative of seasonal high water levels for the purposes of assessing potential groundwater seepage to excavations.

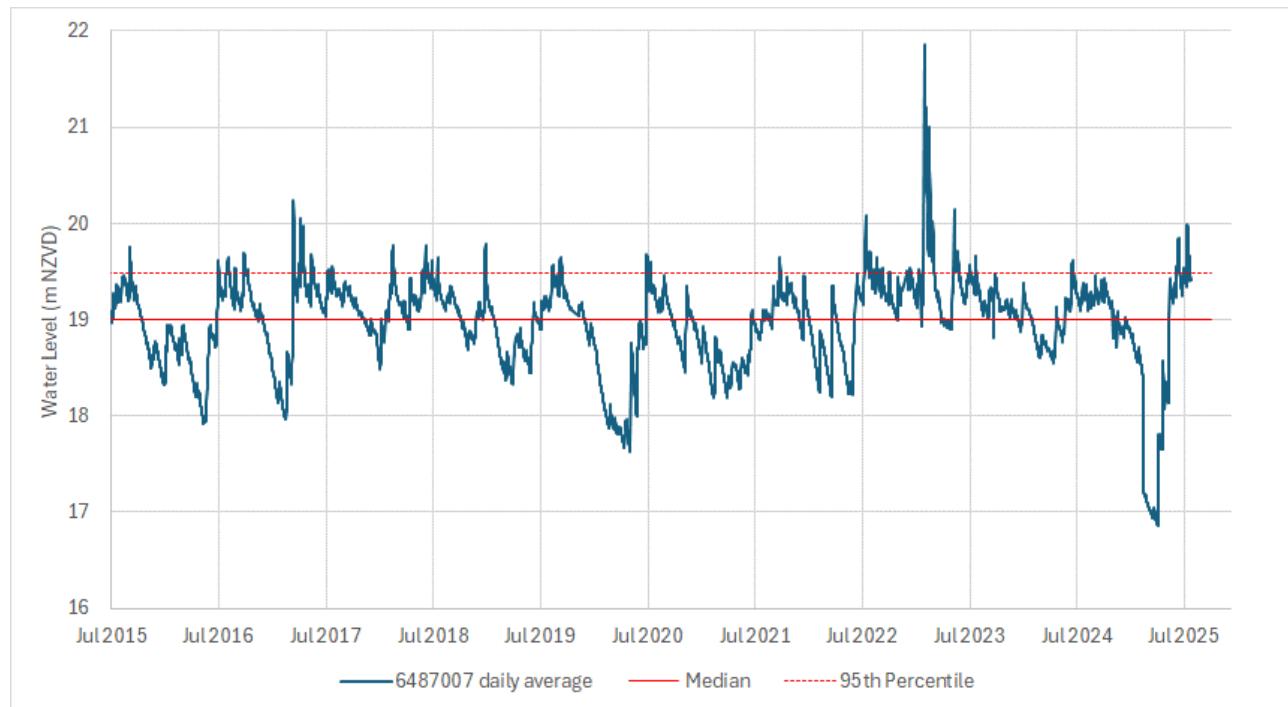


Figure 3-5: 6487007 - Selkirk Road Bore hydrograph

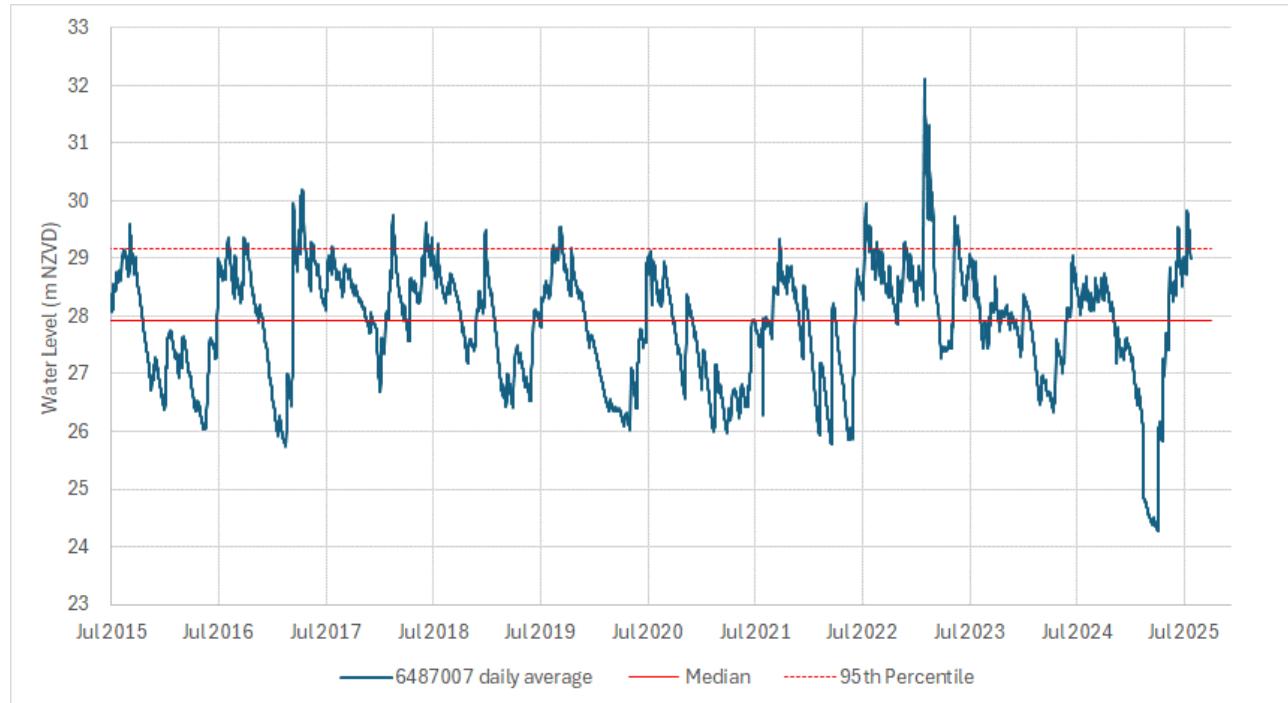


Figure 3-6: 6487009 - Leslie Road Bore hydrograph

3.4.5 Groundwater quality

3.4.5.1 Desktop study

Groundwater quality monitoring in the vicinity of the Project Area is limited to one site in the Western Springs – Three Kings Volcanic Aquifer, being the Watson Avenue groundwater quality site (ID 6487015).

Median water quality parameters for the Watson Avenue groundwater monitoring bore for the period 2015 to 2019 are summarised in Table 3-3. The water quality is fresh with close to neutral pH, although the pH level is outside of the ANZG (2018) default guideline value (DGV) range. Dissolved oxygen is also below the ANZG (2018) DGV range, however lower dissolved oxygen is to be expected in groundwater, whereas the ANZG (2018) DGV are specifically for surface water.

Median concentrations of nitrate and dissolved reactive phosphorous are also above the relevant DGVs. Auckland Council (2021) attribute the dissolved reactive phosphorous to a natural process of the dissolution of volcanic glass within the aquifer and note that nitrate concentrations have been elevated for nearly 100 years so it was not clear if they are attributable to anthropogenic causes or are naturally elevated. However, the report concluded that, overall, results from the groundwater quality monitoring programme indicated that nitrate was the foremost contaminant of concern for shallow volcanic aquifers in the Auckland region, with high nitrate concentrations coinciding with both horticultural and urban land uses.

The only exceedance of a toxicant DGV is for zinc. Auckland Council (2021) noted an increasing trend for zinc. Elevated concentrations are potentially linked to the use of the aquifer for stormwater infiltration.

Table 3-3: Watson Avenue – median water quality parameters (2015 to 2019)

Parameter		ANZG (2018)*	Value
Ammonia N	(mg/L)	[0.01]	0.009
Nitrite N	(mg/L)		0.001
Nitrate N	(mg/L)	[0.065]	3.75
Dissolved reactive phosphorus (mg/L)		[0.014]	0.065
Soluble iron	(mg/L)		0.047
Soluble manganese	(mg/L)	1.9	0.01
Soluble sodium	(mg/L)		22
Soluble zinc	(mg/L)	0.008	0.012
Soluble copper	(mg/L)	0.0014	0.0008
pH		[7.26 to 7.7]	6.89
Alkalinity	(mg/L)		48
Dissolved oxygen	(mg/L)	[9 -10.2]**	6.55
Electrical conductivity	(µS/m)	[115]	214
Chloride	(mg/L)		18
Total Hardness	(mg/L)		44
Total Dissolved Solids	(mg/L)		140
Soluble Sulphate	(mg/L)		12.85

Notes: * Default Guideline Value (DGV). [Value in parentheses] = DGV for physical and chemical stressors, Warm Wet Low-elevation, otherwise toxicant DGV for 95% aquatic ecosystem protection.

** - Approximate equivalent at 16°C. Actual DGV is for 92 to 103% dissolved oxygen.

- Yellow highlight – value exceeds DGV for physical and chemical stressors

- Orange highlight – value exceeds toxicant DGV.

3.4.5.2 Site investigations

The results of groundwater quality analyses from the monitoring bores are summarised in Table 3-4, with laboratory reports provided in Appendix C.

The groundwater is generally characterised as being relatively fresh, with total dissolved solids ranging from 88 to 460mg/L, and slightly acidic, with pH ranging from 5.1 to 6.8. pH and electrical conductivity exceed the ANZG (2018) physical and chemical stressor DGV for pH and electrical conductivity for freshwater ecosystems (warm wet low-elevation).

Total nitrogen and total phosphorous are also elevated and consistently exceed the relevant physical and chemical stressor DGV.

The ANZG 2018 toxicant DGV for nickel is exceeded at most monitoring bores and the DGV for zinc is exceeded at four of the eight monitoring bores tested. Due to the ubiquitous nature of the exceedances for nickel, elevated metals are likely due to the geological formations as opposed to anthropogenic influences.

Table 3-4: Project water quality parameters

Parameter		ANZG 2018	BH01	BH02	BH03	BH04	BH05	BH06	BH08	BH09
Physical Parameters										
pH	(pH units)	[7.26 to 7.7]	6.2	6.8	5.9	5.9	5.9	6.1	5.5	5.1
Total Alkalinity	(mg/L as CaCO ₃)	-	64	155	21	40	46	84	14.4	23
Free Carbon Dioxide	(mg/L)	-	75	46	52	102	113	125	96	340
Total Hardness	(mg/L as CaCO ₃)	-	102	200	23	28	31	62	10.9	128
Electrical Conductivity	(mS/m)	[11.5]	34.3	50.7	19.4	20.3	25.8	28.2	18.1	66.7
Total Dissolved Solids	(mg/L)	-	250	360	126	124	400	320	88	460
Major Ions										
Sodium	(mg/L)	-	26	28	27	29	40	34	26	54
Potassium	(mg/L)	-	2	2.4	1.15	1.44	0.8	2.1	1.65	3.6
Calcium	(mg/L)	-	27	59	6.4	5.9	9.1	18.2	1.74	24
Magnesium	(mg/L)	-	8.5	13.6	1.74	3.1	2	3.9	1.6	16.8
Chloride	(mg/L)	-	31	36	25	20	29	28	35	70
Sulphate	(mg/L)	-	47	47	21	19	30	12	7.9	185
Carbonate	(mg/L)	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bicarbonate	(mg/L)	-	78	189	26	49	56	102	17.6	28
Nutrients										
Total Nitrogen	(mg/L)	[0.292]	1.16	0.3	1.27	0.25	1.31	1.31	2.6	3.4
Total Ammoniacal-N	(mg/L)	[0.01]	0.014	0.023	<0.010	<0.010	<0.010	0.052	1.37	0.57
Nitrite-N	(mg/L)	-	0.005	0.002	<0.002	<0.002	0.002	0.002	0.003	<0.002
Nitrate-N	(mg/L)	[0.065]	1.00	<0.002	1.06	0.049	0.079	0.008	<0.002	<0.002

Parameter		ANZG 2018	BH01	BH02	BH03	BH04	BH05	BH06	BH08	BH09
Nitrate-N + Nitrite-N	(mg/L)	-	1.01	0.003	1.06	0.049	0.081	0.011	0.005	<0.002
Total Kjeldahl Nitrogen	(mg/L)	-	0.16	0.3	0.21	0.2	1.23	1.3	2.6	3.4
Total Phosphorus	(mg/L)	[0.024]	0.155	0.014	0.064	0.032	0.45	0.43	0.37	8.5
Metals										
Aluminium	(mg/L)	-	<0.003	<0.003	0.041	0.042	0.04	0.029	0.057	0.35
Arsenic	(mg/L)	0.013*	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0029
Cadmium	(mg/L)	0.0002	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00013
Chromium	(mg/L)	0.001**	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Copper	(mg/L)	0.0014	<0.0005	<0.0005	0.0012	<0.0005	0.0006	0.0046	0.0005	
Lead	(mg/L)	0.0034	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.00032
Iron	(mg/L)	-	<0.02	<0.02	<0.02	<0.02	0.06	<0.02	3.6	39
Magnesium	(mg/L)	-	8.5	13.6	1.74	3.1	2.0	3.9	1.6	16.8
Manganese	(mg/L)	1.9	0.31	0.3	0.08	0.065	0.135	0.26	0.192	0.66
Nickel	(mg/L)	0.0011	0.0032	<0.0005	0.0012	0.0021	0.0017	0.0023	0.0083	0.021
Zinc	(mg/L)	0.008	0.005	0.0019	0.0102	0.0058	0.0022	0.0082	0.0189	0.111
Notes:		ANZG 2018 – [Value in parentheses] – Physical and Chemical Stressor DGV for fresh water aquatic ecosystems, 'Warm Wet Low-elevation' river environment classification, otherwise Toxicant DGV for 95% protection of freshwater aquatic ecosystems.								
		* - value is for pentavalent arsenic (AsV)				** - value is for hexavalent chromium (CrVI)				
		Yellow highlight – exceeds Physical and Chemical Stressor DGV				Orange highlight – exceeds Toxicant DGV				

3.4.6 Groundwater users

Existing groundwater wells in the vicinity of the Proposed Designation area have been sourced from the Wells Aotearoa New Zealand database³ and are shown in Figure 3-7. These represent all well records held by Auckland Council, regardless of consent status and age.

Wells in Figure 3-7 are categorised by use, with the majority of wells recorded as being of unknown use.

The closest wells to the Project Area recorded as being for abstractive use, such as for irrigation or water supply, are located in the Western Springs - Three Kings Volcanic aquifer, with the closest being approximately 180m south of the Proposed Designation boundary within the Chamberlain Park Golf Course.

A summary of consented and permitted activity wells installed for abstractive use within approximately 200m of the Indicative Design, provided by Auckland Council, is provided in Table 3-5.

Table 3-5: Bores installed for domestic, stock or irrigation uses

Bore ID	Consent number/ reference	Address	Total depth	Purpose	Approximate distance from Project Area / Comment
5653	15969	Hobsonville Road onramp to the Upper Harbour motorway	305m	Irrigation	Beneath alignment – unlikely still exists. Drilled 1997
-	LUC80313246	28 Carrington Road, Mount Albert	Unknown	Domestic supply	100m
-	LUC80312239	22-24 Point Chevalier Road, Point Chevalier	Unknown	Domestic supply	50 m New development on site – unlikely still exists
5205	14906	Western Springs Lakeside Park	17m	Domestic supply	60m
20657	-	805 Great North Road (Motat)	6.8m	Not provided	50m

³ <https://wellsnz.teurukahika.nz/> - accessed July 2025.

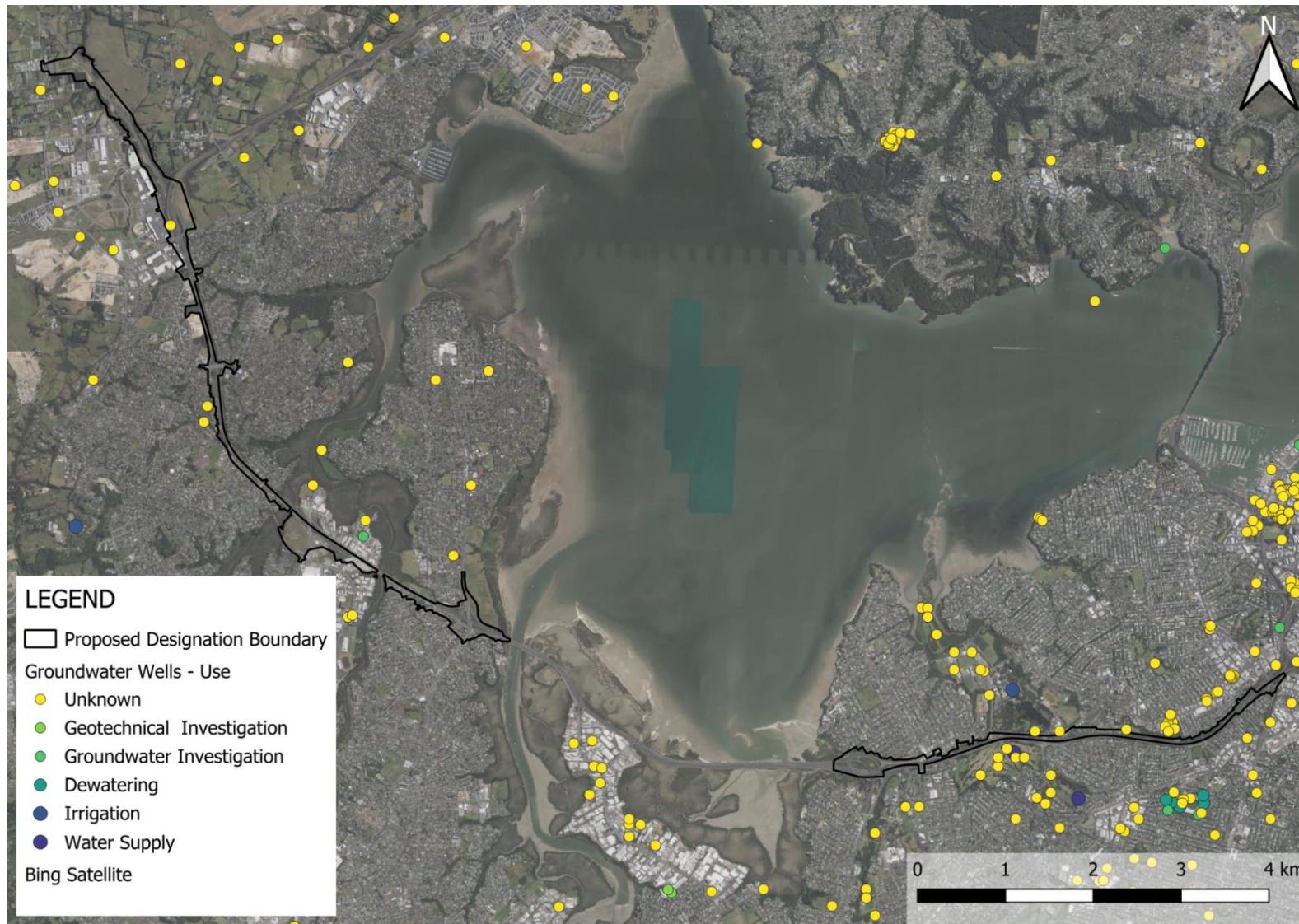


Figure 3-7: Groundwater wells

3.5 Potential for settlement

Ground settlement due to groundwater drawdown results from a reduction in pore water pressure caused by groundwater removal. This reduction in pore pressure increases the effective stress (total vertical load) acting on the soil particles, causing them to compact. Finer grained, porous, and low strength soils such as clays and peat are generally more susceptible to settlement.

Young's modulus (also known as the modulus of elasticity, elastic modulus, tensile modulus, and deformation modulus) is a mechanical property that represents a material's stiffness or resistance to deformation under stress (measured in Mega-Pascals, MPa).

Indicative values for Young's modulus for the formations likely to be encountered within the Project Area are provided in Table 3-6 (Tonkin and Taylor, 2012). Lower values, typically <15MPa, indicate greater potential for settlement.

Table 3-6: Indicative material stiffness – previous investigations

Geological Unit	Indicative values for Young's Modulus (MPa)		
	Minimum	Maximum	Representative
Tauranga Group Alluvium / Shallow Takaanini Formation	2.5	20	6
Deeper Takaanini Formation (below 12 m)	10	40	15
Basalt	Considered to be essentially non-compressible for the purposes of this assessment and the likely range of effective stress.		
Weathered ECBF	4	40	15
ECBF Rock	150	1000	500

Potential settlement has been assessed by applying representative values of Young's Modulus of 8MPa for the Takaanini Formation and Residual Soils, and 15MPa for the weathered ECBF as relevant.

4. Predicted Project interactions with groundwater

4.1 Project cuts anticipated to interact with groundwater

The major potential for interaction of Project elements with groundwater is through deep cuttings and excavations to accommodate the busway and stations. Areas of cut along the Indicative Design have been reviewed and the areas of indicative cut with potential to intercept groundwater are summarised on Table 4-1.

While the Project will also include other smaller excavations, such as for bridge foundations and pilings, these are not expected to have substantial interactions with groundwater or result in greater than minor effects.

The cuttings at Huruhuru Road underpass, Lincoln Road Wai o Pareira station, Te Atatū Orangihina station, and Point Chevalier station are anticipated to be below the water table with potential to result in groundwater seepage to excavations and propagation of groundwater drawdown. The cut for the Fred Taylor Drive underpass is one of the deepest cuts, however the cut is through an area of locally elevated ground surrounded by ground of similar or lower elevation than the proposed cut. The cut is unlikely to intersect the water table or result in any substantial propagation of drawdown.

It is noted that site investigations (BH010) indicate that the cutting at Royal Road station is above the water table, however previous investigation from the NZGD near Royal Road indicates potential for a higher water table, which has been adopted for this assessment on a conservative basis.

Most cuttings are anticipated to be within the Takaanini Formation or residual ECBF, or a combination of both.

Given the potential for movement of the Indicative Design within the Proposed Designation, deep cuttings and excavations may also occur in other locations across the Project Area and may be below the water table.

It is anticipated that the majority of the deeper areas of cut and underpasses will be retained through the application of pre-installed secant pile walls or diaphragm walls prior to excavation. Secant piles and diaphragm walls will act to restrict groundwater seepage to excavations, however as designs have yet to be finalised, all excavations have been treated as being free-draining. Accordingly, this assessment presents the 'worst case scenario' in terms of potential groundwater seepage and drawdown.

Table 4-1: Interaction of major cut areas with groundwater

Approximate Chainage from	Approximate Chainage to	Location	Indicative Design	Comment	Site investigations
20,500	20,600	Fred Taylor Drive underpass	<ul style="list-style-type: none"> ▪ Retained cut and cut and cover tunnel up to approximately 9.7m depth. 	<ul style="list-style-type: none"> ▪ Proposed Designation boundary approaches within approximately 8.5m of retained cut. ▪ Areas of cut are within Takaanini Formation, and residual and weathered ECBF. ▪ Elevated ground is localised and the design elevation (invert) is above or similar to adjacent ground elevations. ▪ Potential for localised perched water table but with no potential for propagation of drawdown. 	BH012 (approx. 260m north)
21,880	30,080	Royal Road station and Royal Road underpass	<ul style="list-style-type: none"> ▪ Retained cut up to approximately 9m depth. ▪ Average invert approx. 55.6m NZVD. 	<ul style="list-style-type: none"> ▪ Location is constrained within Proposed Designation with limited scope for lateral movement. ▪ Proposed Designation boundary approaches within approximately 10m, with school buildings within approximately 14m of retained cut. ▪ BH010 was dry to 13.0mbgl (52m NZVD) during site investigations, however, NZGD has a nearby water level observation of 3.3mbgl (58.4m NZVD) ▪ Cutting has potential to be below water table within residual ECBF. ▪ Cut-back of existing slope with one sided groundwater seepage. 	BH010
31,240	31,840	Huruhuru Road underpass	<ul style="list-style-type: none"> ▪ Small local cuts and underpass up to 4-5m. ▪ Underpass invert approximately 16m NZVD. 	<ul style="list-style-type: none"> ▪ Location is constrained within Proposed Designation with limited scope for lateral movement. ▪ Proposed Designation boundary approximately 40m from cut, no buildings within 70m of deepest cut area. ▪ Depth to water at BH009 is approximately 3mbgl (21.5m NZVD) ▪ Cutting is expected to be below water table within Takaanini Formation. ▪ Cut-back of existing slope with one sided groundwater seepage. 	BH009

Approximate Chainage from	Approximate Chainage to	Location	Indicative Design	Comment	Site investigations
32,180	40,180	Lincoln Road station and Lincoln Road underpass	<ul style="list-style-type: none"> Retained cut up to approximately 8m depth. Some battered cut. Invert is approximately 9 to 11m NZVD. 	<ul style="list-style-type: none"> Proposed Designation boundary >170m from deepest cut area. Undeveloped area. Depth to water at BH008 is approximately 2.25mbgl (14.0m NZVD) Cutting is expected to be below water table, predominantly within Takaanini Formation and some residual ECBF. Slot-cut with groundwater seepage both sides. 	BH008
42,080	50,180	Te Atatū station and Te Atatū Road underpass	<ul style="list-style-type: none"> Retained cut up to approximately 9m depth. Invert is approximately 16 to 17m NZVD. 	<ul style="list-style-type: none"> Proposed Designation boundary >70m from deepest cut area. Depth to water at BH005 is approximately 1.0mbgl (19.7m NZVD) Cutting is expected to be below water table within Takaanini Formation. Slot-cut with limited relict ground between busway and motorway. Potential for short term seepage both sides and long-term one sided groundwater seepage. 	BH005, BH006
59,700	70,100	Point Chevalier station and Carrington Road underpass	<ul style="list-style-type: none"> Retained cut up to approximately 6.7m depth. Invert is approximately 19 to 21m NZVD. 	<ul style="list-style-type: none"> Location is constrained within Proposed Designation with limited scope for lateral movement. Proposed Designation boundary and buildings are very close to station (<10m) at 1210 Great North Road Depth to water at BH004 is approximately 5.0mbgl (22.7m NZVD) Cutting is expected to be below water table, predominantly within Takaanini Formation and some residual ECBF. Slot-cut with minor relict ground between Busway and motorway. One sided groundwater seepage. 	BH003, BH004

4.2 Groundwater seepage to excavations

Groundwater seepage to excavations has been estimated for larger cuts that are anticipated to be below the water table as assessed in Table 4-1. The calculations are presented in Appendix E and summarised in Table 4-2.

4.2.1 Methodology and assumptions

Seepage rates have been calculated using the method of Mansur and Kaufman (1962) for the assessment of linear flow to an excavation in an unconfined aquifer, as presented in Neville (2017). The cuts are either cutting back of existing cuts, with potential for one-sided groundwater seepage, or are slot-cuts adjacent to existing cuts for the Northern Motorway, with potential for either one or two sided groundwater seepage depending on the remnant ground between the Northwestern Motorway and Project. Cuttings at Lincoln Road station and Te Atatu station have potential for groundwater seepage from both sides, while cuttings at Royal Road station, Huruhuru Road underpass, and Point Chevalier station are only likely to have groundwater seepage from one side (Table 4-1).

The seepage modelling is for a conservative scenario in which excavation shoring methods or retaining walls do not inhibit groundwater seepage to excavations.

Seepage calculations are based on the following simplifying assumptions:

- The Indicative Design has been divided into 50m long sections within each cut area to account for variable invert and groundwater levels along the alignment.
- Average invert and interpreted water level elevations are applied over each section. Groundwater levels are estimated based on available observations. Where only one groundwater level observation is available, then the observed depth to groundwater is adopted along the length of the cut.
- Invert depth, water table elevation and required groundwater drawdown are as presented in Appendix E.
- Allowance is included for an additional 0.5m excavation depth below invert elevation to account for foundation and drainage layers.
- Alluvium, residual soils and weathered ECBF have an average hydraulic conductivity of 2.0E-07m/s (0.017m/day) and a specific yield of 0.1.
- Aquifer depth contributing to groundwater flow to the excavation extends 5m below excavation floor level.
- Estimated seepage rates are for steady state, long term equilibrated conditions.
- Total head beneath the excavation is equal to the elevation of the excavation floor, therefore vertical flow to the excavation is negligible.
- Excavation shoring methods do not restrict groundwater ingress to excavations.
- The method requires the input of a distance to a fixed head boundary for the estimation of hydraulic gradient. In this case a distance of three times the required drawdown within the cut has been adopted. For example, if the excavation is assessed as being 4m below the water table, a distance to the fixed head boundary of 12m is applied. It is noted that a shorter distance to the fixed head boundary results in a steeper hydraulic gradient and higher rate of inflow and is therefore conservative.

It is noted that in some instances there will already be a component of groundwater seepage to drainage layers behind existing retaining walls and pavements. These pre-existing seepage rates have not been assessed.

4.2.2 Results

Potential seepage rates to cuttings are summarised in Table 4-2, with seepage calculations provided in Appendix E.

Table 4-2: Groundwater seepage to cuttings - unmitigated

Location	Average seepage rate (m ³ /day/m)	Indicative seepage rate - whole of cutting (m ³ /day)	Annual seepage volume (ML)
Royal Road station and underpass	0.042	12.51	4.56
Huruhuru Road underpass	0.030	4.54	1.66
Lincoln Road station	0.080	31.81	11.61
Te Atatū station	0.053	15.98	5.83
Point Chevalier station	0.032	13.52	4.94

4.3 Groundwater drawdown and settlement

4.3.1 Methodology and assumptions

Groundwater drawdown resulting from seepage to cuttings has been assessed using GeoStudio Seep/W (Geo-Slope, 2015). Seep/W is a two-dimensional finite element groundwater flow model that simulates groundwater flow and pressure along a vertical section or slice. Modelling has been completed considering steady state conditions.

To assess potential groundwater drawdown resulting from the Project, a difference modelling approach has been applied. Each section was initially modelled without the Project simulating the key existing features along the section (the 'base case'). Another model was then run incorporating the Project cuttings as included in the Indicative Design. The difference in the modelled water table between the two modelled scenarios is attributed as the drawdown resulting from the Project.

For each of the areas being assessed, a representative section has been adopted, typically located at deepest section of cut or where the cutting approaches the Proposed Designation boundary or buildings. The section locations are provided with model outputs in Appendix F.

The base case modelling is unmitigated with respect to groundwater inflows and assumes unrestricted groundwater seepage to excavations. Retaining structures such as secant piling and diaphragm walls are not simulated and groundwater is free to drain at the excavation face. As such, the assessment is conservative as the retaining structures would act to restrict, and in some cases prevent, groundwater seepage to excavations and the resulting groundwater drawdown.

Based on the modelled drawdown, potential groundwater settlement has also been assessed using one-dimensional consolidation theory after CIRIA (2017). As consolidation settlement can only occur when the groundwater level is drawn below historical low groundwater levels. It is noted that water levels adopted for assessment of groundwater seepage to excavations and drawdown are indicative of seasonal high water levels. One meter has therefore been subtracted from the modelled drawdown to account for historical seasonal variations for the assessment of consolidation settlement.

Mechanical settlement is typically limited to within close proximity to the excavation compared to consolidation settlement due to drawdown, and will generally be constrained within the Proposed Designation boundary. In areas where excavations are closer to the Proposed Designation boundary, such as at Point Chevalier station and Royal Road station, lateral deflection of secant pile or diaphragm retaining walls can be managed through design; by increasing wall stiffness (pile diameter or wall thickness), incorporating ground anchors, and the use of lateral bracing. These construction and design options are commonly used to manage mechanical settlement and avoid settlement beyond acceptable tolerances.

4.3.2 Results

Predicted drawdown and settlement at the Proposed Designation boundary and for any adjacent buildings where the Proposed Designation boundary is close to the cut, are summarised on Table 4-3.

Groundwater drawdown and settlement profiles for the sections that have been assessed are plotted on Figure 4-1 to Figure 4-5 where predicted drawdown is shown in blue on the primary vertical axis (Drawdown in metres), drawdown modified for historical low water levels is shown in blue dash, and the resulting

calculated settlement is shown in orange on the secondary vertical axis (Settlement in millimetres). The vertical axes orientations are reversed so that the drawdown and settlement curves do not over-plot.

Seep/W pore pressure profiles for the locations of the model sections are presented in Appendix F.

Groundwater drawdown itself is not considered to be an impact unless it directly effects a beneficial use of groundwater, such as groundwater discharge to surface water or groundwater abstraction for water supply. Ground settlement resulting from groundwater drawdown has the potential to impact buildings, structures and services. These potential effects are assessed in Section 5.

Table 4-3: Predicted groundwater drawdown and ground settlement - unmitigated

Location	Approximate distance to Proposed Designation boundary along section (m)	Modelled groundwater drawdown at Proposed Designation boundary (m)	Estimated settlement at Proposed Designation boundary (mm)	Estimated differential settlement at Proposed Designation boundary (%)	Estimated settlement at nearest building (mm)
Royal Road station	14	1.8	2.6	0.035	2.6
Huruhuru Road Underpass	40	0.5	0	0	0
Lincoln Road station	180	0	0	0	n/a
Te Atatu station	75	0.9	0	0.004	0
Point Chevalier station	6	2.0	6.5	0.060	6.5

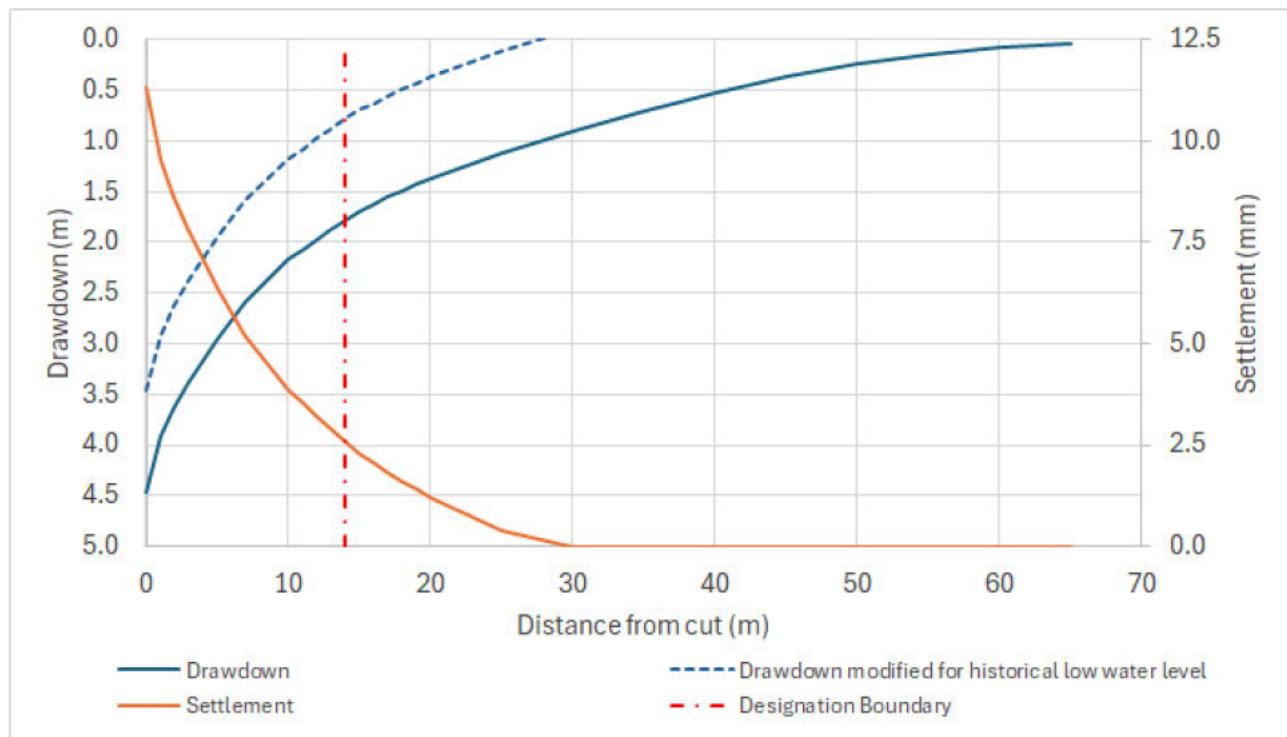


Figure 4-1: Royal Road station – Groundwater drawdown and settlement – unmitigated

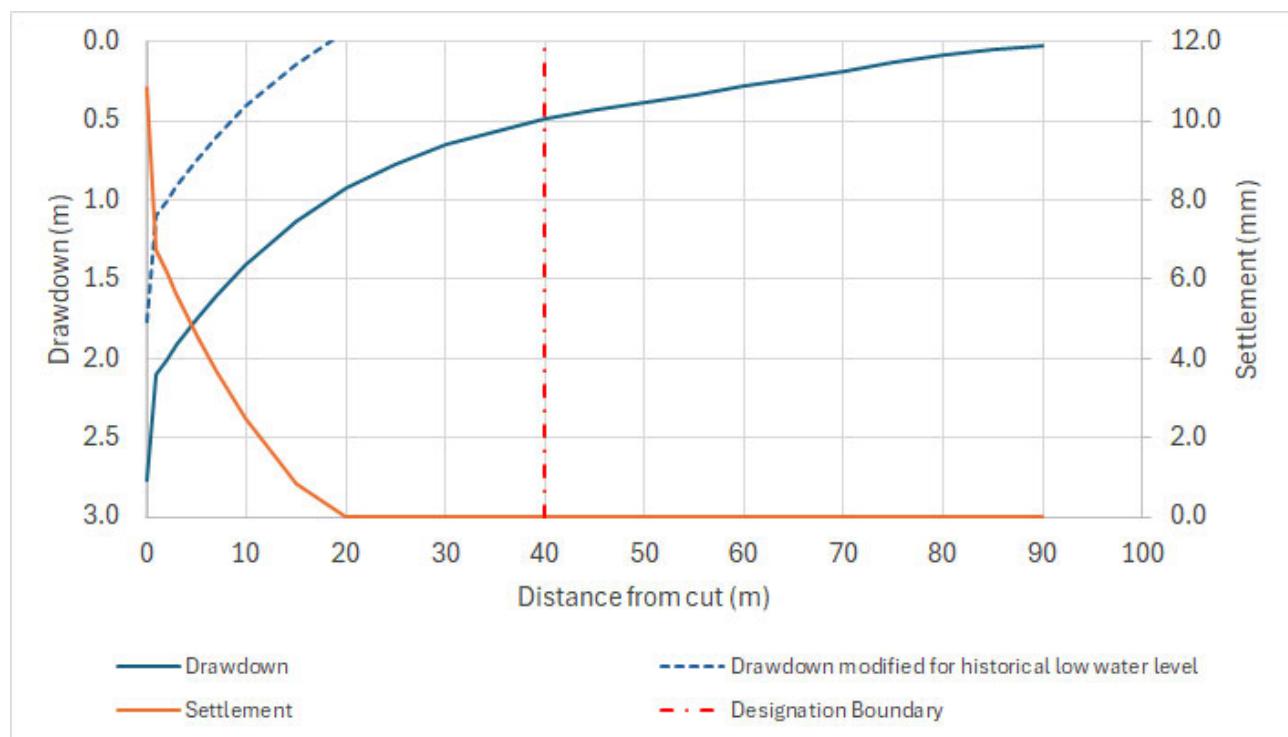


Figure 4-2: Huruhuru Road Underpass – Groundwater drawdown and settlement – unmitigated

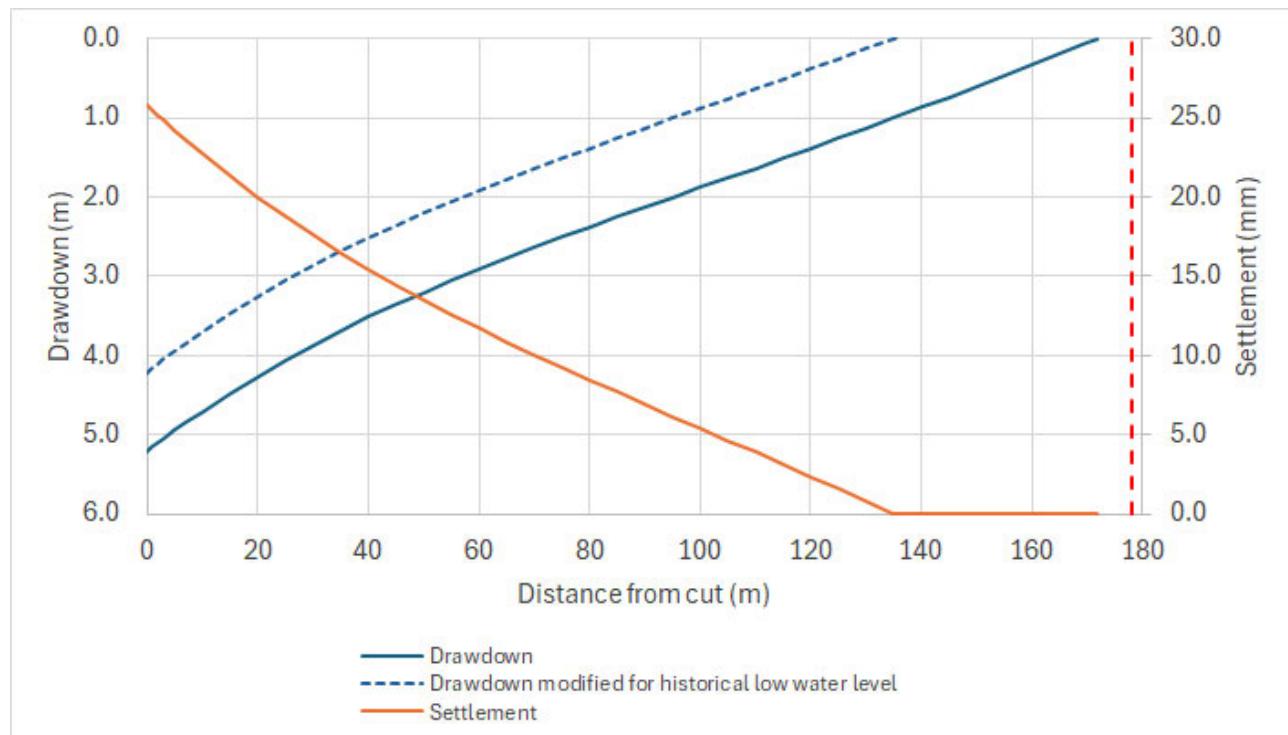


Figure 4-3: Lincoln Road station – Groundwater drawdown and settlement – unmitigated

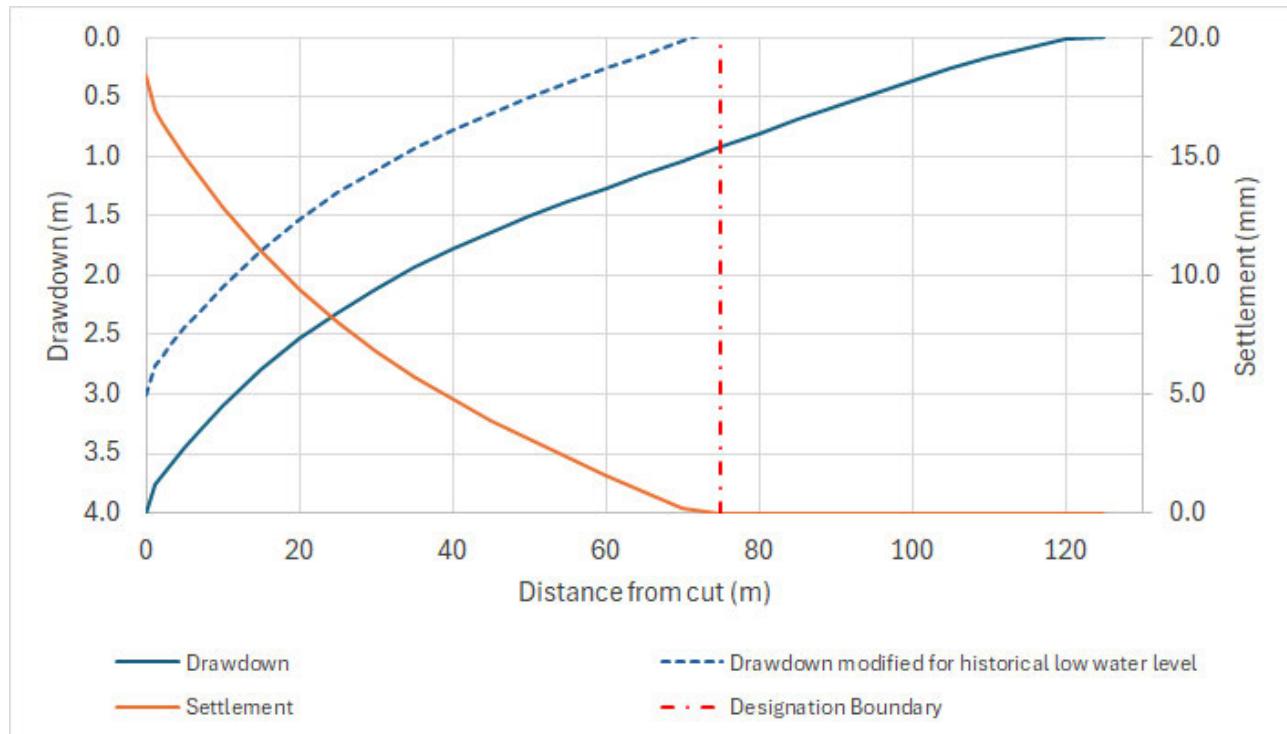


Figure 4-4: Te Atatū station – Groundwater drawdown and settlement – unmitigated

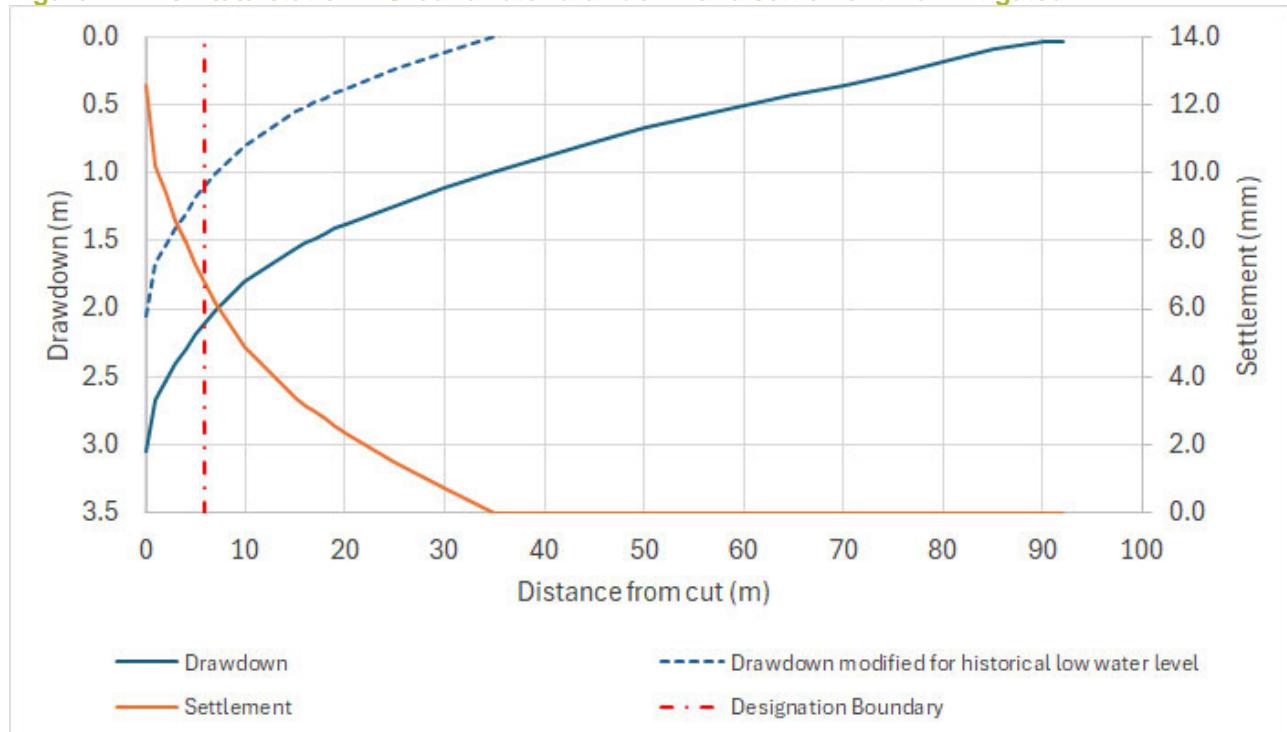


Figure 4-5: Point Chevalier station – Groundwater drawdown and settlement - unmitigated

4.4 Discussion of predicted changes to groundwater levels and groundwater diversion

The combination of low hydraulic conductivity values for the Takaanini Formation and residual ECBF results in limited propagation of groundwater drawdown away from areas of cuts below the water table, even with my conservative assessment that does not include the benefits of design features such as secant piling or diaphragm walls.

The maximum predicted drawdown at the boundary of the Proposed Designation is approximately 2.3m for Point Chevalier station.

The groundwater diversion volumes are presented in Table 4-2 with an estimated total annual seepage volume of the order of 28.6ML. In reality, due to the use of secant pilings and diaphragm walls as retaining structures, the actual volume of groundwater seepage and diversion is likely to be substantially lower.

5. Assessment of effects

5.1 Assessment of construction effects

5.1.1 Potential effects on other groundwater users

There is no recorded abstractive groundwater use within the areas of excavation and predicted drawdown. I consider there will be no impacts on groundwater users.

5.1.2 Potential effects on surface water bodies and wetlands

There are no surface water bodies or wetlands within close proximity to the areas of substantial excavation and predicted groundwater drawdown. The closest substantial excavation to a surface water body is the excavation of cuttings for Lincoln Road station, which come within approximately 60m of Huruhuru Creek. However, the cutting invert is approximately 10m higher than the level of the creek and therefore I consider the cutting will not have any groundwater related impacts.

In my opinion, there will be no impacts on surface water bodies or wetlands resulting from groundwater drawdown.

5.1.3 Potential settlement effects

Ground settlement has potential to result in damage to buildings and infrastructure.

5.1.3.1 Criteria

Potential for damage to buildings resulting from settlement is summarised in Table 5-1, after Burland (1997), Maire et al (1996), and Rankin (1988).

Table 5-1: Building damage assessment criteria

Building damage classification		Approximate equivalent ground settlement	
Risk Category	Description of degree of damage	Maximum differential settlement	Maximum settlement (mm)
0	Negligible	-	-
1	Very Slight	<1:500 (0.2%)	<10
2	Slight	1:500 to 1:200 (0.2 to 0.5%)	10 to 50
3	Moderate	1:200 to 1:50 (0.5 to 2%)	50 to 75
4	Severe	1:200 to 1:50 (0.5 to 2%)	>75
5	Very Severe	>1:50 (>2%)	>75

For potential damage to services, CIRIA PR30 (1996) provides recommended limiting values of settlement for buried pipes based on O'Rourke & Trautmann (1982). For rigid pipes with a diameter of greater than 200mm the maximum recommended differential settlement is 1:140 (0.71%) and for flexible pipes with a diameter less than 200mm the maximum recommended differential settlement is 1:80 to 1:40 (1.25 to 2.5%).

5.1.3.2 Assessment

The maximum predicted settlement due to drawdown at the Proposed Designation boundary is approximately 6.5mm at Point Chevalier station.

The maximum predicted settlement at a building is approximately 6.5mm with a differential settlement of approximately 0.06%. This occurs at Point Chevalier station and the building in question is the heritage listed Auckland Savings Bank building at 1210 Great North Road. Refer to the Assessment of Built Heritage Effects report for discussion regarding the building's heritage values.

It is noted that at Royal Road station, there are also buildings within approximately 14m of the proposed cut. However, the excavations at Royal Road station are within weathered ECBF as opposed to Takaanini Formation which has a greater strength and resistance to settlement, and the maximum predicted settlement at a building is only 2.6mm.

Based on this assessment, potential building damage due to settlement resulting from groundwater drawdown outside of the Proposed Designation boundary is in the negligible to very slight categories. Further, it is noted that the assessment of settlement due to groundwater drawdown assumes unrestricted groundwater seepage to excavations. In reality, the excavation will be retained by secant pilings or similar that will act to restrict groundwater seepage and drawdown resulting in settlement.

Accordingly, in my opinion, potential settlement effects resulting from groundwater drawdown will be less than minor to negligible.

5.2 Sensitivity testing of Indicative Design

I understand the Indicative Design may move within the Proposed Designation depending on the final design. The Proposed Designation allows for limited horizontal shifts of the Indicative Design and vertical shifts are also possible. Alternative designs could result in cuttings occurring in other locations across the Project Area or increases or decreases in existing proposed cut depths.

In my opinion, horizontal or vertical shifts to the Indicative Design within the Proposed Designation are unlikely to result in more than minor groundwater effects. This opinion is based on the low permeability of the formations and the limited propagation of drawdown resulting in settlement.

As noted earlier, my assessment is conservative, and in reality, I expect that the cuts will be retained by structural works such as secant piled or diaphragm wall retaining walls. In higher risk areas, where deep cuts are located closer to the Proposed Designation boundary and sensitive features such as buildings, those structural works will further act to limit groundwater seepage and drawdown propagation.

5.3 Assessment of operational effects

While there may be some ongoing groundwater seepage to drainage layers during Project operation, I consider there will be no further or additional effects, over and above those already assessed for the construction period.

5.4 Auckland Unitary Plan considerations

Section E7 of the Auckland Unitary Plan (Operative in Part) (AUP) requires an assessment of the proposed activity in relation to the taking, using, damming and diversion of groundwater in accordance with section 14(1) and section 14(3) of the Resource Management Act 1991.

An assessment of the proposed activity against the AUP groundwater provisions detailed in Sections E7.6.1.6 and E7.6.1.10 is presented in Table 5-2. Based on this assessment the project meets the criteria of a restricted discretionary activity and requires resource consent.

Table 5-2: Assessment of proposed activity against AUP groundwater provisions

Rule / Standard	Provision	Status
Standard E7.6.1.6	<p>Dewatering or groundwater level control associated with a groundwater diversion permitted under Standard E7.6.1.10, all of the following must be met:</p> <ol style="list-style-type: none"> 1. The water take must not be geothermal water; 2. The water take must not be for a period of more than 10 days where it occurs in peat soils, or 30 days in other types of soil or rock; and 3. The water take must only occur during construction. 	<p>Non-compliant (refer following dot points)</p> <ol style="list-style-type: none"> 1. Meets provision 2. Seepage to excavations will take place for a period of greater than 30 days

Rule / Standard	Provision	Status
Standard E7.6.1.10(1)	<p>Diversion of groundwater caused by any excavation, (including trench) or tunnel.</p> <p>All of the following activities are exempt from the Standards E7.6.1.10(2) – (6):</p> <ol style="list-style-type: none"> pipes cables or tunnels including associated structures which are drilled or thrust and are up to 1.2m in external diameter; pipes including associated structures up to 1.5m in external diameter where a closed faced or earth pressure balanced machine is used; piles up to 1.5m in external diameter are exempt from these standards; diversions for no longer than 10 days; or diversions for network utilities and road network linear trenching activities that are progressively opened, closed and stabilised where the part of the trench that is open at any given time is no longer than 10 days. 	<p>3. Ongoing seepage may occur during operation</p> <p>The Project is not exempt therefore, a further assessment has been provided against Standards E7.6.1.10(2)-(6) below.</p> <ol style="list-style-type: none"> N/A N/A N/A diversion will be greater than 10 days. N/A
Standard E7.6.1.10(2)	<p>Any excavation that extends below natural groundwater level, must not exceed:</p> <ol style="list-style-type: none"> 1ha in total area; and 6m depth below the natural ground level. 	<p>Does not fully meet standard.</p> <ol style="list-style-type: none"> Meets standard Cuts will be greater than 6m depth.
Standard E7.6.1.10(3)	The natural groundwater level must not be reduced by more than 2m on the boundary of any adjoining site.	<p>Meets standard.</p> <p>While the maximum estimated unmitigated drawdown at the Proposed Designation boundary is 2.3m at Point Chevalier Station, due to the use of retaining walls, as previously discussed, this magnitude of drawdown is unlikely to be realised.</p>
Standard E7.6.1.10(4)	<p>Any structure, excluding sheet piling that remains in place for no more than 30 days, that physically impedes the flow of groundwater through the site must not:</p> <ol style="list-style-type: none"> impede the flow of groundwater over a length of more than 20m; and extend more than 2m below the natural groundwater level. 	<p>Does not meet standard.</p> <ol style="list-style-type: none"> Retaining walls will impede the flow of groundwater over a length of more than 20m Retaining walls will extend more than 2m below the natural groundwater level.
Standard E7.6.1.10(5)	<p>The distance to any existing building or structure (excluding timber fences and small structures on the boundary) on an adjoining site from the edge of any:</p> <ol style="list-style-type: none"> trench or open excavation that extends below natural groundwater level must be at least equal to the depth of the excavation; tunnel or pipe with an external diameter of 0.2 - 1.5m that extends below natural groundwater level must be 2m or greater; or a tunnel or pipe with an external diameter of up to 0.2m that extends below natural groundwater level has no separation requirement. 	<p>Meets standard.</p> <ol style="list-style-type: none"> Meets standard. N/A N/A
Standard E7.6.1.10(6)	<p>The distance from the edge of any excavation that extends below natural groundwater level, must not be less than:</p> <ol style="list-style-type: none"> 50m from the Wetland Management Areas Overlay; 10m from a scheduled Historic Heritage Overlay; or 10m from a lawful groundwater take. 	<p>Does not fully meet standard.</p> <ol style="list-style-type: none"> Meets standard. Heritage building at 1210 Great North Road is <10m from retained excavation.

Rule / Standard	Provision	Status
		c. Meets standard.

6. Recommended measures to avoid, remedy or mitigate effects

6.1 Construction effects

I consider the effects associated with groundwater dewatering and associated ground settlement will be less than minor to negligible. As noted earlier, my assessment is conservative, and in reality I expect the design of the excavations will include the use of preinstalled secant piling or diaphragm wall retaining walls, which will act to limit groundwater seepage and drawdown, and further reduce potential for ground settlement resulting from dewatering.

7. Conclusion

I consider the actual and potential adverse effects of the Project on groundwater users, surface water bodies, and adjacent buildings resulting from ground settlement will be less than minor to negligible. I do not consider any mitigation to be required to manage the groundwater-related effects of the Project.

8. References

Auckland Council, 2020. *Te mahere whakawhanake i te papa rēhia o Te Wai Ōrea Western Springs Lakeside Te Wai Ōrea park development plan*. Waitmatā local board, Auckland council. August 2020.

Auckland Council, 2021. *Groundwater quality state and trends in Tāmaki Makaurau / Auckland 2010-2019. State of the environment reporting*. Foster, C and K Johnson (Authors) Auckland Council technical report, TR2021/03

ANZG, 2018. *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia. <https://www.waterquality.gov.au/anz-guidelines/guideline-values/default>

Barrel, D.J.A, Bland, K.J., Hill, M.P. and Lee, J.M., 2021. *Revised Stratigraphic Framework for the Pliocene to Holocene Sedimentary Deposits of the Auckland Area*. GNS Science Report 2020/05 (2021).

Burland, J.B., 1997. *Assessment of risk of damage to buildings due to tunnelling and excavation*. Earthquake Geotechnical Engineering, Ishihara (ed.), Balkema, Rotterdam, 1997.

Burland, J.B., 2012. *Chapter 26 - Building Response to Ground Movements*. In ICE Manual of Geotechnical Engineering. Institution of Civil Engineers

CIRIA, 2017. CIRIA C760: *Guidance on embedded retaining wall design*. Gaba, A, Hardy, S, Doughty, L, Powrie, W, Selemetas, D (Authors). Construction Industry Research and Information Association, London.

Edbrooke, S.W. (compiler) 2001. *Geology of the Auckland area*. Institute of Geological and Nuclear Sciences 1:250 000 geological map 3. 1 sheet +74 p. Lower Hutt, New Zealand: Institute of Geological and Nuclear Sciences Limited.

Geo-Slope, 2015. *Seepage Modeling with SEEP/W, An Engineering Methodology*. June 2015 Edition. Geo-Slope International Ltd.

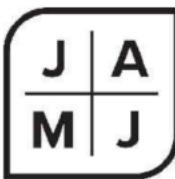
GNS Science, 2018. National water table model [Dataset]. GNS Science. <https://doi.org/10.21420/KZ52-NT28>

Hvorslev, M.J., 1951. *Time Lag and Soil Permeability in Ground-Water Observations*. Bull. No. 36, Waterways Experiment Station. Corps of Engineers, U.S. Army, Vicksburg, Mississippi, pp. 1-50.

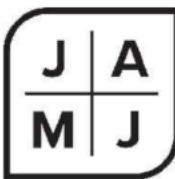
JAMJ, 2025. *Geotechnical Site Investigations - Te Ara Hauāuru - Northwest Rapid Transit*. Report prepared for Waka Kotahi. Jacobs, Aecom, Mot MacDonald Joint Venture.

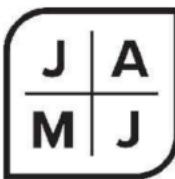
Mair, R.J., Taylor, R.N. and Burland, J.B., 1996. *Prediction of ground movements and assessment of risk of building damage due to bored tunnelling*. Int. Symp. On Geotechnical Aspects of Underground Construction in Soft Ground, City University, London.

Mansur, C.I. and Kaufman, R.I., 1962. *Dewatering in foundation engineering*. In Leonard, G. (Editor), "Foundation Engineering", Chapter 6. McGraw-Hill, New York.


Neville, C.J. 2017a. *Analytical solutions for the preliminary estimation of long-term rates of groundwater inflow into excavations: Long excavations and circular excavations*. S.S. Papadopoulos & Associates, Inc. 27 April 2017.

O'Rourke, T. & Trautmann, C., 1982. *Buried pipeline response to tunnelling ground movements*. Switzerland, Cornell University, pp. 9-15.


Rankin, W.J., 1988. *Ground movements resulting from urban tunnelling: predictions and effects*. Geological Society, London, Engineering Geology Special Publications, Volume 5, Pages 79 – 92.


Tonkin and Taylor, 2012. *Central Interceptor Project Effect of Tunnels on Groundwater and Surface Settlement*. Report prepared for Watercare Services Ltd. Reference: 26145.300. July 2012.

Appendix A. Borelogs

		Machine Borehole						BH001						
		Client: NZTA Waka Kotahi Project: Te Ara Hauauru - Northwest Rapid Transit Project ID: 705100376-004 Location: Cooper Street, Grey Lynn, Auckland Feature: 2m west of parking space						Date started: 02-06-2025 Date completed: 03-06-2025 Weather: Cloudy, rainy Logged by: RC Checked by: NL Status: FINAL Logging Standard: NZGD2005						
Elevation: 34.25 mRL Datum: NZVD2016 Coordinates: E 1755529.42 N 5918319.82 Grid: NZTM2000 Drilling company: McMillan Drilling Drilling Rig: N118 Termination: Target depth at 20.00 mbgl														
Drilling method	In-situ testing		R.L. (m)	Depth (m)	Material description		Unit	Legend	Recovery %			Discontinuities	Backfill	Water strike
	Type	Results							TCR	SCR	RQD			
					Hydro excavated									
				34.0										
				0.5										
				33.5										
				1.0										
				33.0										
				1.5										
				32.5										
				2.0	Silty CLAY with trace sand, light grey. Very soft, moist, low plasticity. Contains carbonaceous/organic fragments at unit top [Residual Soil].									
				32.0										
				2.5	Completely weathered, grey, silty MUDSTONE. Extremely weak; soil behaviours including stiff to very stiff, moist, high plasticity [EAST COAST BAYS FORMATION].									
				31.5	Highly weathered, light brown, medium to coarse sandy SILTSTONE, very weak [EAST COAST BAYS FORMATION].									
				3.0										
				31.0										
				3.5										
				30.5										
HQ	HSV (P/R)	UTP/		2.0										
	SPT/C	8.6//		32.0										
		7, 13, 26, 4	N = 50	2.5										
				31.5										
				3.0										
				3.5										
				30.5										
				3.0										
				3.5										
				31.0										
				3.5										
				30.5										
				3.0										
				3.5										
				30.0										
				4.0	Highly weathered, light brown, fine SANDSTONE; very weak. Contains carbonaceous fragments. [EAST COAST BAYS FORMATION].									
				3.5										
				30.5										
				4.0										
				3.5										
				30.0										
				4.5										
				29.5										
				5.0	Moderately weathered, grey, clay-rich interbedded SILTSTONE and SANDSTONE, weak. Heterogeneous, rhythmically bedded sequence of alternating Sandstone and Siltstone. Widely spaced, steeply inclined discontinuities [EAST COAST BAYS FORMATION].									
				29.0										
				5.5										
				28.5										
				6.0										
				28.0										
				6.5										
				27.5										
				7.0	7.2 - 7.9m Thick bed of coarse SANDSTONE; turbidite base.									
				7.5										
				27.0										
				8.0	8 - 8.45m Thin beds of SILTSTONE transit to medium to fine SANDSTONE, grey.									
				8.5										
				25.5	Slightly weathered, dark grey, interbedded SILTSTONE and SANDSTONE, weak. Heterogeneous, rhythmically bedded sequence of alternating Sandstone and Siltstone. Siltstone and Sandstone are moderately thick bedded. Discontinuities are moderately widely spaced (>300mm), with varying inclination [EAST COAST BAYS FORMATION].									
				9.0										
				25.0										
				9.5	9.65 - 9.7m Thinly laminated, wavy, carbonaceous bands at top of fine sandstone bed.									
				24.5										
Manual groundwater measurement				Remarks								Sheet 1 of 2		
Date		Water strike (mbgl)		Shear vane calibration: M728205.02		Survey accuracy: +5m								

03-06-2025

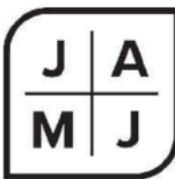
		Machine Borehole					BH001						
									Client: NZTA Waka Kotahi		Date started: 02-06-2025		
Project: Te Ara Hauauru - Northwest Rapid Transit		Date completed: 03-06-2025											
Project ID: 705100376-004		Weather: Cloudy, rainy											
Location: Cooper Street, Grey Lynn, Auckland		Logged by: RC											
Feature: 2m west of parking space		Checked by: NL											
Elevation: 34.25 mRL Datum: NZVD2016 Coordinates: E 1755529.42 N 5918319.82 Grid: NZTM2000		Status: FINAL											
Drilling company: McMillan Drilling Drilling Rig: N118 Termination: Target depth at 20.00 mbgl		Logging Standard: NZGD2005											
Drilling method	In-situ testing		R.L. (m)	Depth (m)	Material description	Unit	Legend	Recovery %			Discontinuities	Backfill	Water strike
	Type	Results						TCR	SCR	RQD			
HQ			24.0		Slightly weathered, dark grey, interbedded SILTSTONE and SANDSTONE, weak. Heterogeneous, rhythmically bedded sequence of alternating Sandstone and Siltstone. Siltstone and Sandstone are moderately thick bedded. Discontinuities are moderately widely spaced (>300mm), with varying inclination [EAST COAST BAYS FORMATION].			100	89	90			
			10.5										
			23.5										
			11.0										
			23.0										
			11.5			11.5 - 11.7m Convolute bedding on top of sub-horizontal to gently-inclined, laminated to thinly bedded, carbonaceous laminations. Flame structure.							
			22.5										
			12.0			12 - 12.3m Thick convolute bedding, carbonaceous laminations.							
			22.0										
			12.5										
			21.5										
			13.0										
			21.0										
			13.5										
			20.5										
			14.0										
			20.0										
			14.5										
			19.5										
			15.0										
			19.0										
			15.5										
			18.5										
			16.0										
			18.0										
			16.5										
			17.5										
			17.0										
			17.5										
			16.5										
			18.0										
			16.0										
			18.5										
			15.5										
			19.0										
			15.0										
			19.5										
			14.5										
						End of Machine Borehole at 20.00m							
	Manual groundwater measurement				Remarks								
Date		Water strike (mbgl)		Shear vane calibration: M728205.02		Survey accuracy: +5m							

		Machine Borehole						BH002						
											Client:	NZTA Waka Kotahi		
Project:	Te Ara Hauauru - Northwest Rapid Transit					Date completed:	05-06-2025							
Project ID:	705100376-004					Weather:	Rainy							
Location:	Arch Hill Reserve, Grey Lynn, Auckland					Logged by:	RC							
Feature:	Slope along footpath					Checked by:	NL							
Elevation: 28.00 mRL		Datum: NZVD2016		Coordinates: E 1755456.12 N 5918303.70		Grid: NZTM2000								
Drilling company: McMillan Drilling		Drilling Rig: N118		Termination: Target depth at 20.00 mbgl						Logging Standard: NZGD2005				
Drilling method	In-situ testing		R.L. (m)	Depth (m)	Material description	Unit	Legend	Recovery %			Discontinuities	Backfill	Water strike	
	Type	Results						TCR	SCR	RQD				
HA	SPT/SS	0,1// 1, 1, 1, 1 N = 4	27.5	0.5	Clayey SILT with trace organics; dark brown. Stiff, moist, low plasticity, contains rootlets. [Topsoil]									
SPT			27.0	1.0	Silty CLAY; grey mixed light brown. Soft, moist, high plasticity [FILL].									
HQ			26.5	1.5										
SPT			26.0	2.0										
HQ			25.5	2.5										
SPT		HSV (P/R) SPT/SS	28/	25.0	3.0									
0,0// 0, 1, 1, 1 N = 3			24.5	3.5										
HQ			24.0	4.0	Clayey SILT with trace gravel and sand; grey speckled dark brown. Soft, moist; low plasticity, contains iron-oxidised stained surfaces [Residual Soil].									
SPT			38/	23.5	4.5									
SPT			6,7// 14, 12, 26 for 5mm N = >50	23.0	5.0									
HQ	SPT/C	9,17// 20, 30 N = 50	22.5	5.5	Completely weathered, clayey SILTSTONE; grey. Extremely weak to very weak. Recovered as clayey SILT with some rock fabric preserved. Stiff to very stiff, moist, low plasticity [EAST COAST BAYS FORMATION].									
SPT			22.0	6.0										
HQ			21.5	6.5	Highly weathered, clayey interbedded SILTSTONE and fine SANDSTONE; grey. Very weak to weak, heterogeneous [EAST COAST BAYS FORMATION].									
SPT			21.0	7.0										
HQ			20.5	7.5	Moderately weathered, clay-rich interbedded SILTSTONE and SANDSTONE; grey. Very weak. Heterogeneous, rhythmically bedded sequence of alternating Siltstone and Sandstone. Closely to moderately widely spaced, generally sub-horizontal discontinuities [EAST COAST BAYS FORMATION]. 7.5 - 7.65m: Core loss									
SPT		20 ,30 for 65mm// N = >50	20.0	8.0										
			19.5	8.5										
			19.0	9.0										
			18.5	9.5										
Manual groundwater measurement					Remarks									
Date		Water strike (mbgl)		Shear vane calibration: M728205.02		Survey accuracy: +5m								

Machine Borehole

BH002

Client: NZTA Waka Kotahi
Project: Te Ara Hauauru - Northwest Rapid Transit
Project ID: 705100376-004
Location: Arch Hill Reserve, Grey Lynn, Auckland
Feature: Slope along footpath


Date started:	04-06-2025
Date completed:	05-06-2025
Weather:	Rainy
Logged by:	RC
Checked by:	NL
Status:	FINAL
Logging Standard:	NZGD2005

Elevation: 28.00 mRL **Datum:** NZVD2016 **Coordinates:** E 1755456.12 N 5918303.70 **Grid:** NZTM2000
Drilling company: McMillan Drilling **Drilling Rig:** N118 **Termination:** Target depth at 20.00 m

FINAL
NZGD2005

Drilling method	In-situ testing		R.L. (m)	Depth (m)	Material description	Unit	Legend	Recovery %			Discontinuities	Backfill	Water strike
	Type	Results						TCR	SCR	RQD			
					Moderately weathered, clay-rich interbedded SILTSTONE and SANDSTONE; grey. Very weak. Heterogeneous, rhythmically bedded sequence of alternating Siltstone and Sandstone. Closely to moderately widely spaced, generally sub-horizontal discontinuities [EAST COAST BAYS FORMATION].						10.21 m: Sub-horizontal defect, moderately narrow aperture, undulating smooth open fracture.		
			17.5	10.5							10.94 m: Sub-horizontal defect, moderately narrow aperture, undulating smooth open fracture.		
			17.0	11.0				100	83	83	11.03 m: Sub-horizontal defect, moderately narrow aperture, undulating smooth open fracture.		
			16.5	11.5							11.86 m: Sub-horizontal defect, moderately narrow aperture, undulating smooth open fracture.		
			16.0	12.0									
			15.5	12.5									
			15.0	13.0				93	72	51			
			14.5	13.5									
HQ	13.78 - 13.82m Carbonaceous thinly bedded laminations.												
			14.0	14.0				95	82	86			
			13.5	14.5									
			13.0	15.0							15.12 m: Sub-horizontal defect, moderately narrow aperture, undulating smooth open fracture.		
			12.5	15.5				84	72	55			
			12.0	16.0									
			11.5	16.5	16.28 - 16.5m: Core loss								
			11.0	17.0	16.5 - 20.0m: Contains carbonaceous streaks								
			10.5	17.5	17.31 - 17.36m Thin carbonaceous bands, sub-horizontally inclined.			96	85	85			
			10.0	18.0	17.55 - 17.6m Carbonaceous flecks.								
			9.5	18.5				80	80	76			
			9.0	19.0									
			8.5	19.5	19.2 - 19.5m: Core loss			100	80	80			
					End of Machine Borehole at 20.00m								
Manual groundwater measurement					Remarks								
Date		Water strike (mbgl)		Shear vane calibration: M726205.02		Survey accuracy: +5m							

Sheet 2 of 2

		Machine Borehole							BH003				
		Client: NZTA Waka Kotahi Project: Te Ara Hauauru - Northwest Rapid Transit Project ID: 705100376-004 Location: Parr Road North Feature: Road end car park							Date started: 11-06-2025	Date completed: 12-06-2025			
Elevation: 25.00 mRL Datum: NZVD2016 Coordinates: E 1752601.80 N 5918099.24 Grid: NZTM2000 Drilling company: McMillan Drilling Drilling Rig: N118 Termination: Target depth at 19.71 mbgl									Weather: Rainy	Logged by: RC			
									Checked by: NL	Status: FINAL			
									Logging Standard: NZGD2005				
Drilling method	In-situ testing		R.L. (m)	Depth (m)	Material description	Unit	Legend	Recovery %			Discontinuities	Backfill	Water strike
	Type	Results						TCR	SCR	RQD			
					Hydro excavated.								
			24.5	0.5									
			24.0	1.0									
			23.5	1.5									
			23.0	2.0	Silty CLAY, grey mixed orangish brown. Soft, iron oxidised staining, moist, high plasticity. Old alluvial deposits [TAKAANINI FORMATION]. 2-2.9m Core loss								
HQ			22.5	2.5									
SPT	SPT/SS	0,0// 1, 1, 1, 2 N = 5	22.0	3.0									
HQ			21.5	3.5									
SPT	SPT/SS	0,1// 1, 1, 1, 1 N = 4	21.0	4.0									
HQ			20.5	4.5									
SPT	SPT/SS	0,1// 1, 1, 1, 2 N = 5	20.0	5.0									
HQ			19.5	5.5									
SPT	SPT/SS	0,1// 1, 1, 1, 2 N = 5	19.0	6.0									
HQ			18.5	6.5	6.45-6.85m Core loss								
SPT	SPT/SS	68/ 0,0// 1, 1, 1, 1 N = 4	18.0	7.0	Clayey SILT, trace sand, light grey, mottled brownish orange, stiff, moist, high plasticity [Residual soil].								
HQ			17.5	7.5									
SPT	SPT/SS	68/ 0,1// 1, 1, 1, 1 N = 4	17.0	8.0									
HQ			16.5	8.5									
SPT	SPT/SS	68/ 0,1// 1, 1, 1, 1 N = 4	16.0	9.0									
HQ			15.5	9.5	Completely weathered clay-rich SILTSTONE recovered as soil. Clayey SILT, dark grey, very soft to stiff, moist, high plasticity [EAST COAST BAYS FORMATION].								
Manual groundwater measurement					Remarks								
Date		Water strike (mbgl)		Shear vane calibration: M728205.02			Survey accuracy: +5m						

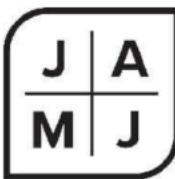
Machine Borehole

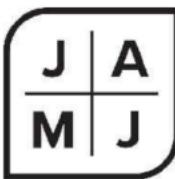
BH003

Client: NZTA Waka Kotahi
Project: Te Ara Hauauru - Northwest Rapid Transit
Project ID: 705100376-004
Location: Parr Road North
Feature: Road end car park

Date started: 11-06-2025
Date completed: 12-06-2025
Weather: Rainy
Logged by: RC
Checked by: NL
Status: FINAL
Logging Standard: NZGD2005

Elevation: 25.00 mRL **Datum:** NZVD2016 **Coordinates:** E 1752601.80 N 5918099.24 **Grid:** NZTM2000
Drilling company: McMillan Drilling **Drilling Rig:** N118 **Termination:** Target depth at 19.71 mb


FINAL
NZGD2005


Manual groundwater measurement

Remarks

Date	Water strike (mbgl)	Shear vane calibration:	M726205.02	
		Survey accuracy:	+5m	

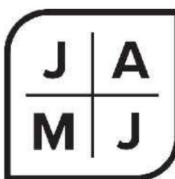
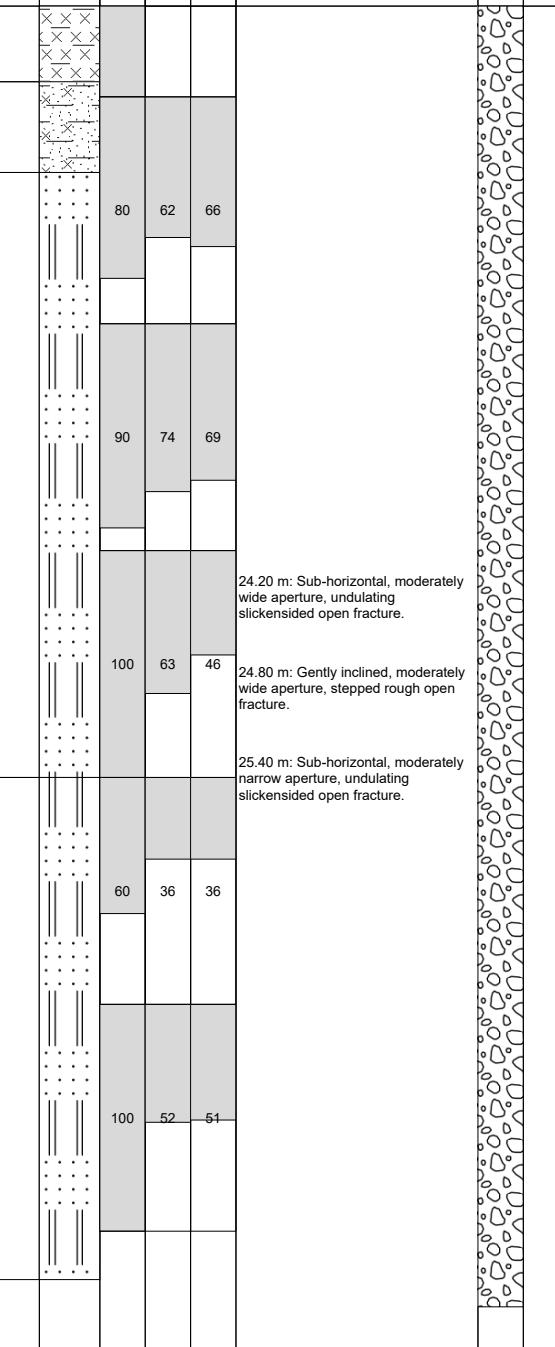
		Machine Borehole						BH004					
		Client: NZTA Waka Kotahi Project: Te Ara Hauauru - Northwest Rapid Transit Project ID: 705100376-004 Location: Carrington Road Feature: Carrington Road and Great North Road interception						Date started: 23-06-2025 Date completed: 24-06-2025 Weather: Rainy Logged by: RC Checked by: NL Status: FINAL Logging Standard: NZGD2005					
Elevation: 27.75 mRL Datum: NZVD2016 Coordinates: E 1752455.88 N 5918058.52 Grid: NZTM2000		Drilling company: McMillan Drilling		Drilling Rig: N118		Termination: Target depth at 20.00 mbgl							
Drilling method	In-situ testing		R.L. (m)	Depth (m)	Material description		Unit	Legend	Recovery %		Discontinuities	Backfill	Water strike
	Type	Results							TCR	SCR			
					Hydro excavated.								
			27.5										
			0.5										
			27.0										
			1.0										
			26.5										
			1.5										
			26.0										
			2.0										
			25.5										
			2.5										
			25.0										
			3.0		CLAY, grey mixed light brown. Soft, moist, high plasticity [FILL].								
SPT	SPT/SS	0,0// 1, 1, 1, 2 N = 5	24.5										
HQ			3.5										
			24.0										
			4.0		Silty CLAY, trace sand; orangish brown. Soft to very soft, moist, high plasticity. Minor iron oxidised mottling [TAKAANINI FORMATION].								
SPT	HSV (P/R)	48/	23.5										
HQ			4.5										
SPT	SPT/SS	0,1// 1, 1, 1, 1 N = 4	23.0										
HQ			5.0		Clayey SILT, yellowish light brown. Very soft, moist, low plasticity [TAKAANINI FORMATION].								
SPT	HSV (P/R)	UTP/	22.5										
HQ			5.5										
			22.0										
SPT	SPT/SS	1,2// 2, 2, 3, 3 N = 10	21.5		Clayey SILT, trace sand, dark grey. Soft, moist, low plasticity [Residual soil].								
HQ			6.0										
			6.5										
SPT	SPT/SS	2,2// 3, 4, 5, 6 N = 18	21.0										
HQ			7.0										
			20.5		Completely weathered clay-rich coarse SILTSTONE, dark grey, very weak to extremely weak. Recovered as soil, soil behaviours including very soft, low plasticity, moist [EAST COAST BAYS FORMATION].								
SPT	SPT/SS	3,5// 6, 7, 7, 7 N = 27	20.0										
HQ			7.5										
			19.5										
SPT	SPT/C	3,5// 6, 7, 7, 7 N = 27	19.0		Highly weathered interbedded clay-rich SILTSTONE and fine SANDSTONE, dark grey, very weak. Rhythmically thickly bedded sequence of alternating Siltstone and Sandstone, bedding contacts are very indistinct due to extensive weathering and discolouration. Carbonaceous flecks are present at the top of the unit [EAST COAST BAYS FORMATION].								
HQ			8.5										
			18.5										
			9.0										
			9.5										
			18.0										
			18.5										
			19.0										
			19.5										
			20.0										
			20.5										
			21.0										
			21.5										
			22.0										
			22.5										
			23.0										
			23.5										
			24.0										
			24.5										
			25.0										
			25.5										
			26.0										
			26.5										
			27.0										
			27.5										
			0.5										
			1.0										
			1.5										
			2.0										
			2.5										
			3.0										
			3.5										
			4.0										
			4.5										
			5.0										
			5.5										
			6.0										
			6.5										
			7.0										
			7.5										
			8.0										
			8.5										
			9.0										
			9.5										
			10.0										
			10.5										
			11.0										
			11.5										
			12.0										
			12.5										
			13.0										
			13.5										
			14.0										
			14.5										
			15.0										
			15.5										
			16.0										
			16.5										
			17.0										
			17.5										
			18.0										
			18.5										
			19.0										
			19.5										
			20.0										
			20.5										
			21.0										
			21.5										
			22.0										
			22.5										
			23.0										
			23.5										
			24.0										
			24.5										
			25.0										
			25.5										
			26.0										
			26.5										
			27.0										
			27.5										
			0.5										
			1.0										
			1.5										
			2.0										
			2.5										
			3.0										
			3.5										
			4.0										
			4.5										
			5.0										
			5.5										
			6.0										
			6.5										
			7.0										
			7.5										
			8.0										
			8.5										
			9.0										
			9.5										
			10.0										
			10.5										
			11.0										
			11.5										
			12.0										
			12.5										
			13.0										
			13.5										
			14.0										
			14.5										
			15.0										
			15.5										
			16.0										
			16.5										
			17.0										
			17.5										
			18.0										
			18.5										
			19.0										
			19.5										
			20.0										
			20.5										
			21.0										
			21.5										
			22.0							</td			

		Machine Borehole						BH004								
		Client: NZTA Waka Kotahi Project: Te Ara Hauauru - Northwest Rapid Transit Project ID: 705100376-004 Location: Carrington Road Feature: Carrington Road and Great North Road interception						Date started: 23-06-2025 Date completed: 24-06-2025 Weather: Rainy Logged by: RC Checked by: NL Status: FINAL Logging Standard: NZGD2005								
Elevation: 27.75 mRL Datum: NZVD2016 Coordinates: E 1752455.88 N 5918058.52 Grid: NZTM2000		Drilling company: McMillan Drilling		Drilling Rig: N118		Termination: Target depth at 20.00 mbgl										
Drilling method	In-situ testing		R.L. (m)	Depth (m)	Material description		Unit	Legend	Recovery %							
	Type	Results							TCR SCR RQD							
	SPT	SPT/C	5,8// 9, 9, 8, 8 N = 34	17.5	Highly weathered interbedded clay-rich SILTSTONE and fine SANDSTONE, dark grey, very weak. Rhythmically thickly bedded sequence of alternating Siltstone and Sandstone, bedding contacts are very indistinct due to extensive weathering and discolouration. Carbonaceous flecks are present at the top of the unit [EAST COAST BAYS FORMATION].				10.40 m: Sub-horizontal, very narrow aperture, undulating smooth open fracture. 11.05 m: Sub-horizontal, moderately narrow aperture, undulating rough open fracture. 11.36 m: Sub-horizontal, moderately narrow aperture, undulating rough open fracture. 11.88 m: Moderately inclined, moderately wide aperture, undulating rough open fracture. 12.20 m: Gently inclined, moderately narrow aperture, undulating rough open fracture. Clay infill. 12.40 m: Gently inclined, moderately narrow aperture, undulating smooth open fracture. 12.70 m: Gently inclined, moderately narrow, undulating smooth. 13.05 m: Sub-horizontal, moderately wide, undulating smooth open fracture. 13.26 m: Steeply inclined, moderately wide aperture, undulating rough open fracture.							
				10.5												
				11.0												
				11.5												
				12.0												
				12.5												
				13.0												
				13.5												
	SPT	SPT/C	3,11// 13, 12, 13, 11 N = 49	14.0	Moderately weathered interbedded clay-rich SILTSTONE and fine to coarse SANDSTONE, grey, yellowish brown sand infill, weak to very weak. Rhythmically thickly bedded sequence of alternating Siltstone and Sandstone. Discontinuities varies from sub-horizontal to steeply inclined, very closely spaced [EAST COAST BAYS FORMATION]				81 71 62							
				14.5												
				15.0												
				15.5												
				16.0												
				16.5												
				17.0												
				17.5												
	HQ	SPT/C	4,12// 19, 21, 10, 50 for 35mm N = >50	18.0	12.65-13.5m Fine to coarse SANDSTONE bed, with coarsening downwards sedimentary sequence (Sandstone are more coarse with increasing depth).				100 82 80							
				18.5												
				19.0												
				19.5												
				20.0												
				20.5												
				21.0												
				21.5												
	SPT	SPT/C	4,10// 23, 22, 50 for 55mm N = >50	22.0	13.9-15m Fine to coarse SANDSTONE bed, with coarsening downwards sedimentary sequence (Sandstone are more coarse with increasing depth).				100 91 89							
				22.5												
				23.0												
				23.5												
				24.0												
				24.5												
				25.0												
				25.5												
	HQ	SPT/C	10,26// 50 for 15mm N = >50	26.0	14.45m Carbonaceous flecks. 14.56m Thick bedded carbonaceous laminations.				100 78 66							
				26.5												
				27.0												
				27.5												
				28.0												
				28.5												
				29.0												
				29.5												
	SPT	SPT/C	10,26// 50 for 15mm N = >50	30.0	15.45m Thick bedded carbonaceous laminations.				93 77 71							
				30.5												
				31.0												
				31.5												
				32.0												
				32.5												
				33.0												
				33.5												
	HQ	SPT/C	10,26// 50 for 15mm N = >50	34.0	19.6-19.8m Coarse SANDSTONE, turbidite base.				100 73 70							
				34.5												
				35.0												
				35.5												
				36.0												
				36.5												
				37.0												
				37.5												
	SPT	SPT/C	10,26// 50 for 15mm N = >50	38.0	19.6-19.8m Coarse SANDSTONE, turbidite base.				100 84 60							
				38.5												
				39.0												
				39.5												
				40.0												
				40.5												
				41.0												

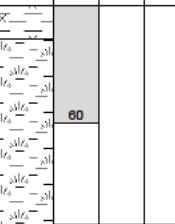
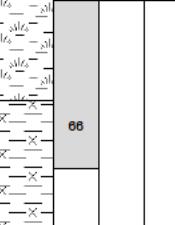
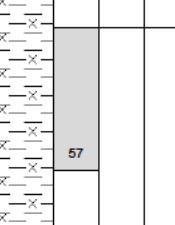
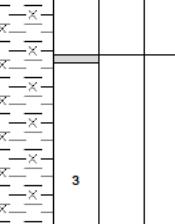
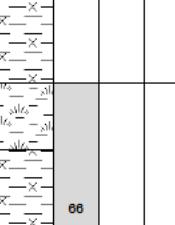
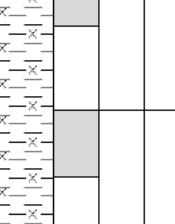
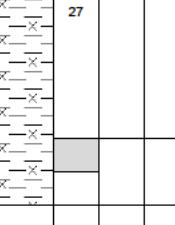
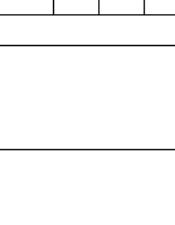
		Machine Borehole						BH005			
		Client: NZTA Waka Kotahi Project: Te Ara Hauauru - Northwest Rapid Transit Project ID: 705100376-004 Location: SH16 - Te Atatu Road Feature: Reserve cycleway side						Date started: 27-06-2025 Date completed: 28-06-2025 Weather: Rainy Logged by: RC Checked by: NL Status: FINAL Logging Standard: NZGD2005			
		Elevation: 20.75 mRL Datum: NZVD2016 Coordinates: E 1747345.91 N 5919524.86 Grid: NZTM2000 Drilling company: McMillan Drilling Drilling Rig: N118 Termination: Target depth at 28.82 mbgl									
Drilling method	In-situ testing		R.L. (m)	Depth (m)	Material description		Unit	Legend	Recovery %		
	Type	Results							TCR	SCR	RQD
					Hydro excavated.						
					20.5						
					0.5						
					20.0						
					1.0						
					19.5						
					1.5						
					19.0						
					2.0						
					18.5		Silty sandy CLAY, grey mixed orangish brown. Organic-rich layer transits to very dense gravelly bottom. Stiff, moist, high plasticity [FILL].		120		
					2.5						
					18.0		2.7 - 2.9m: Colour changes to black, suspected buried topsoil.				
					3.0		Silty CLAY, trace sand; light brown. Firm, moist, high plasticity, contains carbonaceous fragments; sand, fine [TAKAANINI FORMATION].		27		
					17.5						
					3.5						
					17.0						
					4.0						
					16.5						
					4.5		4.5 - 5.2m: Becomes light brown, soft.				
					16.0						
					5.0						
					15.5		Organic, sandy CLAY; black. Very soft, wet, High plasticity, low energy alluvial depositional environment [TAKAANINI FORMATION].		73		
					5.5						
					15.0						
					6.0		Silty CLAY; light brown with iron-oxidised staining. Firm, wet, high plasticity [TAKAANINI FORMATION].		100		
					14.5						
					6.5						
					14.0						
					7.0						
					13.5						
					7.5						
					13.0						
					8.0						
					12.5						
					8.5						
					12.0						
					9.0						
					11.5		Silty CLAY, trace sand; light brown. Firm, moist, high plasticity, contains carbonaceous fragments; sand, fine to medium [TAKAANINI FORMATION].		86		
					9.5						
					11.0		Organic-rich, silty CLAY; black. Very soft to soft, wet, high plasticity [TAKAANINI FORMATION].		70		
					10.0						
Manual groundwater measurement				Remarks							
Date		Water strike (mbgl)		Shear vane calibration: M728205.02							
Survey accuracy:		+5m									

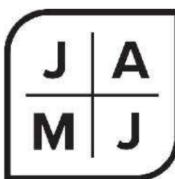
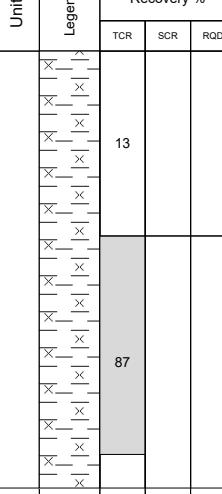
Machine Borehole

Client: NZTA Waka Kotahi
Project: Te Ara Hauauru - Northwest Rapid Transit
Project ID: 705100376-004
Location: SH16 - Te Atatu Road
Feature: Reserve cycleway side



Elevation: 20.75 mRL **Datum:** NZVD2016 **Coordinates:** E 1747345.91 N 5919524.86 **Grid:** NZTM2000
Drilling company: McMillan Drilling **Drilling Rig:** N118 **Termination:** Target depth at 28.82 mb

Date started:	27-06-2025
Date completed:	28-06-2025
Weather:	Rainy
Logged by:	RC
Checked by:	NL
Status:	FINAL
Logging Standard:	NZGD2005









Manual groundwater measurement



Remarks

Date	Water strike (mbgl)	Shear vane calibration:	M726205.02
		Survey accuracy:	+5m

		Machine Borehole							BH005			
		Client: NZTA Waka Kotahi Project: Te Ara Hauauru - Northwest Rapid Transit Project ID: 705100376-004 Location: SH16 - Te Atatu Road Feature: Reserve cycleway side							Date started: 27-06-2025	Date completed: 28-06-2025		
		Drilling company: McMillan Drilling Drilling Rig: N118 Termination: Target depth at 28.82 mbgl							Weather: Rainy	Logged by: RC		
Drilling method	In-situ testing	R.L. (m)	Depth (m)	Material description			Unit	Legend	Recovery %	Discontinuities		
	Type	Results							TCR	SCR	RQD	
HQ	HSV (P/R) SPT/SS	UTP/ 2.3// 4, 3, 3, 5 N = 15	20.5	Clayey SILT, trace sand; dark grey. Stiff, moist, high plasticity; sand, fine [Residual Soil].								
SPT			0.0									
HQ			21.0	Completely weathered, brownish grey, fine SANDSTONE, extremely weak. Recovered as clayey SAND. Dense, moist, uniformly graded; sand, fine [EAST COAST BAYS FORMATION].								
SPT			-0.5									
HQ			21.5	Highly weathered, brownish grey, clay-rich interbedded SILTSTONE and fine to medium SANDSTONE, very weak. Moderately widely to widely spaced discontinuities [EAST COAST BAYS FORMATION].								
SPT		SPT/SS	-1.0						80	62	66	
HQ			-1.5									
SPT	SPT/C	3.3// 4, 4, 4, 6 N = 18	22.0									
HQ			-2.0									
SPT			-2.5									
HQ			-3.0									
SPT			-3.5									
HQ			-4.0									
SPT			-4.5									
HQ			-5.0									
SPT		SPT/C	-5.5	Moderately weathered, brownish grey interbedded SILTSTONE and fine to medium SANDSTONE, very weak. Intact rock with breakages incurred by drilling [EAST COAST BAYS FORMATION].								
HQ			-6.0									
SPT	SPT/C	6.6// 7, 10, 10, 13 N = 40	-6.5									
HQ			-7.0									
SPT			-7.5									
HQ			-8.0									
SPT			-8.5	End of Machine Borehole at 28.82m								
HQ			-9.0									
SPT			-9.5									
HQ			-10.0									
SPT			-10.5									
			-11.0									
Manual groundwater measurement				Remarks								
Date		Water strike (mbgl)		Shear vane calibration: M726205.02								
				Survey accuracy: +5m								

		Machine Borehole							BH006			
		Client: NZTA Waka Kotahi Project: Te Ara Hauauru - Northwest Rapid Transit Project ID: 705100376-004 Location: SH16 - Te Atatu Road Feature: Road side grass patch							Date started: 04-07-2025	Date completed: 05-07-2025		
Elevation: 22.50 mRL Datum: NZVD2016 Coordinates: E 1747309.07 N 5919545.53 Grid: NZTM2000		Drilling company: McMillan Drilling		Drilling Rig: N118		Termination: Target depth at 21.00 mbgl			Weather: Rainy	Logged by: RC	Checked by: NL	
Drilling method	In-situ testing		R.L. (m)	Depth (m)	Material description			Unit	Legend	Recovery %		
	Type	Results								TCR	SCR	RQD
					Hydro excavated.							

		Machine Borehole							BH006							
		Client: NZTA Waka Kotahi Project: Te Ara Hauauru - Northwest Rapid Transit Project ID: 705100376-004 Location: SH16 - Te Atatu Road Feature: Road side grass patch							Date started: 04-07-2025 Date completed: 05-07-2025 Weather: Rainy Logged by: RC Checked by: NL Status: FINAL Logging Standard: NZGD2005							
		Elevation: 22.50 mRL Datum: NZVD2016 Coordinates: E 1747309.07 N 5919545.53 Grid: NZTM2000 Drilling company: McMillan Drilling Drilling Rig: N118 Termination: Target depth at 21.00 mbgl														
Drilling method	In-situ testing		R.L. (m)	Depth (m)	Material description			Unit	Legend	Recovery %						
	Type	Results								TCR	SCR	RQD				
SPT	SPT/SS	0,1// 1, 1, 2, 2 N = 6	13.0	9.5	Silty CLAY; yellowish brown. Soft, moist, high plasticity. Contains carbonaceous flecks [TAKAANINI FORMATION].					60						
HQ					Organic CLAY; black. Very soft, saturated, low plasticity [TAKAANINI FORMATION].											
SPT	HSV (P/R)	39/	12.0	10.5						66						
HQ					Silty CLAY; yellowish light brown. Soft to firm, moist to wet, high plasticity [TAKAANINI FORMATION].											
SPT	SPT/SS	0,1// 1, 1, 1, 2 N = 5	11.5	11.0						57						
HQ																
SPT	HSV (P/R)	42/	10.5	12.0						3						
HQ																
SPT	SPT/SS	0,1// 1, 1, 2, 2 N = 6	10.0	12.5						66						
HQ																
SPT	HSV (P/R)	52/	9.0	13.5						27						
HQ																
SPT	SPT/SS	0,0// 1, 2, 1, 1 N = 5	8.5	14.0						18.0 - 21.0: becomes firm, moist, high plasticity.						
HQ																
SPT	HSV (P/R)	49/	7.5	15.0	Organic CLAY; black. Very soft, wet, low plasticity [TAKAANINI FORMATION].					66						
HQ					Silty CLAY; yellowish brown. Very soft, wet, low plasticity [TAKAANINI FORMATION].											
SPT	SPT/SS	0,0// 1, 1, 2, 1 N = 5	7.0	15.5						27						
HQ																
SPT	HSV (P/R)	41/	6.0	16.5						66						
HQ																
SPT	SPT/SS	0,0// 0, 1, 1, 1 N = 3	5.5	17.0						27						
HQ																
SPT	HSV (P/R)	52/	4.5	18.0	18.0 - 21.0: becomes firm, moist, high plasticity.					66						
HQ																
Manual groundwater measurement				Remarks												
Date		Water strike (mbgl)		Shear vane calibration: M728205.02												
Survey accuracy:		+5m														

		Machine Borehole							BH006									
		Client: NZTA Waka Kotahi Project: Te Ara Hauauru - Northwest Rapid Transit Project ID: 705100376-004 Location: SH16 - Te Atatu Road Feature: Road side grass patch							Date started: 04-07-2025	Date completed: 05-07-2025								
Elevation: 22.50 mRL		Datum: NZVD2016		Coordinates: E 1747309.07 N 5919545.53		Grid: NZTM2000		Weather: Rainy										
Drilling company: McMillan Drilling		Drilling Rig: N118		Termination: Target depth at 21.00 mbgl		Logged by: RC		Checked by: NL		Status: FINAL								
								Logging Standard: NZGD2005										
Drilling method	In-situ testing		R.L. (m)	Depth (m)	Material description			Unit	Legend	Recovery %		Discontinuities		Backfill Water strike				
	Type	Results								TCR	SCR	RQD						
HQ	HSV (P/R) SPT/SS 60/ 0.1// 1, 2, 2, 2 N = 7	SPT/SS 58/ 2, 1// 2, 1, 2, 1 N = 6	4.0	18.5	Silty CLAY; yellowish brown. Very soft, wet, low plasticity [TAKAANINI FORMATION].													
SPT			3.5	19.0														
HQ			3.0	19.5														
SPT			2.5	20.0														
HQ			2.0	20.5														
SPT			1.5	21.0	End of Machine Borehole at 21.00m													
			1.0	21.5														
			0.5	22.0														
			0.0	22.5														
			-0.5	23.0														
			-1.0	23.5														
			-1.5	24.0														
			-2.0	24.5														
			-2.5	25.0														
			-3.0	25.5														
			-3.5	26.0														
			-4.0	26.5														
			-4.5	27.0														
			-5.0	27.5														
Manual groundwater measurement				Remarks														
Date		Water strike (mbgl)		Shear vane calibration: M726205.02														
				Survey accuracy: +-5m														

		Machine Borehole						BH008			
		Client: NZTA Waka Kotahi Project: Te Ara Hauauru - Northwest Rapid Transit Project ID: 705100376-004 Location: SH19 Feature: Paved road west of on-ramp						Date started: 08-07-2025 Date completed: 09-07-2025 Weather: Cloudy, dry Logged by: TZ Checked by: NL Status: FINAL Logging Standard: NZGD2005			
Elevation: 16.25 mRL Datum: NZVD2016 Coordinates: E 1745443.40 N 5920556.87 Grid: NZTM2000		Drilling company: McMillan Drilling		Drilling Rig: Truck mounted rig		Termination: Target depth at 20.00 mbgl					
Drilling method	In-situ testing		R.L. (m)	Depth (m)	Material description		Unit	Legend	Recovery %		
	Type	Results							TCR	SCR	RQD
					Hydro-vacuum extracted.						
				16.0							
				0.5							
				15.5							
				1.0							
				15.0							
				1.5							
				14.5							
				2.0							
				14.0							
				16.0							
				0.5							
				15.5							
				1.0							
				15.0							
				1.5							
				14.5							
				2.0							
				14.0							
				16.0							
				0.5							
				15.5							
				1.0							
				15.0							
				1.5							
				14.5							
				2.0							
				14.0							
				16.0							
				0.5							
				15.5							
				1.0							
				15.0							
				1.5							
				14.5							
				2.0							
				14.0							
				16.0							
				0.5							
				15.5							
				1.0							
				15.0							
				1.5							
				14.5							
				2.0							
				14.0							
				16.0							
				0.5							
				15.5							
				1.0							
				15.0							
				1.5							
				14.5							
				2.0							
				14.0							
				16.0							
				0.5							
				15.5							
				1.0							
				15.0							
				1.5							
				14.5							
				2.0							
				14.0							
				16.0							
				0.5							
				15.5							
				1.0							
				15.0							
				1.5							
				14.5							
				2.0							
				14.0							
				16.0							
				0.5							
				15.5							
				1.0							
				15.0							
				1.5							
				14.5							
				2.0							
				14.0							
				16.0							
				0.5							
				15.5							
				1.0							
				15.0							
				1.5							
				14.5							
				2.0							
				14.0							
				16.0							
				0.5							
				15.5							
				1.0							
				15.0							
				1.5							
				14.5							
				2.0							
				14.0							
				16.0							
				0.5							
				15.5							
				1.0							
				15.0							
				1.5							
				14.5							
				2.0							
				14.0							
				16.0							
				0.5							
				15.5							
				1.0							
				15.0							
				1.5							
			</td								

Machine Borehole

BH008

Client: NZTA Waka Kotahi
Project: Te Ara Hauauru - Northwest Rapid Transit
Project ID: 705100376-004
Location: SH19
Feature: Paved road west of on-ramp

Date started:	08-07-2025
Date completed:	09-07-2025
Weather:	Cloudy, dry
Logged by:	TZ
Checked by:	NL
Status:	FINAL
Logging Standard:	NZGD2005

Elevation: 16.25 mRL **Datum:** NZVD2016 **Coordinates:** E 1745443.40 N 5920556.87 **Grid:** NZTM2000
Drilling company: McMillan Drilling **Drilling Rig:** Truck mounted rig **Termination:** Target depth at 20.00 mb

Drilling company: McMillan Drill

Drilling Rig: Truck mounted rig **Termination:** Target depth at 20.00 mb

Logging Standard: NZGD2005

Drilling method	In-situ testing		R.L. (m)	Depth (m)	Material description	Unit	Legend	Recovery %			Discontinuities	Backfill	Water strike								
	Type	Results						TCR	SCR	RQD											
HQ	SPT/C 6,10// 13, 16, 5 for 25mm N = >50	6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5	Highly weathered, grey interbedded fine SANDSTONE and clayey SILTSTONE, very weak. Rhythmically bedded sequence of alternating moderately thin to thick beds of Siltstone and Sandstone. Closely spaced to moderately widely spaced, very steeply inclined discontinuities with moderately narrow apertures and planar rough fractures [East Coast Bays Formation]. 10.7 - 11.0m: Moderately thick bed of extremely weak, clayey Siltstone. Recovered as clayey silt, stiff, moist, low plasticity. 11.1 - 11.55m: Moderately thick bed of clayey Siltstone.	10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.2 - 15.25m: Recovered as sandy silt, soft, saturated, low plasticity. 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5	88 43 90 83 97 90 23	39 17 75 59 97 77 13 13	33 17 63 64 93 84 13 13	9.70 m: Very steeply inclined defect, moderately narrow aperture, planar rough fracture. 9.85 m: Very steeply inclined defect, moderately narrow aperture, planar rough fracture. 10.30 m: Very steeply inclined to sub-vertical discontinuity, moderately narrow aperture, planar rough fracture. 13.20 m: Very steeply inclined, moderately narrow aperture, planar rough fracture. 13.40 m: Sub-horizontal discontinuity, narrow aperture, undulating rough fracture. 14.10 m: Very steeply inclined discontinuity, moderately narrow aperture, planar rough fracture. 14.70 m: Sub-vertical discontinuity, moderately narrow aperture, planar rough fracture. Discontinuity surface shows speckled light brown discoloration. 16.40 m: Sub-horizontal discontinuity, narrow aperture, planar rough aperture. 17.35 m: Sub-horizontal discontinuity, narrow aperture, planar smooth fracture. 17.45 m: Sub-horizontal fracture, moderately narrow aperture, planar rough fracture. 17.60 m: Sub-vertical discontinuity, narrow aperture, planar rough fracture. 18.10 m: Steeply inclined, narrow aperture, planar rough fracture. 18.20 m: Sub-horizontal discontinuity, very narrow aperture, planar smooth fracture.													
End of Machine Borehole at 20.00m																					
Manual groundwater measurement				Remarks																	
Date		Water strike (mbgl)		Shear vane calibration: M726205.02		Survey accuracy: +5m															

Sheet 2 of 2

Machine Borehole

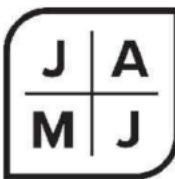
BH009

Client: NZTA Waka Kotahi
Project: Te Ara Hauauru - Northwest Rapid Transit
Project ID: 705100376-004
Location: Triangle Rd / Huruhuru Rd
Feature: North of roundabout

Date started:	10-07-2025
Date completed:	11-07-2025
Weather:	Rainstorm
Logged by:	TZ
Checked by:	NL
Status:	FINAL
Logging Standard:	NZGD2005

Elevation: 24.50 mRL **Datum:** NZVD2016 **Coordinates:** E 1744919.93 N 5921213.79 **Grid:** NZTM2000
Drilling company: MacMillan Drilling **Drilling Rig:** Truck mounted rig **Termination:** Target depth at 20.00 m

Manual groundwater measurement


Remarks

Date

Water strike (mbgl)

Shear vane calibration:

Survey accuracy: +5m

		Machine Borehole							BH009						
		Client: NZTA Waka Kotahi Project: Te Ara Hauauru - Northwest Rapid Transit Project ID: 705100376-004 Location: Triangle Rd / Huruhuru Rd Feature: North of roundabout							Date started: 10-07-2025	Date completed: 11-07-2025					
Elevation: 24.50 mRL Datum: NZVD2016 Coordinates: E 1744919.93 N 5921213.79 Grid: NZTM2000 Drilling company: MacMillan Drilling Drilling Rig: Truck mounted rig Termination: Target depth at 20.00 mbgl									Weather: Rainstorm	Logged by: TZ					
Drilling method	In-situ testing		R.L. (m)	Depth (m)	Material description			Unit	Legend	Recovery %					
	Type	Results								TCR	SCR				
HQ	HSV (P/R)	SPT/SS	28/ 1,1// 1, 1, 1, 1 N = 4	14.0	Silty CLAY, some sand; light brown, mottled grey. Firm to stiff, moist, low plasticity; sand, fine [TAKAANINI FORMATION].			90	40	73	63 45 30				
SPT				13.5	Silty CLAY: light brown, mottled grey. Soft, moist, high plasticity [TAKAANINI FORMATION].										
HQ				13.0	Sandy SILT, minor clay; light brown mottled grey. Firm, moist, low plasticity; sand, fine [TAKAANINI FORMATION].										
SPT				12.5											
HQ				12.0											
SPT				11.5	Silty SAND: light brown. Medium dense, moist, uniformly graded; sand, fine to medium [RESIDUAL SOIL].										
HQ				11.0	13.5 - 13.9m: Silty sand becomes grey, loose, saturated.										
SPT				10.5	14.0 Completely weathered, grey, fine Sandstone, Very weak [EAST COAST BAYS FORMATION].										
HQ				10.0	14.5 Highly weathered, grey SILTSTONE, very weak [EAST COAST BAYS FORMATION].										
SPT				9.5	15.0										
HQ	HSV (P/R)	SPT/C	2,2// 2, 2, 2, 3 N = 9	9.0	15.5 Moderately weathered, dark grey, interbedded clay-rich SILTSTONE and fine SANDSTONE, weak. Rhythmically sequence of thin beds of Siltstone and Sandstone. Moderately widely spaced, subhorizontal to steeply inclined discontinuities with narrow apertures and stepped to planar rough fractures [EAST COAST BAYS FORMATION].			90 86 73	63 45 30	15.85 m: Sub-horizontal discontinuity, narrow aperture, planar rough fracture. 16.10 m: Sub-horizontal discontinuity, very narrow aperture, planar rough fracture. 16.25 m: Sub-horizontal discontinuity, narrow aperture, planar rough fracture. 16.80 m: Sub-horizontal discontinuity, narrow aperture, rough stepped fracture.	17.40 m: Sub-horizontal discontinuity, narrow aperture, planar rough fracture. 17.90-17.75 m: Two very steeply inclined discontinuities, moderately narrow apertures, undulating rough fractures. 17.95 m: Gently inclined discontinuity, moderately narrow aperture, rough stepped fracture.				
HQ				8.5	16.0										
SPT				8.0	16.5										
HQ				7.5	17.0 16.8 - 17.0m: Completely weathered to soil. Recovered as silty Sand, loose, saturated; sand, fine.										
SPT				7.0	17.5										
HQ				6.5	18.0 Slightly weathered, dark grey, interbedded clay-rich SILTSTONE and fine SANDSTONE, weak. Rhythmically sequenced thin to moderately thin beds of Siltstone and Sandstone. Moderately widely spaced, generally subhorizontal discontinuities with narrow to moderately narrow apertures and planar rough fractures [EAST COAST BAYS FORMATION].										
SPT				6.0	18.5										
HQ				5.5	19.0										
HQ				5.0	19.5										
					End of Machine Borehole at 20.00m										
Manual groundwater measurement				Remarks											
Date	Water strike (mbgl)		Shear vane calibration: Survey accuracy: +5m												

Machine Borehole

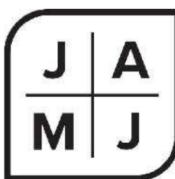
BH010

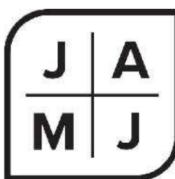
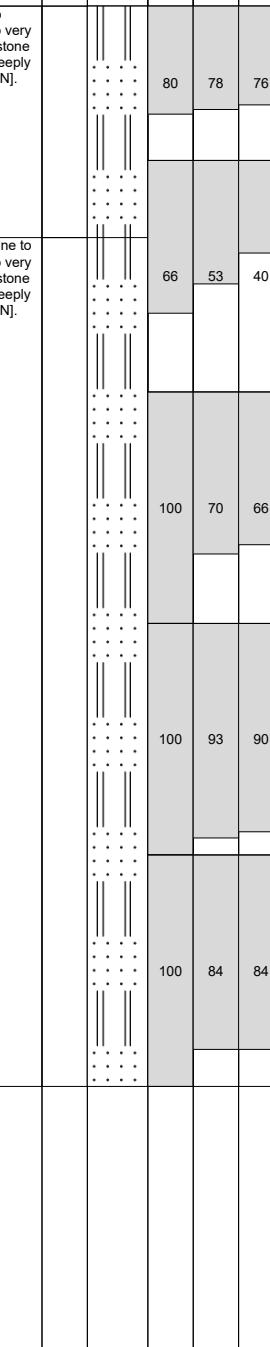
Client: NZTA Waka Kotahi
Project: Te Ara Hauauru - Northwest Rapid Transit
Project ID: 705100376-004
Location: Royal Road - SH16 cycle way
Feature: cycle way first section

Date started: 09-07-2025
Date completed: 10-07-2025
Weather: Rainy
Logged by: RC
Checked by: NL
Status: FINAL
Logging Standard: NZGD2005

Elevation: 65.00 mRL **Datum:** NZVD2016 **Coordinates:** E 1744347.85 N 5922655.46 **Grid:** NZTM2000
Drilling company: McMillan Drilling **Drilling Rig:** N118 **Termination:** Target depth at 20.00 mbs

FINAL
NZGD2005


Manual groundwater measurement



Remarks

Manual groundwater measurement		Remarks	
Date	Water strike (mbgl)	Shear vane calibration: M726205.02 Survey accuracy: +5m	

		Machine Borehole							BH011						
		Client: NZTA Waka Kotahi Project: Te Ara Hauauru - Northwest Rapid Transit Project ID: 705100376-004 Location: West of SH16 Feature: On cycleway							Date started: 10-07-2025	Date completed: 14-07-2025					
		Elevation: 59.00 mRL		Datum: NZVD2016		Coordinates: E 1744328.54 N 5922793.66		Grid: NZTM2000		Weather: Rainy					
		Drilling company: MacMillan Drilling		Drilling Rig: N118		Termination: Target depth at 27.00 mbgl				Logged by: RC					
										Checked by: NL					
										Status: FINAL					
										Logging Standard: NZGD2005					
Drilling method	In-situ testing		R.L. (m)	Depth (m)	Material description			Unit	Legend	Recovery %			Discontinuities	Backfill	Water strike
	Type	Results								TCR	SCR	RQD			
					Hydro excavated.										
			58.5	0.5											
			58.0	1.0											
			57.5	1.5											
			57.0	2.0	Silty CLAY, trace gravels; yellowish light brown with iron-oxidised flecks. Firm to stiff, moist, low plasticity; gravel, fine to medium, sub-angular [TAKAANINI FORMATION].						60				
HQ	HSV (P/R)	62/	56.5	2.5											
SPT	SPT/SS	0,1// 1, 1, 1, 2 N = 5	56.0	3.0											
HQ	HSV (P/R)	38/	55.5	3.5							23				
SPT	SPT/SS	0,1// 1, 1, 1, 1 N = 4	55.0	4.0											
HQ	HSV (P/R)	38/	54.5	4.5	Silty CLAY, trace sand; grey. Soft to firm, moist, high plasticity; sand, fine, sub-angular [Residual Soil].										
SPT	SPT/SS	0,1// 1, 1, 1, 1 N = 4	54.0	5.0											
HQ	HSV (P/R)	40/	53.5	5.5							60				
SPT	SPT/SS	0,1// 1, 1, 2, 2 N = 6	53.0	6.0	Clayey SILT, trace sand; grey. Soft to firm, wet to moist, low plasticity; sand, fine, sub-angular [Residual Soil].										
HQ	HSV (P/R)	20/	52.5	6.5							77				
SPT	SPT/SS	0,1// 1, 1, 1, 1 N = 4	52.0	7.0											
HQ	HSV (P/R)	38/	51.5	7.5											
SPT	SPT/SS	0,1// 1, 1, 1, 1 N = 4	51.0	8.0							100				
HQ	HSV (P/R)	38/	50.0	8.5											
SPT	SPT/SS	0,0// 0, 1, 1, 1 N = 3	49.5	9.0							33				
HQ															
Manual groundwater measurement					Remarks										
Date		Water strike (mbgl)		Shear vane calibration: M728205.02		Survey accuracy: +5m									

		Machine Borehole							BH011						
		Client: NZTA Waka Kotahi Project: Te Ara Hauauru - Northwest Rapid Transit Project ID: 705100376-004 Location: West of SH16 Feature: On cycleway							Date started: 10-07-2025	Date completed: 14-07-2025					
		Elevation: 59.00 mRL		Datum: NZVD2016		Coordinates: E 1744328.54 N 5922793.66		Grid: NZTM2000	Weather: Rainy	Logged by: RC	Checked by: NL				
		Drilling company: MacMillan Drilling		Drilling Rig: N118		Termination: Target depth at 27.00 mbgl		Status: FINAL	Logging Standard: NZGD2005						
Drilling method	In-situ testing		R.L. (m)	Depth (m)	Material description			Unit	Legend	Recovery %	Discontinuities		Backfill Water strike		
	Type	Results								TCR SCR RQD					

		Machine Borehole							BH011						
		Client: NZTA Waka Kotahi Project: Te Ara Hauauru - Northwest Rapid Transit Project ID: 705100376-004 Location: West of SH16 Feature: On cycleway							Date started: 10-07-2025	Date completed: 14-07-2025	Weather: Rainy				
		Elevation: 59.00 mRL Datum: NZVD2016 Coordinates: E 1744328.54 N 5922793.66 Grid: NZTM2000							Logged by: RC	Checked by: NL	Status: FINAL				
		Drilling company: MacMillan Drilling Drilling Rig: N118 Termination: Target depth at 27.00 mbgl							Logging Standard: NZGD2005						
Drilling method	In-situ testing		R.L. (m)	Depth (m)	Material description			Unit	Legend	Recovery %	Discontinuities	Backfill Water strike			
	Type	Results								TCR SCR RQD					
HQ	HSV (P/R) SPT/SS 2,3// 4, 5, 6, 6 N = 21	UTP/ 2,3// 4, 5, 6, 6 N = 21	38.5	20.5	Highly weathered interbedded clay-rich SILTSTONE and fine to coarse SANDSTONE, grey, yellowish brown sand infill, weak to very weak. Rhythmically thickly bedded sequence of alternating Siltstone and Sandstone. Discontinuities varies from sub-horizontal to steeply inclined, very closely spaced [EAST COAST BAYS FORMATION].					80 78 76	20.80 m: Gently inclined discontinuity, moderately narrow aperture, undulating smooth fracture.				
SPT			38.0	21.0						66 53 40					
HQ			37.5	21.5	Moderately weathered interbedded clay-rich SILTSTONE and fine to coarse SANDSTONE, grey, yellowish brown sand infill, weak to very weak. Rhythmically thickly bedded sequence of alternating Siltstone and Sandstone. Discontinuities varies from sub-horizontal to steeply inclined, very closely spaced [EAST COAST BAYS FORMATION].					22.40 m: Sub-horizontal discontinuity, moderately narrow aperture, undulating smooth fracture.					
SPT			37.0	22.0											
HQ			36.5	22.5	22.5-24.4m: Fine to medium sandstone, coarsening downwards, sedimentary structures.										
SPT			36.0	23.0											
HQ			35.5	23.5											
SPT			35.0	24.0											
HQ			34.5	24.5											
SPT			34.0	25.0											
HQ	SPT/C 9 ,41 for 70mm// N = >50	15 ,35 for 60mm// N = >50	33.5	25.5						24.85 m: Sub-horizontal discontinuity, moderately narrow aperture, undulating smooth fracture.					
SPT			33.0	26.0						25.20 m: Sub-horizontal discontinuity, moderately narrow aperture, undulating smooth fracture.					
HQ			32.5	26.5						25.40 m: Gently inclined discontinuity, moderately narrow aperture, undulating smooth fracture.					
SPT			32.0	27.0	End of Machine Borehole at 27.00m					25.90 m: Gently inclined discontinuity, narrow aperture, planar smooth fracture.					
			31.5	27.5						26.00 m: Sub-horizontal discontinuity, moderately wide aperture, undulating rough fracture.					
			31.0	28.0											
			30.5	28.5											
			30.0	29.0											
			29.5	29.5											
Manual groundwater measurement				Remarks											
Date		Water strike (mbgl)		Shear vane calibration: M726205.02			Survey accuracy: +-5m								

Machine Borehole

BH012

Client: NZTA Waka Kotahi
Project: Te Ara Hauauru - Northwest Rapid Transit
Project ID: 705100376-004
Location: Gunton Drive
Feature: SH16 entrance side

Date started:	21-07-2025
Date completed:	22-07-2025
Weather:	Sunny
Logged by:	RC
Checked by:	NL
Status:	FINAL
Logging Standard:	NZGD2005

Elevation: 39.30 mRL **Datum:** NZVD2016 **Coordinates:** E 1743831.11 N 5924294.24 **Grid:** NZTM2000
Drilling company: McMillan Drilling **Drilling Rig:** N101 **Termination:** Target depth at 21.00 mb

Drilling company: McMillan Drilling

Drilling Rig:

N101

target depth at 21.00 mb

Logging Sta

Standard:

NZGD2005

33

Page 10

三

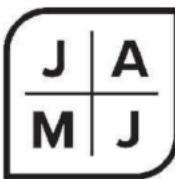
5

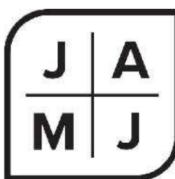
Discontinuities

strike

RQD

2000-2001


Ba W st


1

1

238

		Machine Borehole							BH012				
		Client: NZTA Waka Kotahi Project: Te Ara Hauauru - Northwest Rapid Transit Project ID: 705100376-004 Location: Gunton Drive Feature: SH16 entrance side							Date started: 21-07-2025 Date completed: 22-07-2025 Weather: Sunny Logged by: RC Checked by: NL Status: FINAL Logging Standard: NZGD2005				
Elevation: 39.30 mRL Datum: NZVD2016 Coordinates: E 1743831.11 N 5924294.24 Grid: NZTM2000		Drilling company: McMillan Drilling		Drilling Rig: N101		Termination: Target depth at 21.00 mbgl							
Drilling method	In-situ testing		R.L. (m)	Depth (m)	Material description			Unit	Legend	Recovery %			
	Type	Results								TCR SCR RQD			
SPT	SPT/SS	2,4// 4, 5, 5, 5 N = 19	30.0	9.5	Highly weathered interbedded SILTSTONE and fine SANDSTONE, clay-rich, dark grey, very weak. Moderately thin to moderately thick beds. Partially recovered as clayey SILT and fine SAND. Clayey Silt, very stiff to hard, wet, low plasticity. Sand, dense, wet, uniformly graded; sand, fine, sub-rounded [EAST COAST BAYS FORMATION].					73 45 24			
HQ			29.5	10.0	10.05m Stronger rock strength.								
			29.0	10.5	10.4m Thinly laminated, gently inclined, wavy, carbonaceous laminations.								
SPT		SPT/SS	UTP/	28.5	10.7 - 15.0m: Brownish grey.								
HQ				11.0	11m Carbonaceous flecks.								
SPT		4,5// 8, 8, 10, 12 N = 38	28.0	11.5									
HQ			27.5	12.0									
SPT		4,4// 7, 10, 13, 16 N = 46	27.0	12.5									
HQ			26.5	13.0									
SPT		7,13// 22, 25, 14 for 50mm N = >50	26.0	13.5									
HQ			25.5	14.0									
SPT	SPT/C		25.0	14.5									
HQ			24.5	15.0									
SPT		7,15// 18, 18, 14 for 50mm N = >50	24.0	15.5	Highly weathered to moderately weathered interbedded SILTSTONE and fine SANDSTONE, brownish grey, very weak. Moderately thick bedding. Partially recovered as clayey SILT and fine SAND. Clayey Silt, very stiff to hard, wet, low plasticity. Sand, dense, wet, uniformly graded; sand, fine, sub-rounded [EAST COAST BAYS FORMATION].					53 12 0			
HQ			23.5	16.0									
SPT			23.0	16.5									
HQ			22.5	17.0									
SPT		7,20// 29, 21 for 55mm N = >50	22.0	17.5	Moderately weathered interbedded SILTSTONE and fine to medium SANDSTONE, dark grey, weak. Rhythmically thickly bedded Siltstone and Sandstone. Bedding contacts are distinguishable due to weathering and discolouration. Discontinuities vary from sub-horizontal to moderately inclined, closely spaced [EAST COAST BAYS FORMATION].								
			21.5	18.0									
			21.0										
Manual groundwater measurement				Remarks									
Date		Water strike (mbgl)		Shear vane calibration: M728205.02									
		Survey accuracy: +5m											

		Machine Borehole							BH012			
		Client: NZTA Waka Kotahi Project: Te Ara Hauauru - Northwest Rapid Transit Project ID: 705100376-004 Location: Gunton Drive Feature: SH16 entrance side							Date started: 21-07-2025	Date completed: 22-07-2025		
Elevation: 39.30 mRL Datum: NZVD2016 Coordinates: E 1743831.11 N 5924294.24 Grid: NZTM2000		Drilling company: McMillan Drilling Drilling Rig: N101 Termination: Target depth at 21.00 mbgl		Checked by: NL		Weather: Sunny	Logged by: RC					
Drilling method	In-situ testing		R.L. (m)	Depth (m)	Material description			Unit	Legend	Recovery %		
	Type	Results								TCR	SCR	RQD
HQ				18.5	Moderately weathered interbedded SILTSTONE and fine to medium SANDSTONE, dark grey, weak. Rhythmically thickly bedded Siltstone and Sandstone. Bedding contacts are distinguishable due to weathering and discolouration. Discontinuities vary from sub-horizontal to moderately inclined, closely spaced [EAST COAST BAYS FORMATION].							
				20.5								
				19.0								
				20.0								
				19.5								
				20.0								
				19.0								
				20.5								
				18.5								
				21.0	End of Machine Borehole at 21.00m							
				18.0								
				21.5								
				17.5								
				22.0								
				17.0								
				22.5								
				16.5								
				23.0								
				16.0								
				23.5								
				15.5								
				24.0								
				15.0								
				24.5								
				14.5								
				25.0								
				14.0								
				25.5								
				13.5								
				26.0								
				13.0								
				26.5								
				12.5								
				27.0								
				12.0								
				27.5								
Manual groundwater measurement				Remarks								
Date		Water strike (mbgl)		Shear vane calibration:	M726205.02		Survey accuracy:	+-5m				

Appendix B. Permeability testing

Bore No:		BH001		Test No: #1		Job No: NWRT		Date: 4/07/25		Logged by: TZ						
Borehole co-ordinates:		Easting: 1755529.42		Northing: 5918319.8		Collar elevation (m):										
Depth to top of test section (m):		5.4		Length of test section, L (m):		7.25										
Depth of static water level, H_w (m):		5.4		Radius of borehole, r (m):		0.05										
Excess head, h_e (m):		0.71		Radius of standpipe or casing, r_c (m)		0.025										
Time (sec)	Depth to water, h_w (m)	Excess head, $h_t = H_w - h_w$ (m)	h_t/h_e	Recovery	Head - time graph (slope of graph is S)											
0	0.000	4.693	0.707	1.000												
5	0.083	5.009	0.391	0.552	45%											
10	0.167	5.039	0.361	0.510	49%											
20	0.333	5.086	0.314	0.444	56%											
30	0.500	5.144	0.256	0.362	64%											
45	0.750	5.199	0.201	0.284	72%											
60	1.000	5.229	0.171	0.242	76%											
75	1.250	5.260	0.140	0.199	80%											
90	1.500	5.290	0.110	0.155	85%											
120	2.000	5.323	0.078	0.110	89%											

Bore No:	BH002		Test No:	#1	Job No:	NWRT	Date:	4/07/25	Logged by:	TZ	
Borehole co-ordinates:	Easting:	1755456	Northing:	5918303	Collar elevation (m): 6.1						
Depth to top of test section (m):	6.1		Length of test section, L (m):	6.55							
Depth of static water level, H_w (m):	6.1		Radius of borehole, r (m):	0.05							
Excess head, h_e (m):	1.42		Radius of standpipe or casing, r_c (m):	0.025							
Time		Depth to water, h_w (m)	Excess head, $h_t = H_w - h_w$ (m)	h_t/h_e	Recovery	Head - time graph (slope of graph is S)					
(sec)	(min)										
0	0.00	4.68	1.42	1.000							
5	0.08	5.63	0.47	0.328	67%						
10	0.17	5.70	0.40	0.280	72%						
15	0.25	5.77	0.33	0.234	77%						
20	0.33	5.82	0.28	0.196	80%						
25	0.42	5.87	0.23	0.162	84%						
30	0.50	5.91	0.19	0.134	87%						
35	0.58	5.94	0.16	0.110	89%						
40	0.67	5.97	0.13	0.089	91%						
45	0.75	6.00	0.10	0.073	93%						
50	0.83	6.02	0.08	0.060	94%						
55	0.92	6.03	0.07	0.049	95%						
60	1.00	6.04	0.06	0.040	96%						
65	1.08	6.05	0.05	0.034	97%						
70	1.17	6.06	0.04	0.028	97%						
75	1.25	6.07	0.03	0.024	98%						
80	1.33	6.07	0.03	0.021	98%						
85	1.42	6.07	0.03	0.018	98%						
90	1.50	6.08	0.02	0.016	98%						
95	1.58	6.08	0.02	0.014	99%						
100	1.67	6.08	0.02	0.013	99%						
105	1.75	6.08	0.02	0.012	99%						
110	1.83	6.08	0.02	0.011	99%						
115	1.92	6.09	0.01	0.010	99%						
120	2.00	6.09	0.01	0.010	99%						
125	2.08	6.09	0.01	0.009	99%						
130	2.17	6.09	0.01	0.009	99%						
135	2.25	6.09	0.01	0.009	99%						
140	2.33	6.09	0.01	0.008	99%						
145	2.42	6.09	0.01	0.008	99%						

Calculations:

h_1	0.280		
t_1	0.167		
h_2	0.060		
t_2	0.833		
S	1.0E+00		
k	1.3E-05	1.1E+00	

Notes:

Permeability, $k = 0.133 \times S \times (r_c^2/L)$ (m/sec)/(m/day)
where $S = (\log(h_1/h_2))/(t_2 - t_1)$, (ie slope of plot, t in mins)

Bore No:	BH003		Test No:	#1	Job No:	NWRT	Date:	1/07/25	Logged by:	TZ	
Borehole co-ordinates:	Easting:	1752601	Northing:	5918099	Collar elevation (m):						
Depth to top of test section (m):	2		Length of test section, L (m):						8.9		
Depth of static water level, H_w (m):	2		Radius of borehole, r (m):						0.05		
Excess head, h_e (m):	-1.12		Radius of standpipe or casing, r_c (m):						0.025		
Time		Depth to water, h_w (m)	Excess head, $h_t = H_w - h_w$ (m)	h_t/h_e	Recovery	Head - time graph (slope of graph is S)					
(sec)	(min)										
0	0.0	3.125	-1.125	1.000							
5	0.1	2.567	-0.567	0.504	50%						
10	0.2	2.342	-0.342	0.304	70%						
15	0.3	2.332	-0.332	0.295	70%						
20	0.3	2.328	-0.328	0.291	71%						
25	0.4	2.325	-0.325	0.289	71%						
30	0.5	2.323	-0.323	0.287	71%						
60	1.0	2.317	-0.317	0.282	72%						
120	2.0	2.314	-0.314	0.279	72%						
180	3.0	2.310	-0.310	0.276	72%						
240	4.0	2.307	-0.307	0.273	73%						
300	5.0	2.304	-0.304	0.271	73%						
360	6.0	2.302	-0.302	0.269	73%						
420	7.0	2.299	-0.299	0.266	73%						
480	8.0	2.298	-0.298	0.265	74%						
600	10.0	2.294	-0.294	0.261	74%						
900	15.0	2.282	-0.282	0.251	75%						
1200	20.0	2.272	-0.272	0.242	76%						
1800	30.0	2.251	-0.251	0.223	78%						
2100	35.0	2.240	-0.240	0.213	79%						
2400	40.0	2.230	-0.230	0.205	80%						
2700	45.0	2.220	-0.220	0.196	80%						
3000	50.0	2.213	-0.213	0.189	81%						
3300	55.0	2.203	-0.203	0.181	82%						
3600	60.0	2.194	-0.194	0.173	83%						
4200	70.0	2.179	-0.179	0.159	84%						
4800	80.0	2.164	-0.164	0.146	85%						
5400	90.0	2.152	-0.152	0.135	86%						
6000	100.0	2.140	-0.140	0.124	88%						
6300	105.0	2.135	-0.135	0.120	88%						

Calculations:

h_1	0.271		
t_1	5.000		
h_2	0.173		
t_2	60.000		
S	3.5E-03		
k	3.3E-08	2.9E-03	

Notes:

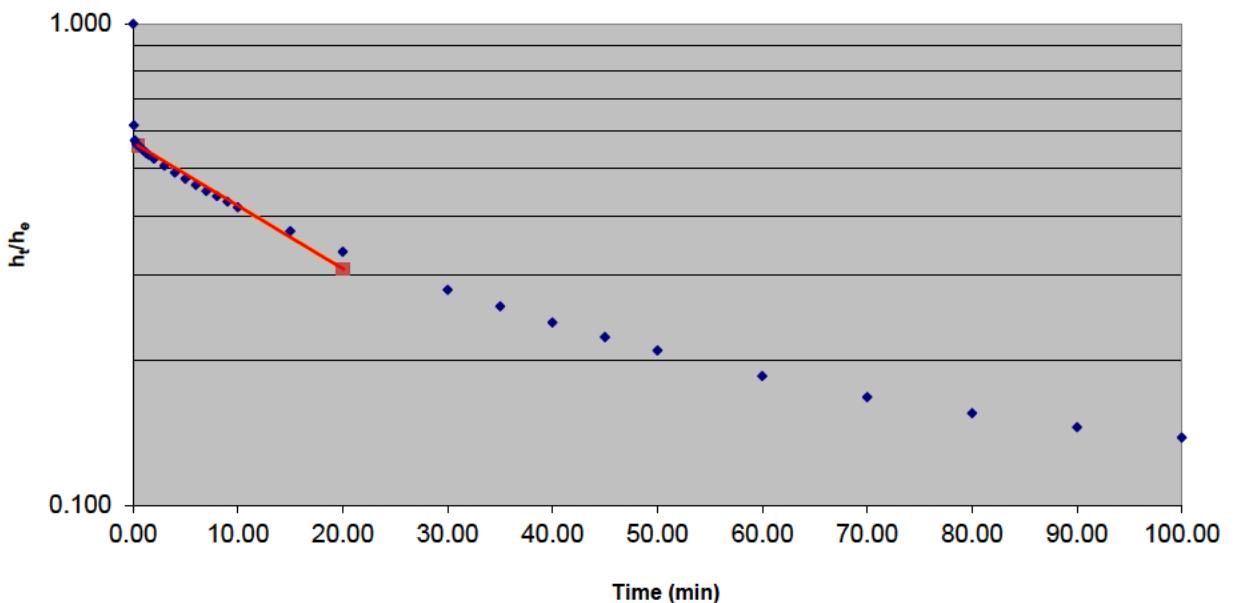
Permeability, $k = 0.133 \times S \times (r_c^2/L)$ (m/sec)/(m/day)
where $S = (\log(h_1/h_2))/(t_2 - t_1)$, (ie slope of plot, t in mins)

Bore No:		BH004		Test No:	#1	Job No:	NWRT	Date:	9/07/25	Logged by:	TZ					
Borehole co-ordinates:		Easting: 1752456			Northing: 5918059			Collar elevation (m):								
Depth to top of test section (m):		4.84			Length of test section, L (m):			8.1								
Depth of static water level, H_w (m):		4.84			Radius of borehole, r (m):			0.05								
Excess head, h_e (m):		0.68			Radius of standpipe or casing, r_c (m)			0.025								
Time (sec)	Depth to water, h_w (m)	Excess head, $h_t = H_w - h_w$ (m)	h_t/h_e	Recovery	Head - time graph (slope of graph is S)											
0	0.0	4.163	0.677	1.000												
5	0.1	4.462	0.379	0.559	44%											
10	0.2	4.565	0.275	0.406	59%											
15	0.3	4.639	0.201	0.296	70%											
20	0.3	4.695	0.145	0.214	79%											
25	0.4	4.738	0.102	0.151	85%											
30	0.5	4.768	0.072	0.107	89%											
35	0.6	4.789	0.051	0.075	92%											
45	0.8	4.814	0.026	0.039	96%											
55	0.9	4.826	0.014	0.020	98%											

Bore No:	BH004		Test No:	#1	Job No:	NWRT	Date:	9/07/25	Logged by:	TZ																									
Borehole co-ordinates:	Easting:	1752456	Northing:	5918059																															
Depth to top of test section (m):	4.84								Collar elevation (m):																										
Depth of static water level, H_w (m):	4.84								Length of test section, L (m):	8.1																									
Excess head, h_e (m):	-0.40								Radius of borehole, r (m):	0.05																									
						Radius of standpipe or casing, r_e (m): 0.025																													
Time		Depth to water, h_w (m)	Excess head, $h_t = H_w - h_w$ (m)	h_t/h_e	Recovery	Head - time graph (slope of graph is S)																													
(sec)	(min)																																		
0	0.0	5.242	-0.402	1.000																															
5	0.1	5.206	-0.366	0.911	9%																														
10	0.2	5.076	-0.236	0.587	41%																														
15	0.3	5.018	-0.178	0.444	56%																														
20	0.3	4.975	-0.135	0.336	66%																														
25	0.4	4.940	-0.100	0.250	75%																														
30	0.5	4.915	-0.075	0.188	81%																														
35	0.6	4.900	-0.060	0.149	85%																														
45	0.8	4.873	-0.033	0.083	92%																														
55	0.9	4.858	-0.018	0.044	96%																														
						BH004 - Rising Head																													
						<p>Calculations:</p> <table border="1"> <tr> <td>h_1</td> <td>0.587</td> <td></td> <td></td> </tr> <tr> <td>t_1</td> <td>0.167</td> <td></td> <td></td> </tr> <tr> <td>h_2</td> <td>0.044</td> <td></td> <td></td> </tr> <tr> <td>t_2</td> <td>0.917</td> <td></td> <td></td> </tr> <tr> <td>S</td> <td>1.5E+00</td> <td></td> <td></td> </tr> <tr> <td>k</td> <td>1.5E-05</td> <td>1.3E+00</td> <td></td> </tr> </table> <p>Notes:</p>						h_1	0.587			t_1	0.167			h_2	0.044			t_2	0.917			S	1.5E+00			k	1.5E-05	1.3E+00	
h_1	0.587																																		
t_1	0.167																																		
h_2	0.044																																		
t_2	0.917																																		
S	1.5E+00																																		
k	1.5E-05	1.3E+00																																	
						$\text{Permeability, } k = 0.133 \times S \times (r_e^2/L) \quad (\text{m/sec})/(\text{m/day})$ $\text{where } S = (\log(h_1/h_2))/(t_2 - t_1), \text{ (ie slope of plot, t in mins)}$																													

Bore No:	BH005		Test No:	#1	Job No:	NWRT	Date:	16/07/25	Logged by:	TZ		
Borehole co-ordinates:	Easting:	1747345	Northing:	5919524								
Depth to top of test section (m):	2					Collar elevation (m):						
Depth of static water level, H_w (m):	0.9					Length of test section, L (m):	11					
Excess head, h_e (m):	0.38					Radius of borehole, r (m):	0.05					
						Radius of standpipe or casing, r_c (m):	0.025					
Time (sec)	Depth to water, h_w (m)	Excess head, $h_t = H_w - h_w$ (m)	h_t/h_e	Recovery	Head - time graph (slope of graph is S)							
0	0.0	0.522	0.378	1.000	BH005 - Falling Head							
5	0.1	0.526	0.374	0.989	1.000							
10	0.2	0.531	0.369	0.976	0.900							
15	0.3	0.535	0.365	0.965	0.800							
20	0.3	0.540	0.360	0.953	0.700							
25	0.4	0.543	0.357	0.943	0.600							
30	0.5	0.547	0.353	0.933	0.500							
60	1.0	0.572	0.328	0.866	0.400							
120	2.0	0.620	0.280	0.741	0.300							
180	3.0	0.664	0.236	0.624	0.200							
240	4.0	0.703	0.197	0.522	0.100							
300	5.0	0.736	0.164	0.433	0.050							
360	6.0	0.766	0.134	0.354	0.025							
420	7.0	0.794	0.106	0.281	0.0125							
480	8.0	0.817	0.083	0.219	0.00625							
540	9.0	0.838	0.062	0.164	0.003125							
600	10.0	0.847	0.053	0.141	0.0015625							
660	11.0	0.853	0.047	0.123	0.00078125							
720	12.0	0.859	0.041	0.109	0.000390625							
780	13.0	0.864	0.036	0.096	0.0001953125							
840	14.0	0.868	0.032	0.084	0.00009765625							
900	15.0	0.873	0.027	0.072	0.000048828125							
960	16.0	0.877	0.023	0.061	0.0000244140625							
1020	17.0	0.880	0.020	0.052	0.00001220703125							
1080	18.0	0.883	0.017	0.044	0.000006103515625							
1140	19.0	0.887	0.013	0.034	0.0000030517578125							
1200	20.0	0.890	0.010	0.027	0.00000152587890625							
						Calculations:	h_1	0.943				Notes:
						t_1	0.250					
						h_2	0.034					
						t_2	19.000					
						S	7.7E-02					
						k	5.8E-07	5.0E-02				
Permeability, $k = 0.133 \times S \times (r_c^2/L)$ (m/sec)/(m/day) where $S = (\log(h_1/h_2))/(t_2 - t_1)$, (ie slope of plot, t in mins)												

Bore No:		BH005		Test No:		#1		Job No:		NWRT		Date:		4/07/25		Logged by:		TZ	
Borehole co-ordinates:		Easting:		1747345		Northing:		5919524		Collar elevation (m):									
Depth to top of test section (m):				2						Length of test section, L (m):		11							
Depth of static water level, H_w (m):				0.9						Radius of borehole, r (m):		0.05							
Excess head, h_e (m):				-0.33						Radius of standpipe or casing, r_c (m)		0.025							
Time		Depth to water, h_w (m)		Excess head, $h_t = H_w - h_w$ (m)		h_t/h_e		Recovery		Head - time graph (slope of graph is S)									
(sec)	(min)									BH005 - Rising Head									
0	0.0	1.230		-0.330	1.000														
5	0.1	1.206		-0.306	0.928														
10	0.2	1.194		-0.294	0.892														
15	0.3	1.187		-0.287	0.871														
20	0.3	1.182		-0.282	0.853														
25	0.4	1.177		-0.277	0.838														
30	0.5	1.172		-0.272	0.824														
60	1.0	1.147		-0.247	0.748														
120	2.0	1.104		-0.204	0.618														
180	3.0	1.067		-0.167	0.506														
240	4.0	1.047		-0.147	0.445														
300	5.0	1.018		-0.118	0.357														
360	6.0	0.992		-0.092	0.278														
420	7.0	0.968		-0.068	0.207														
480	8.0	0.948		-0.048	0.145														
540	9.0	0.930		-0.030	0.089														
600	10.0	0.913		-0.013	0.039														


Calculations:

h_1	0.892		
t_1	0.167		
h_2	0.357		
t_2	5.000		
S	8.2E-02		
K	6.2E-07	5.4E-02	

Notes:

Permeability, $k = 0.133 \times S \times (r_c^2/L)$ (m/sec)/(m/day)
where $S = (\log(h_1/h_2))/(t_2 - t_1)$, (ie slope of plot, t in mins)

Bore No:	BH008		Test No:	#1	Job No:	NWRT	Date:	7/08/25	Logged by:	TZ																															
Borehole co-ordinates:	Easting:	1745443	Northing:	5920556	Collar elevation (m): 2.8																																				
Depth to top of test section (m):	2.8		Length of test section, L (m):	11.1																																					
Depth of static water level, H_w (m):	2.25		Radius of borehole, r (m):	0.05																																					
Excess head, h_e (m):	1.08		Radius of standpipe or casing, r_c (m):	0.025																																					
Time		Depth to water, h_w (m)	Excess head, $h_t = H_w - h_w$ (m)	h_t/h_e	Recovery	Head - time graph (slope of graph is S)																																			
(sec)	(min)																																								
0	0.0	1.173	1.077	1.000																																					
5	0.1	1.713	0.538	0.499	50%																																				
10	0.2	1.720	0.530	0.492	51%																																				
20	0.3	1.737	0.513	0.477	52%																																				
30	0.5	1.748	0.502	0.466	53%																																				
45	0.8	1.760	0.490	0.455	55%																																				
60	1.0	1.767	0.483	0.448	55%																																				
75	1.3	1.773	0.477	0.443	56%																																				
90	1.5	1.775	0.475	0.441	56%																																				
120	2.0	1.783	0.467	0.433	57%																																				
180	3.0	1.796	0.454	0.422	58%																																				
240	4.0	1.808	0.442	0.411	59%																																				
300	5.0	1.820	0.430	0.400	60%																																				
360	6.0	1.828	0.422	0.392	61%																																				
420	7.0	1.841	0.409	0.380	62%																																				
480	8.0	1.853	0.397	0.369	63%																																				
540	9.0	1.864	0.386	0.359	64%																																				
600	10.0	1.875	0.375	0.348	65%																																				
900	15.0	1.925	0.325	0.302	70%																																				
1200	20.0	1.968	0.282	0.262	74%																																				
1800	30.0	2.036	0.214	0.199	80%																																				
2100	35.0	2.061	0.189	0.176	82%																																				
2400	40.0	2.083	0.167	0.155	85%																																				
2700	45.0	2.104	0.146	0.136	86%																																				
3000	50.0	2.119	0.131	0.122	88%																																				
3600	60.0	2.146	0.104	0.096	90%																																				
4200	70.0	2.157	0.093	0.086	91%																																				
4800	80.0	2.167	0.083	0.077	92%																																				
5400	90.0	2.179	0.071	0.066	93%																																				
6000	100.0	2.185	0.065	0.060	94%																																				
						BH008 - Falling Head																																			
						<p>Calculations:</p> <table border="1"> <tr> <td>h_1</td> <td>0.448</td> <td></td> <td></td> <td></td> </tr> <tr> <td>t_1</td> <td>1.000</td> <td></td> <td></td> <td></td> </tr> <tr> <td>h_2</td> <td>0.122</td> <td></td> <td></td> <td></td> </tr> <tr> <td>t_2</td> <td>50.000</td> <td></td> <td></td> <td></td> </tr> <tr> <td>S</td> <td>1.2E-02</td> <td></td> <td></td> <td></td> </tr> <tr> <td>k</td> <td>8.7E-08</td> <td>7.5E-03</td> <td></td> <td></td> </tr> </table> <p>Notes:</p>						h_1	0.448				t_1	1.000				h_2	0.122				t_2	50.000				S	1.2E-02				k	8.7E-08	7.5E-03		
h_1	0.448																																								
t_1	1.000																																								
h_2	0.122																																								
t_2	50.000																																								
S	1.2E-02																																								
k	8.7E-08	7.5E-03																																							
						<p>Permeability, $k = 0.133 \times S \times (r_c^2/L)$ (m/sec)/(m/day) where $S = (\log(h_1/h_2))/(t_2 - t_1)$, (ie slope of plot, t in mins)</p>																																			

Bore No:		BH009		Test No:	#1	Job No:	NWRT	Date:	7/08/25	Logged by:	TZ	
Borehole co-ordinates:		Easting:	1744919	Northing:	5921213	Collar elevation (m):		Length of test section, L (m):	10.66	Radius of borehole, r (m):	0.05	
Depth to top of test section (m):		3.19				Radius of standpipe or casing, r _c (m):						
Depth of static water level, H _w (m):		3.19				Radius of standpipe or casing, r _c (m):						
Excess head, h _e (m):		0.78				Radius of standpipe or casing, r _c (m):						
Time (sec)	Depth to water, h _w (m)	Excess head, h _t =H _w -h _w (m)	h _t /h _e	Recovery	Head - time graph (slope of graph is S)							
0	0.0	2.414	0.776	1.000		BH009 - Falling head						
5	0.1	2.712	0.478	0.616	38%							
10	0.2	2.745	0.445	0.573	43%							
20	0.3	2.752	0.438	0.564	44%							
30	0.5	2.756	0.434	0.559	44%							
45	0.8	2.762	0.429	0.552	45%							
60	1.0	2.766	0.424	0.546	45%							
75	1.3	2.771	0.419	0.540	46%							
90	1.5	2.776	0.415	0.534	47%							
120	2.0	2.783	0.407	0.525	48%							
180	3.0	2.796	0.394	0.507	49%							
240	4.0	2.809	0.381	0.491	51%							
300	5.0	2.820	0.370	0.476	52%							
360	6.0	2.831	0.359	0.463	54%							
420	7.0	2.841	0.349	0.450	55%							
480	8.0	2.849	0.341	0.439	56%							
540	9.0	2.858	0.332	0.427	57%							
600	10.0	2.867	0.323	0.416	58%							
900	15.0	2.902	0.288	0.371	63%							
1200	20.0	2.929	0.261	0.336	66%							
1800	30.0	2.973	0.218	0.280	72%							
2100	35.0	2.989	0.201	0.259	74%							
2400	40.0	3.004	0.186	0.240	76%							
2700	45.0	3.017	0.174	0.223	78%							
3000	50.0	3.027	0.163	0.210	79%							
3600	60.0	3.046	0.144	0.185	81%							
4200	70.0	3.060	0.130	0.168	83%							
4800	80.0	3.069	0.121	0.155	84%							
5400	90.0	3.077	0.113	0.145	85%							
6000	100.0	3.083	0.107	0.138	86%							
6900	115.0	3.091	0.099	0.128	87%							
7800	130.0	3.095	0.095	0.123	88%							
8700	145.0	3.100	0.090	0.116	88%							
9600	160.0	3.103	0.087	0.112	89%							
10500	175.0	3.105	0.086	0.110	89%							
11400	190.0	3.106	0.084	0.109	89%							

Calculations:	h ₁	0.559			
t ₁		0.500			
h ₂		0.310			
t ₂	20.000				
S	1.3E-02				
k	1.0E-07	8.8E-03			

Notes:

Permeability, k = 0.133 x S x (r_c²/L) (m/sec)/(m/day)
where S = (log (h₁/h₂))/(t₂ - t₁), (ie slope of plot, t in mins)

Bore No:		BH009		Test No:	#1	Job No:	NWRT	Date:	7/08/25	Logged by:	TZ							
Borehole co-ordinates:		Easting: 1744919		Northing: 5921213		Collar elevation (m):												
Depth to top of test section (m):		3.14		Length of test section, L (m):				10.66										
Depth of static water level, H_w (m):		3.14		Radius of borehole, r (m):				0.05										
Excess head, h_e (m):		-0.29		Radius of standpipe or casing, r_c (m)				0.025										
Time (sec)	Depth to water, h_w (m)	Excess head, $h_t = H_w - h_w$ (m)	h_t/h_e	Recovery	Head - time graph (slope of graph is S)													
0	0.0	3.429	-0.289	1.000														
5	0.1	3.405	-0.265	0.917	8%													
10	0.2	3.402	-0.262	0.909	9%													
20	0.3	3.401	-0.261	0.904	10%													
30	0.5	3.399	-0.259	0.897	10%													
45	0.8	3.397	-0.257	0.890	11%													
60	1.0	3.395	-0.254	0.882	12%													
75	1.3	3.392	-0.252	0.874	13%													
90	1.5	3.390	-0.250	0.866	13%													
120	2.0	3.386	-0.246	0.851	15%													
180	3.0	3.371	-0.231	0.801	20%													
240	4.0	3.367	-0.227	0.786	21%													
300	5.0	3.360	-0.220	0.762	24%													
360	6.0	3.353	-0.213	0.738	26%													
420	7.0	3.346	-0.206	0.715	29%													
480	8.0	3.340	-0.200	0.691	31%													
540	9.0	3.334	-0.193	0.670	33%													
600	10.0	3.327	-0.187	0.649	35%													
900	15.0	3.300	-0.160	0.554	45%													
1200	20.0	3.276	-0.136	0.472	53%													
1800	30.0	3.239	-0.099	0.344	66%													
2100	35.0	3.226	-0.086	0.298	70%													
2400	40.0	3.214	-0.074	0.257	74%													
2700	45.0	3.204	-0.064	0.223	78%													
3000	50.0	3.196	-0.056	0.193	81%													
3600	60.0	3.182	-0.042	0.144	86%													
4200	70.0	3.171	-0.031	0.107	89%													
4800	80.0	3.163	-0.022	0.078	92%													
5400	90.0	3.156	-0.016	0.057	94%													
6000	100.0	3.153	-0.013	0.044	96%													

Appendix C. Groundwater quality

Certificate of Analysis

Page 1 of 3

Client:	Mott MacDonald	Lab No:	3929344	SPv1
Contact:	Toby Zaege C/- Mott MacDonald PO Box 37525 Parnell Auckland 1151	Date Received:	02-Jul-2025	
		Date Reported:	08-Jul-2025	
		Quote No:	138803	
		Order No:	70550122	
		Client Reference:		
		Submitted By:	Toby Zaege	

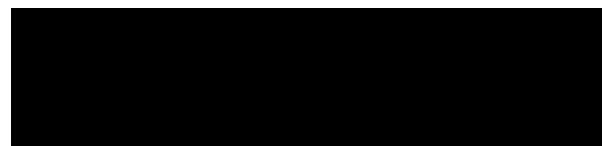
Sample Type: Aqueous					
	Sample Name:	NWRT - BH01 01-Jul-2025	NWRT - BH02 01-Jul-2025	NWRT - BH03 01-Jul-2025	NWRT - BH04 01-Jul-2025
	Lab Number:	3929344.1	3929344.2	3929344.3	3929344.4
Individual Tests					
Sum of Anions	meq/L	3.2	5.1	1.64	1.77
Sum of Cations	meq/L	3.2	5.4	1.69	1.84
pH	pH Units	6.2	6.8	5.9	5.9
Total Alkalinity	g/m³ as CaCO ₃	64	155	21	40
Carbonate	g/m³ at 25°C	< 1.0	< 1.0	< 1.0	< 1.0
Bicarbonate	g/m³ at 25°C	78	189	26	49
Free Carbon Dioxide	g/m³ at 25°C	75	46	52	102
Total Hardness	g/m³ as CaCO ₃	102	200	23	28
Electrical Conductivity (EC)	mS/m	34.3	50.7	19.4	20.3
Total Dissolved Solids (TDS)	g/m³	250	360	126	124
Dissolved Aluminium	g/m³	< 0.003	< 0.003	0.041	0.042
Dissolved Calcium	g/m³	27	59	6.4	5.9
Dissolved Iron	g/m³	< 0.02	< 0.02	< 0.02	< 0.02
Dissolved Magnesium	g/m³	8.5	13.6	1.74	3.1
Dissolved Manganese	g/m³	0.31	0.30	0.080	0.065
Dissolved Potassium	g/m³	2.0	2.4	1.15	1.44
Dissolved Sodium	g/m³	26	28	27	29
Chloride	g/m³	31	36	25	20
Total Nitrogen	g/m³	1.16	0.30	1.27	0.25
Total Ammoniacal-N	g/m³	0.014	0.023	< 0.010	< 0.010
Nitrite-N	g/m³	0.005	0.002	< 0.002	< 0.002
Nitrate-N	g/m³	1.00	< 0.002	1.06	0.049
Nitrate-N + Nitrite-N	g/m³	1.01	0.003	1.06	0.049
Total Kjeldahl Nitrogen (TKN)	g/m³	0.16	0.30	0.21	0.20
Total Phosphorus	g/m³	0.155	0.014	0.064	0.032
Sulphate	g/m³	47	47	21	19.0
Heavy metals, dissolved, trace As,Cd,Cr,Cu,Ni,Pb,Zn					
Dissolved Arsenic	g/m³	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Dissolved Cadmium	g/m³	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Dissolved Chromium	g/m³	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Dissolved Copper	g/m³	< 0.0005	< 0.0005	< 0.0005	0.0012
Dissolved Lead	g/m³	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Dissolved Nickel	g/m³	0.0032	< 0.0005	0.0012	0.0021
Dissolved Zinc	g/m³	0.0050	0.0019	0.0102	0.0058

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Aqueous			
Test	Method Description	Default Detection Limit	Sample No
Heavy metals, dissolved, trace As,Cd,Cr,Cu,Ni,Pb,Zn	0.45µm Filtration, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.00005 - 0.0010 g/m ³	1-4
Filtration, Unpreserved	Sample filtration through 0.45µm membrane filter.	-	1-4
Total anions for anion/cation balance check	Calculation: sum of anions as mEquiv/L calculated from Alkalinity (bicarbonate), Chloride and Sulphate. Nitrate-N, Nitrite-N. Fluoride, Dissolved Reactive Phosphorus and Cyanide also included in calculation if available. APHA 1030 E : Online Edition.	0.07 meq/L	1-4
Total cations for anion/cation balance check	Sum of cations as mEquiv/L calculated from Sodium, Potassium, Calcium and Magnesium. Iron, Manganese, Aluminium, Zinc, Copper, Lithium, Total Ammoniacal-N and pH (H ⁺) also included in calculation if available. APHA 1030 E : Online Edition.	0.05 meq/L	1-4
pH	pH meter. APHA 4500-H ⁺ B (modified) : Online Edition. Note: It is not possible to achieve the APHA Maximum Storage Recommendation for this test (15 min) when samples are analysed upon receipt at the laboratory, and not in the field. Samples and Standards are analysed at an equivalent laboratory temperature (typically 18 to 22 °C). Temperature compensation is used.	0.1 pH Units	1-4
Total Alkalinity	Titration to pH 4.5 (M-alkalinity), autotitrator. APHA 2320 B (modified for Alkalinity <20) : Online Edition.	1.0 g/m ³ as CaCO ₃	1-4
Carbonate	Calculation: from alkalinity and pH, valid where TDS is not >500 mg/L and alkalinity is almost entirely due to hydroxides, carbonates or bicarbonates. APHA 4500-CO ₂ D : Online Edition.	1.0 g/m ³ at 25°C	1-4
Bicarbonate	Calculation: from alkalinity and pH, valid where TDS is not >500 mg/L and alkalinity is almost entirely due to hydroxides, carbonates or bicarbonates. APHA 4500-CO ₂ D : Online Edition.	1.0 g/m ³ at 25°C	1-4
Free Carbon Dioxide	Calculation: from alkalinity and pH, valid where TDS is not >500 mg/L and alkalinity is almost entirely due to hydroxides, carbonates or bicarbonates. APHA 4500-CO ₂ D : Online Edition.	1.0 g/m ³ at 25°C	1-4
Total Hardness	Calculation from Calcium and Magnesium. APHA 2340 B : Online Edition.	1.0 g/m ³ as CaCO ₃	1-4
Electrical Conductivity (EC)	Conductivity meter, 25°C. APHA 2510 B : Online Edition.	0.1 mS/m	1-4
Total Dissolved Solids (TDS)	Filtration through GF/C (1.2 µm), gravimetric. APHA 2540 C (modified; drying temperature of 103 - 105°C used rather than 180 ± 2°C) : Online Edition.	10 g/m ³	1-4
Filtration for dissolved metals analysis	Sample filtration through 0.45µm membrane filter and preservation with nitric acid. APHA 3030 B : Online Edition.	-	1-4
Dissolved Aluminium	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.003 g/m ³	1-4
Dissolved Calcium	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.05 g/m ³	1-4
Dissolved Iron	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.02 g/m ³	1-4
Dissolved Magnesium	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.02 g/m ³	1-4
Dissolved Manganese	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.0005 g/m ³	1-4
Dissolved Potassium	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.05 g/m ³	1-4
Dissolved Sodium	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.02 g/m ³	1-4
Chloride	Filtered sample. Ion Chromatography. APHA 4110 B (modified) : Online Edition.	0.5 g/m ³	1-4
Total Nitrogen	Calculation: TKN + Nitrate-N + Nitrite-N. Please note: The Default Detection Limit of 0.05 g/m ³ is only attainable when the TKN has been determined using a trace method utilising duplicate analyses. In cases where the Detection Limit for TKN is 0.10 g/m ³ , the Default Detection Limit for Total Nitrogen will be 0.11 g/m ³ . In-house calculation.	0.05 g/m ³	1-4


Sample Type: Aqueous			
Test	Method Description	Default Detection Limit	Sample No
Total Ammoniacal-N	Phenol/hypochlorite colourimetry. Flow injection analyser. (NH ₄ -N = NH ₄ ⁺ -N + NH ₃ -N). APHA 4500-NH ₃ H (modified) : Online Edition.	0.010 g/m ³	1-4
Nitrite-N	Automated Azo dye colorimetry, Flow injection analyser. APHA 4500-NO ₂ I (modified) : Online Edition.	0.002 g/m ³	1-4
Nitrate-N	Calculation: (Nitrate-N + Nitrite-N) - Nitrite-N. In-House.	0.0010 g/m ³	1-4
Nitrate-N + Nitrite-N	Total oxidised nitrogen. Automated cadmium reduction, flow injection analyser. APHA 4500-NO ₃ I (modified) : Online Edition.	0.002 g/m ³	1-4
Total Kjeldahl Nitrogen (TKN)	Total Kjeldahl digestion, automated phenol/hypochlorite colorimetry. APHA 4500-N _{org} D (modified): Online Edition.	0.10 g/m ³	1-4
Total Phosphorus	Total phosphorus digestion, automated ascorbic acid colorimetry. Flow Injection Analyser. APHA 4500-P H (modified) : Online Edition.	0.002 g/m ³	1-4
Sulphate	Filtered sample. Ion Chromatography. APHA 4110 B (modified) : Online Edition.	0.5 g/m ³	1-4

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 03-Jul-2025 and 07-Jul-2025. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Kim Harrison MSc
Client Services Manager - Environmental

Appendix D. Groundwater level observations

Certificate of Analysis

Page 1 of 3

Client:	Mott MacDonald	Lab No:	3929344	SPv1
Contact:	Toby Zaege C/- Mott MacDonald PO Box 37525 Parnell Auckland 1151	Date Received:	02-Jul-2025	
		Date Reported:	08-Jul-2025	
		Quote No:	138803	
		Order No:	70550122	
		Client Reference:		
		Submitted By:	Toby Zaege	

Sample Type: Aqueous					
Sample Name:	NWRT - BH01 01-Jul-2025	NWRT - BH02 01-Jul-2025	NWRT - BH03 01-Jul-2025	NWRT - BH04 01-Jul-2025	
Lab Number:	3929344.1	3929344.2	3929344.3	3929344.4	
Individual Tests					
Sum of Anions	meq/L	3.2	5.1	1.64	1.77
Sum of Cations	meq/L	3.2	5.4	1.69	1.84
pH	pH Units	6.2	6.8	5.9	5.9
Total Alkalinity	g/m³ as CaCO ₃	64	155	21	40
Carbonate	g/m³ at 25°C	< 1.0	< 1.0	< 1.0	< 1.0
Bicarbonate	g/m³ at 25°C	78	189	26	49
Free Carbon Dioxide	g/m³ at 25°C	75	46	52	102
Total Hardness	g/m³ as CaCO ₃	102	200	23	28
Electrical Conductivity (EC)	mS/m	34.3	50.7	19.4	20.3
Total Dissolved Solids (TDS)	g/m³	250	360	126	124
Dissolved Aluminium	g/m³	< 0.003	< 0.003	0.041	0.042
Dissolved Calcium	g/m³	27	59	6.4	5.9
Dissolved Iron	g/m³	< 0.02	< 0.02	< 0.02	< 0.02
Dissolved Magnesium	g/m³	8.5	13.6	1.74	3.1
Dissolved Manganese	g/m³	0.31	0.30	0.080	0.065
Dissolved Potassium	g/m³	2.0	2.4	1.15	1.44
Dissolved Sodium	g/m³	26	28	27	29
Chloride	g/m³	31	36	25	20
Total Nitrogen	g/m³	1.16	0.30	1.27	0.25
Total Ammoniacal-N	g/m³	0.014	0.023	< 0.010	< 0.010
Nitrite-N	g/m³	0.005	0.002	< 0.002	< 0.002
Nitrate-N	g/m³	1.00	< 0.002	1.06	0.049
Nitrate-N + Nitrite-N	g/m³	1.01	0.003	1.06	0.049
Total Kjeldahl Nitrogen (TKN)	g/m³	0.16	0.30	0.21	0.20
Total Phosphorus	g/m³	0.155	0.014	0.064	0.032
Sulphate	g/m³	47	47	21	19.0
Heavy metals, dissolved, trace As,Cd,Cr,Cu,Ni,Pb,Zn					
Dissolved Arsenic	g/m³	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Dissolved Cadmium	g/m³	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Dissolved Chromium	g/m³	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Dissolved Copper	g/m³	< 0.0005	< 0.0005	< 0.0005	0.0012
Dissolved Lead	g/m³	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Dissolved Nickel	g/m³	0.0032	< 0.0005	0.0012	0.0021
Dissolved Zinc	g/m³	0.0050	0.0019	0.0102	0.0058

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Aqueous			
Test	Method Description	Default Detection Limit	Sample No
Heavy metals, dissolved, trace As,Cd,Cr,Cu,Ni,Pb,Zn	0.45µm Filtration, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.00005 - 0.0010 g/m ³	1-4
Filtration, Unpreserved	Sample filtration through 0.45µm membrane filter.	-	1-4
Total anions for anion/cation balance check	Calculation: sum of anions as mEquiv/L calculated from Alkalinity (bicarbonate), Chloride and Sulphate. Nitrate-N, Nitrite-N. Fluoride, Dissolved Reactive Phosphorus and Cyanide also included in calculation if available. APHA 1030 E : Online Edition.	0.07 meq/L	1-4
Total cations for anion/cation balance check	Sum of cations as mEquiv/L calculated from Sodium, Potassium, Calcium and Magnesium. Iron, Manganese, Aluminium, Zinc, Copper, Lithium, Total Ammoniacal-N and pH (H ⁺) also included in calculation if available. APHA 1030 E : Online Edition.	0.05 meq/L	1-4
pH	pH meter. APHA 4500-H ⁺ B (modified) : Online Edition. Note: It is not possible to achieve the APHA Maximum Storage Recommendation for this test (15 min) when samples are analysed upon receipt at the laboratory, and not in the field. Samples and Standards are analysed at an equivalent laboratory temperature (typically 18 to 22 °C). Temperature compensation is used.	0.1 pH Units	1-4
Total Alkalinity	Titration to pH 4.5 (M-alkalinity), autotitrator. APHA 2320 B (modified for Alkalinity <20) : Online Edition.	1.0 g/m ³ as CaCO ₃	1-4
Carbonate	Calculation: from alkalinity and pH, valid where TDS is not >500 mg/L and alkalinity is almost entirely due to hydroxides, carbonates or bicarbonates. APHA 4500-CO ₂ D : Online Edition.	1.0 g/m ³ at 25°C	1-4
Bicarbonate	Calculation: from alkalinity and pH, valid where TDS is not >500 mg/L and alkalinity is almost entirely due to hydroxides, carbonates or bicarbonates. APHA 4500-CO ₂ D : Online Edition.	1.0 g/m ³ at 25°C	1-4
Free Carbon Dioxide	Calculation: from alkalinity and pH, valid where TDS is not >500 mg/L and alkalinity is almost entirely due to hydroxides, carbonates or bicarbonates. APHA 4500-CO ₂ D : Online Edition.	1.0 g/m ³ at 25°C	1-4
Total Hardness	Calculation from Calcium and Magnesium. APHA 2340 B : Online Edition.	1.0 g/m ³ as CaCO ₃	1-4
Electrical Conductivity (EC)	Conductivity meter, 25°C. APHA 2510 B : Online Edition.	0.1 mS/m	1-4
Total Dissolved Solids (TDS)	Filtration through GF/C (1.2 µm), gravimetric. APHA 2540 C (modified; drying temperature of 103 - 105°C used rather than 180 ± 2°C) : Online Edition.	10 g/m ³	1-4
Filtration for dissolved metals analysis	Sample filtration through 0.45µm membrane filter and preservation with nitric acid. APHA 3030 B : Online Edition.	-	1-4
Dissolved Aluminium	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.003 g/m ³	1-4
Dissolved Calcium	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.05 g/m ³	1-4
Dissolved Iron	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.02 g/m ³	1-4
Dissolved Magnesium	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.02 g/m ³	1-4
Dissolved Manganese	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.0005 g/m ³	1-4
Dissolved Potassium	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.05 g/m ³	1-4
Dissolved Sodium	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.02 g/m ³	1-4
Chloride	Filtered sample. Ion Chromatography. APHA 4110 B (modified) : Online Edition.	0.5 g/m ³	1-4
Total Nitrogen	Calculation: TKN + Nitrate-N + Nitrite-N. Please note: The Default Detection Limit of 0.05 g/m ³ is only attainable when the TKN has been determined using a trace method utilising duplicate analyses. In cases where the Detection Limit for TKN is 0.10 g/m ³ , the Default Detection Limit for Total Nitrogen will be 0.11 g/m ³ . In-house calculation.	0.05 g/m ³	1-4

Sample Type: Aqueous			
Test	Method Description	Default Detection Limit	Sample No
Total Ammoniacal-N	Phenol/hypochlorite colourimetry. Flow injection analyser. (NH ₄ -N = NH ₄ ⁺ -N + NH ₃ -N). APHA 4500-NH ₃ H (modified) : Online Edition.	0.010 g/m ³	1-4
Nitrite-N	Automated Azo dye colorimetry, Flow injection analyser. APHA 4500-NO ₂ I (modified) : Online Edition.	0.002 g/m ³	1-4
Nitrate-N	Calculation: (Nitrate-N + Nitrite-N) - Nitrite-N. In-House.	0.0010 g/m ³	1-4
Nitrate-N + Nitrite-N	Total oxidised nitrogen. Automated cadmium reduction, flow injection analyser. APHA 4500-NO ₃ I (modified) : Online Edition.	0.002 g/m ³	1-4
Total Kjeldahl Nitrogen (TKN)	Total Kjeldahl digestion, automated phenol/hypochlorite colorimetry. APHA 4500-N _{org} D (modified): Online Edition.	0.10 g/m ³	1-4
Total Phosphorus	Total phosphorus digestion, automated ascorbic acid colorimetry. Flow Injection Analyser. APHA 4500-P H (modified) : Online Edition.	0.002 g/m ³	1-4
Sulphate	Filtered sample. Ion Chromatography. APHA 4110 B (modified) : Online Edition.	0.5 g/m ³	1-4

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 03-Jul-2025 and 07-Jul-2025. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Kim Harrison MSc
Client Services Manager - Environmental

Certificate of Analysis

Page 1 of 3

Client:	Mott MacDonald	Lab No:	3943192	SPv1
Contact:	Toby Zaege C/- Mott MacDonald PO Box 37525 Parnell Auckland 1151	Date Received:	22-Jul-2025	

Sample Type: Aqueous				
Sample Name:	BH05 21-Jul-2025 8:00 am	BH06 21-Jul-2025 8:30 am	BH08 21-Jul-2025 9:00 am	BH09 21-Jul-2025 9:30 am
Lab Number:	3943192.1	3943192.2	3943192.3	3943192.4
Individual Tests				
Sum of Anions	meq/L	2.4	2.7	1.44
Sum of Cations	meq/L	2.4	2.8	1.65
pH	pH Units	5.9	6.1	5.5
Total Alkalinity	g/m³ as CaCO ₃	46	84	14.4
Carbonate	g/m³ at 25°C	< 1.0	< 1.0	< 1.0
Bicarbonate	g/m³ at 25°C	56	102	17.6
Free Carbon Dioxide	g/m³ at 25°C	113	125	96
Total Hardness	g/m³ as CaCO ₃	31	62	10.9
Electrical Conductivity (EC)	mS/m	25.8	28.2	18.1
Total Dissolved Solids (TDS)	g/m³	400	320	88
Dissolved Aluminium	g/m³	0.040	0.029	0.057
Dissolved Calcium	g/m³	9.1	18.2	1.74
Dissolved Iron	g/m³	0.06	< 0.02	3.6
Dissolved Magnesium	g/m³	2.0	3.9	1.60
Dissolved Manganese	g/m³	0.135	0.26	0.192
Dissolved Potassium	g/m³	0.80	2.1	1.65
Dissolved Sodium	g/m³	40	34	26
Chloride	g/m³	29	28	35
Total Nitrogen	g/m³	1.31	1.31	2.6
Total Ammoniacal-N	g/m³	< 0.010	0.052	1.37
Nitrite-N	g/m³	0.002	0.002	0.003
Nitrate-N	g/m³	0.079	0.008	< 0.002
Nitrate-N + Nitrite-N	g/m³	0.081	0.011	0.005
Total Kjeldahl Nitrogen (TKN)	g/m³	1.23	1.30	2.6
Total Phosphorus	g/m³	0.45	0.43	0.37
Sulphate	g/m³	30	12.0	7.9
Heavy metals, dissolved, trace As,Cd,Cr,Cu,Ni,Pb,Zn				
Dissolved Arsenic	g/m³	< 0.0010	< 0.0010	< 0.0010
Dissolved Cadmium	g/m³	< 0.00005	< 0.00005	< 0.00005
Dissolved Chromium	g/m³	< 0.0005	< 0.0005	< 0.0005
Dissolved Copper	g/m³	< 0.0005	0.0006	0.0046
Dissolved Lead	g/m³	< 0.00010	< 0.00010	< 0.00010
Dissolved Nickel	g/m³	0.0017	0.0023	0.0083
Dissolved Zinc	g/m³	0.0022	0.0082	0.0189

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked * or any comments and interpretations, which are not accredited.

Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

Sample Type: Aqueous			
Test	Method Description	Default Detection Limit	Sample No
Heavy metals, dissolved, trace As,Cd,Cr,Cu,Ni,Pb,Zn	0.45µm Filtration, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.00005 - 0.0010 g/m ³	1-4
Filtration, Unpreserved	Sample filtration through 0.45µm membrane filter.	-	1-4
Total anions for anion/cation balance check	Calculation: sum of anions as mEquiv/L calculated from Alkalinity (bicarbonate), Chloride and Sulphate. Nitrate-N, Nitrite-N. Fluoride, Dissolved Reactive Phosphorus and Cyanide also included in calculation if available. APHA 1030 E : Online Edition.	0.07 meq/L	1-4
Total cations for anion/cation balance check	Sum of cations as mEquiv/L calculated from Sodium, Potassium, Calcium and Magnesium. Iron, Manganese, Aluminium, Zinc, Copper, Lithium, Total Ammoniacal-N and pH (H ⁺) also included in calculation if available. APHA 1030 E : Online Edition.	0.05 meq/L	1-4
pH	pH meter. APHA 4500-H ⁺ B (modified) : Online Edition. Note: It is not possible to achieve the APHA Maximum Storage Recommendation for this test (15 min) when samples are analysed upon receipt at the laboratory, and not in the field. Samples and Standards are analysed at an equivalent laboratory temperature (typically 18 to 22 °C). Temperature compensation is used.	0.1 pH Units	1-4
Total Alkalinity	Titration to pH 4.5 (M-alkalinity), autotitrator. APHA 2320 B (modified for Alkalinity <20) : Online Edition.	1.0 g/m ³ as CaCO ₃	1-4
Carbonate	Calculation: from alkalinity and pH, valid where TDS is not >500 mg/L and alkalinity is almost entirely due to hydroxides, carbonates or bicarbonates. APHA 4500-CO ₂ D : Online Edition.	1.0 g/m ³ at 25°C	1-4
Bicarbonate	Calculation: from alkalinity and pH, valid where TDS is not >500 mg/L and alkalinity is almost entirely due to hydroxides, carbonates or bicarbonates. APHA 4500-CO ₂ D : Online Edition.	1.0 g/m ³ at 25°C	1-4
Free Carbon Dioxide	Calculation: from alkalinity and pH, valid where TDS is not >500 mg/L and alkalinity is almost entirely due to hydroxides, carbonates or bicarbonates. APHA 4500-CO ₂ D : Online Edition.	1.0 g/m ³ at 25°C	1-4
Total Hardness	Calculation from Calcium and Magnesium. APHA 2340 B : Online Edition.	1.0 g/m ³ as CaCO ₃	1-4
Electrical Conductivity (EC)	Conductivity meter, 25°C. APHA 2510 B : Online Edition.	0.1 mS/m	1-4
Total Dissolved Solids (TDS)	Filtration through GF/C (1.2 µm), gravimetric. APHA 2540 C (modified; drying temperature of 103 - 105°C used rather than 180 ± 2°C) : Online Edition.	10 g/m ³	1-4
Filtration for dissolved metals analysis	Sample filtration through 0.45µm membrane filter and preservation with nitric acid. APHA 3030 B : Online Edition.	-	1-4
Dissolved Aluminium	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.003 g/m ³	1-4
Dissolved Calcium	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.05 g/m ³	1-4
Dissolved Iron	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.02 g/m ³	1-4
Dissolved Magnesium	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.02 g/m ³	1-4
Dissolved Manganese	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.0005 g/m ³	1-4
Dissolved Potassium	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.05 g/m ³	1-4
Dissolved Sodium	Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.	0.02 g/m ³	1-4
Chloride	Filtered sample. Ion Chromatography. APHA 4110 B (modified) : Online Edition.	0.5 g/m ³	1-4
Total Nitrogen	Calculation: TKN + Nitrate-N + Nitrite-N. Please note: The Default Detection Limit of 0.05 g/m ³ is only attainable when the TKN has been determined using a trace method utilising duplicate analyses. In cases where the Detection Limit for TKN is 0.10 g/m ³ , the Default Detection Limit for Total Nitrogen will be 0.11 g/m ³ . In-house calculation.	0.05 g/m ³	1-4

Sample Type: Aqueous			
Test	Method Description	Default Detection Limit	Sample No
Total Ammoniacal-N	Phenol/hypochlorite colourimetry. Flow injection analyser. (NH ₄ -N = NH ₄ ⁺ -N + NH ₃ -N). APHA 4500-NH ₃ H (modified) : Online Edition.	0.010 g/m ³	1-4
Nitrite-N	Automated Azo dye colorimetry, Flow injection analyser. APHA 4500-NO ₂ I (modified) : Online Edition.	0.002 g/m ³	1-4
Nitrate-N	Calculation: (Nitrate-N + Nitrite-N) - Nitrite-N. In-House.	0.0010 g/m ³	1-4
Nitrate-N + Nitrite-N	Total oxidised nitrogen. Automated cadmium reduction, flow injection analyser. APHA 4500-NO ₃ I (modified) : Online Edition.	0.002 g/m ³	1-4
Total Kjeldahl Nitrogen (TKN)	Total Kjeldahl digestion, automated phenol/hypochlorite colorimetry. APHA 4500-N _{org} D (modified): Online Edition.	0.10 g/m ³	1-4
Total Phosphorus	Total phosphorus digestion, automated ascorbic acid colorimetry. Flow Injection Analyser. APHA 4500-P H (modified) : Online Edition.	0.002 g/m ³	1-4
Sulphate	Filtered sample. Ion Chromatography. APHA 4110 B (modified) : Online Edition.	0.5 g/m ³	1-4

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 23-Jul-2025 and 05-Aug-2025. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Kim Harrison MSc
Client Services Manager - Environmental

ID	Collar (m NZVD)	Reference	16/06/2025	25/06/2025	30/06/2025	14/07/2025	07/08/2025	19/08/2025	23/09/2025	6/10/2025
BH001	34.25	m bgl	6.78	6.22	5.42	5.40	5.84	5.64	5.84	5.76
		m NZVD	27.47	28.03	28.83	28.85	28.41	28.61	28.41	28.49
BH002	28	m bgl	6.28	6.44	6.50	6.10	6.34	6.21	6.22	6.14
		m NZVD	21.72	21.56	21.50	21.90	21.66	21.79	21.78	21.86
BH003	25	m bgl	3.44	2.48	2.15	1.64	1.89	1.60	1.77	1.82
		m NZVD	21.56	22.52	22.85	23.36	23.11	23.40	23.23	23.18
BH004	27.75	m bgl	-	-	4.19	5.04	5.31	5.19	5.57	5.42
		m NZVD	-	-	23.56	22.71	22.44	22.56	22.18	22.33
BH005	20.75	m bgl	-	-	-	0.90	1.17	1.02	1.20	1.10
		m NZVD	-	-	-	19.85	19.58	19.73	19.55	19.65
BH006	22.5	m bgl	-	-	-	4.84	4.86	4.77	5.07	5.11
		m NZVD	-	-	-	17.66	17.64	17.73	17.43	17.39
BH008	16.25	m bgl	-	-	-	2.10	2.25	2.21	2.50	2.21
		m NZVD	-	-	-	14.15	14.00	14.04	13.75	14.04
BH009	24.5	m bgl	-	-	-	3.84	3.19	3.36	3.45	3.38
		m NZVD	-	-	-	20.66	21.31	21.14	21.05	21.12
BH010	65	m bgl	-	-	-	-	dry	dry	dry	dry
		m NZVD	-	-	-	-	-	-	-	-
BH011	59	m bgl	-	-	-	dry	dry	dry	dry	dry
		m NZVD	-	-	-	-	-	-	-	-
BH012	39.3	m bgl	-	-	-	-	3.90	-	-	3.79
		m NZVD	-	-	-	-	35.40	-	-	35.51

Appendix E. Seepage calculations

Royal Station and Underpass

Linear unconfined flow into a trench (flow one side)

Chainage Start (m)	Section 1 21800	Section 2 21850	Section 3 21900	Section 4 21950	Section 5 30000	Section 6 30050
Average Invert elevation (m AHD)	56.2	56.8	56.6	55.7	54.5	54.3
Average WL elevation (m AHD)	57.2	60.5	62.9	63.2	61.6	58.7
Excavation below WT?	Yes	Yes	Yes	Yes	Yes	Yes
Inflow						
Hydraulic conductivity, K (m/s)	2.00E-07	2.00E-07	2.00E-07	2.00E-07	2.00E-07	2.00E-07
Elevation of base of aquifer, z_{bot} (m AHD)	51.2	51.8	51.6	50.7	49.5	49.3
Distance to constant-head boundary, A (m)	4.67	12.36	20.50	23.82	22.68	14.50
Width of aquifer transverse to groundwater flow, L (m)	50.0	50.0	50.0	50.0	50.0	50.0
Head at the constant-head boundary, H (m AHD)	57.2	60.5	62.9	63.2	61.6	58.7
Head in the excavation, h_d (m AHD)	55.7	56.3	56.1	55.2	54.0	53.8
Specific Yield	0.1	0.1	0.1	0.1	0.1	0.1
K (m/d)	0.017	0.02	0.02	0.02	0.02	0.02
Required dd (m)	1.56	4.12	6.83	7.94	7.56	4.83
Radius of influence (m)	3.43	4.09	4.69	4.92	4.84	4.26
Results						
Calculated inflow, Q, (m ³ /s)	0.00002	0.00002	0.00003	0.00003	0.00003	0.00002
Calculated inflow, Q, (m ³ /d)	1.52	1.89	2.28	2.44	2.38	1.99
Total inflow (m ³ /day)	N/A	N/A	N/A	N/A	N/A	N/A
Cumulative inflow (m ³)	N/A	0.00	0.00	0.00	0.00	0.00

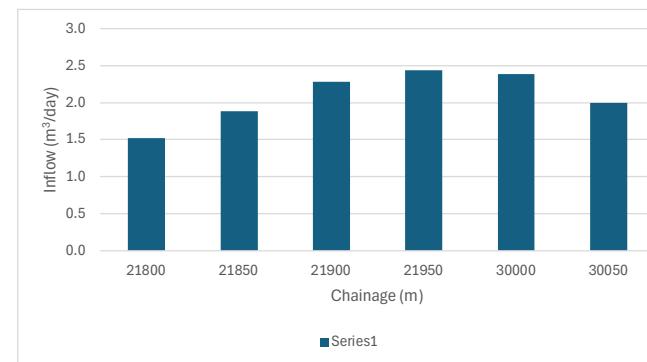
Max inflow

2.4 m³/day

Average inflow

2.1 m³/day

Max R0


4.9 m

Average R0

4.4 m

C.Head Boundary factor
3 x required dd

0.042 m³/day/m
12.51 m³/day
4,565 m³/year
4.56 ML

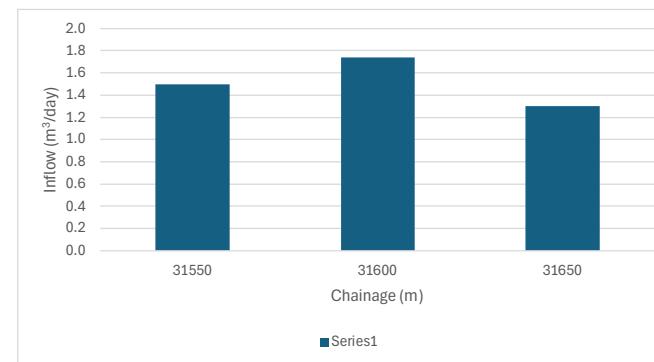
Huruhuru Road Underpass

Linear unconfined flow into a trench (flow one side)

	Section 1	Section 2	Section 3
Chainage Start (m)	31550	31600	31650
Average Invert elevation (m AHD)	18.1	16.5	14.1
Average WL elevation (m AHD)	19.0	19.1	13.7
Excavation below WT?	Yes	Yes	Yes
Inflow			
Hydraulic conductivity, K (m/s)	2.00E-07	2.00E-07	2.00E-07
Elevation of base of aquifer, z_{bot} (m AHD)	13.1	11.5	9.1
Distance to constant-head boundary, A (m)	4.17	9.24	0.18
Width of aquifer transverse to groundwater flow, L (m)	50.0	50.0	50.0
Head at the constant-head boundary, H (m AHD)	19.0	19.1	13.7
Head in the excavation, h_d (m AHD)	17.6	16.0	13.6
Specific Yield	0.1	0.1	0.1
K (m/d)	0.017	0.02	0.02
Required dd (m)	1.39	3.08	0.06
Radius of influence (m)	3.38	3.84	2.98
Results			
Calculated inflow, Q, (m ³ /s)	0.00002	0.00002	0.00002
Calculated inflow, Q, (m ³ /d)	1.50	1.74	1.30
Total inflow (m ³ /day)	N/A	N/A	N/A
Cumulative inflow (m ³)	N/A	0.00	0.00

C.Head Boundary factor

3 x required dd


Max inflow
Average inflow

4.5 m³/day
2.3 m³/day

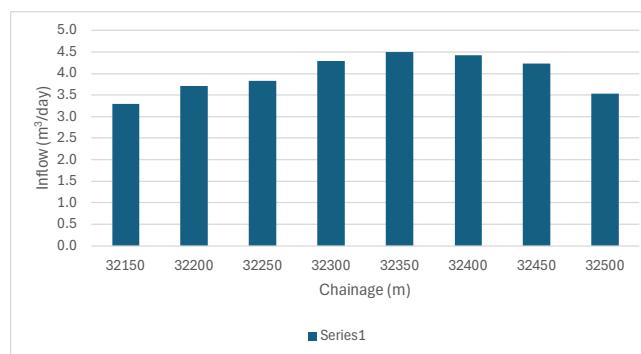
Max R0
Average R0

3.8 m
3.4 m

0.030 m³/day/m
4.54 m³/day
1,657 m³/year
1.66 ML

Lincoln Road Station

Linear unconfined flow into a trench (flow two sides)


Chainage Start (m)	Section 1 32150	Section 2 32200	Section 3 32250	Section 4 32300	Section 5 32350	Section 6 32400	Section 7 32450	Section 8 32500
Average Invert elevation (m AHD)	10.7	11.1	10.7	9.5	9.0	8.7	8.7	9.0
Average WL elevation (m AHD)	12.7	14.5	14.5	14.8	15.1	14.5	13.9	11.8
Excavation below WT?	Yes							
Inflow								
Hydraulic conductivity, K (m/s)	2.00E-07							
Elevation of base of aquifer, z_{bot} (m AHD)	5.7	6.1	5.7	4.5	4.0	3.7	3.7	4.0
Distance to constant-head boundary, A (m)	7.32	11.67	12.94	17.65	19.89	19.10	17.05	9.73
Width of aquifer transverse to groundwater flow, L (m)	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
Head at the constant-head boundary, H (m AHD)	12.7	14.5	14.5	14.8	15.1	14.5	13.9	11.8
Head in the excavation, h_d (m AHD)	10.2	10.6	10.2	9.0	8.5	8.2	8.2	8.5
Specific Yield	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
K (m/d)	0.017	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Required dd (m)	2.44	3.89	4.31	5.88	6.63	6.37	5.68	3.24
Radius of influence (m)	3.67	4.04	4.14	4.49	4.65	4.60	4.45	3.88
Results								
Calculated inflow, Q, (m ³ /s)	0.00004	0.00004	0.00004	0.00005	0.00005	0.00005	0.00005	0.00004
Calculated inflow, Q, (m ³ /d)	3.29	3.71	3.83	4.29	4.50	4.43	4.23	3.53
Total inflow (m ³ /day)	N/A							
Cumulative inflow (m ³)	N/A	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Max inflow
Average inflow

4.5 m³/day
4.0 m³/day

Max R0
Average R0

4.7 m
4.3 m

C.Head Boundary factor
3 x required dd

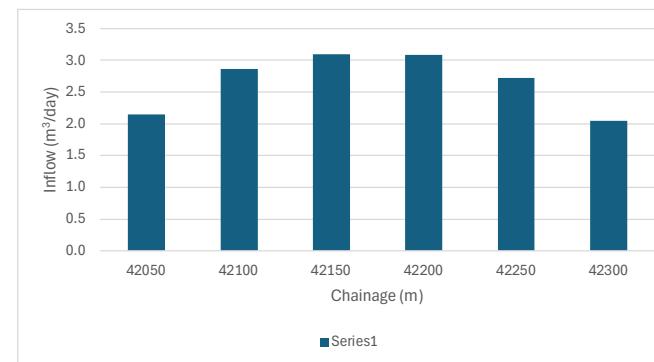
0.080 m³/day/m
31.81 m³/day
11,610 m³/year
11.61 ML

Te Atatu Station

Linear unconfined flow into a trench (full flow one side, half flow one side)

Chainage Start (m)	Section 1 42050	Section 2 42100	Section 3 42150	Section 4 42200	Section 5 42250	Section 6 42300
Average Invert elevation (m AHD)	16.1	16.3	16.5	16.8	17.0	17.2
Average WL elevation (m AHD)	16.5	20.1	21.4	21.6	20.2	17.2
Excavation below WT?	Yes	Yes	Yes	Yes	Yes	Yes
Inflow						
Hydraulic conductivity, K (m/s)	2.00E-07	2.00E-07	2.00E-07	2.00E-07	2.00E-07	2.00E-07
Elevation of base of aquifer, z_{bot} (m AHD)	11.1	11.3	11.5	11.8	12.0	12.2
Distance to constant-head boundary, A (m)	2.85	12.80	16.07	15.81	10.91	1.46
Width of aquifer transverse to groundwater flow, L (m)	50.0	50.0	50.0	50.0	50.0	50.0
Head at the constant-head boundary, H (m AHD)	16.5	20.1	21.4	21.6	20.2	17.2
Head in the excavation, h_d (m AHD)	15.6	15.8	16.0	16.3	16.5	16.7
Specific Yield	0.1	0.1	0.1	0.1	0.1	0.1
K (m/d)	0.017	0.02	0.02	0.02	0.02	0.02
Required dd (m)	0.95	4.27	5.36	5.27	3.64	0.48
Radius of influence (m)	3.25	4.13	4.38	4.36	3.98	3.11
Results						
Calculated inflow, Q, (m ³ /s)	0.00002	0.00003	0.00004	0.00004	0.00003	0.00002
Calculated inflow, Q, (m ³ /d)	2.15	2.87	3.10	3.08	2.73	2.05
Total inflow (m ³ /day)	N/A	N/A	N/A	N/A	N/A	N/A
Cumulative inflow (m ³)	N/A	0.00	0.00	0.00	0.00	0.00

Max inflow
Average inflow


3.1 m³/day
2.7 m³/day

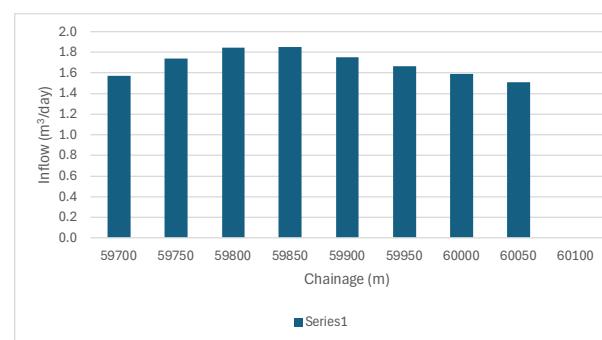
Max R0
Average R0

4.4 m
3.9 m

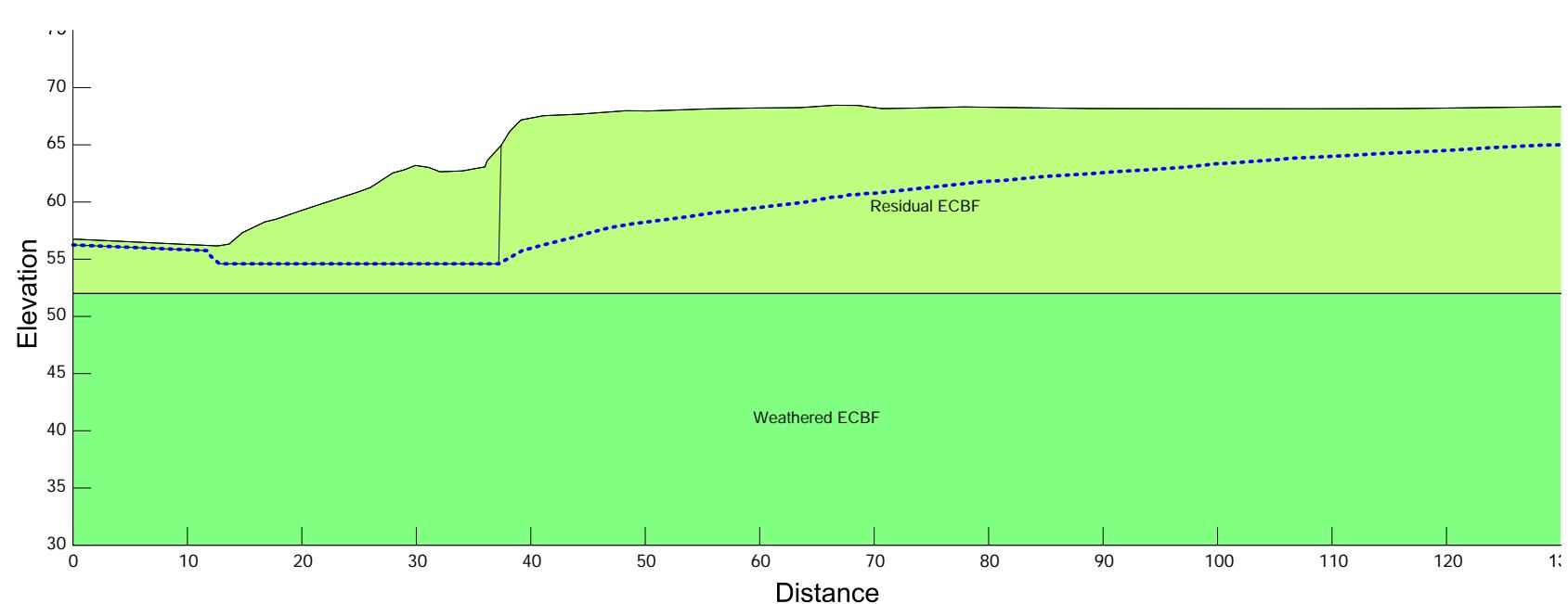
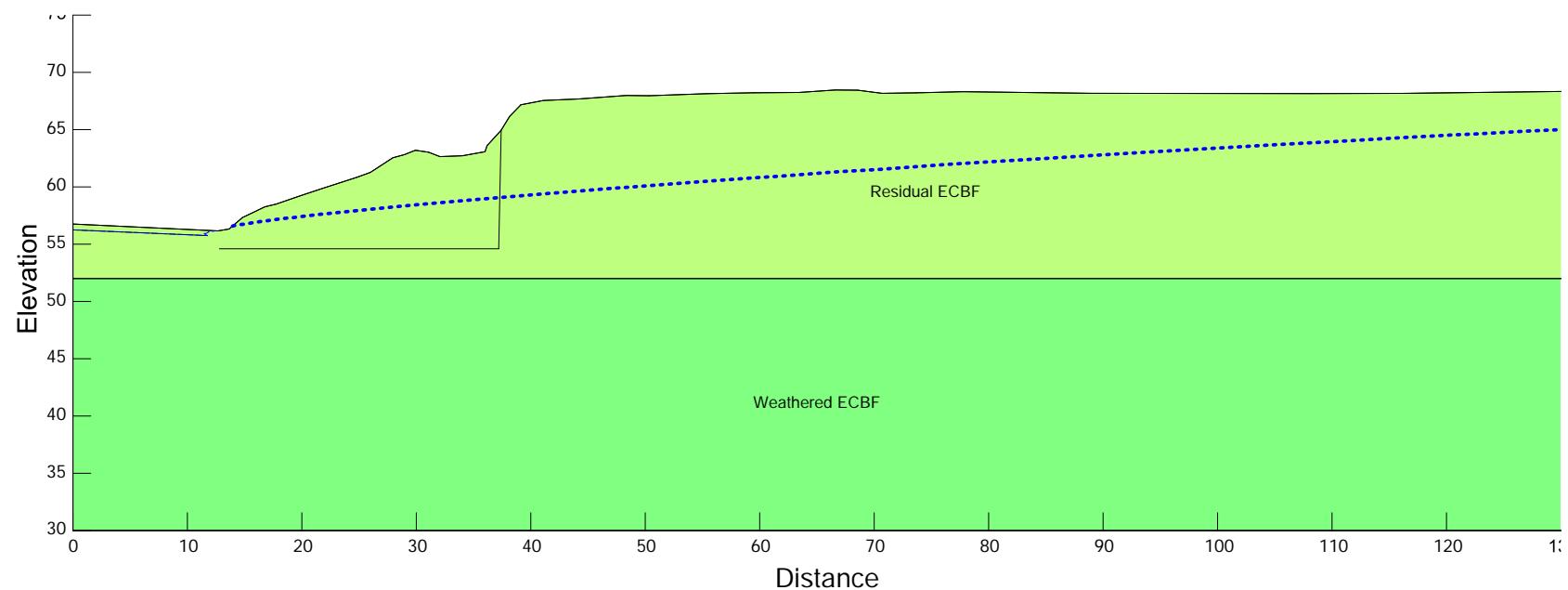
C.Head Boundary factor
3 x required dd

0.053 m³/day/m
15.98 m³/day
5,831 m³/year
5.83 ML

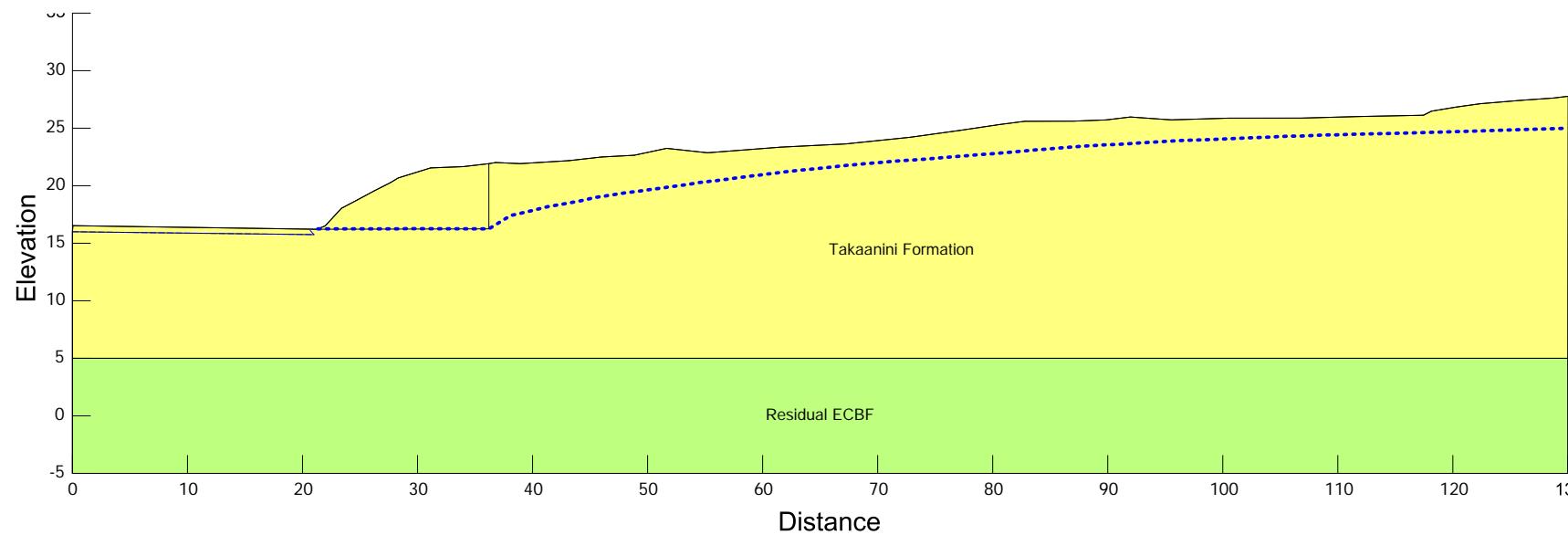
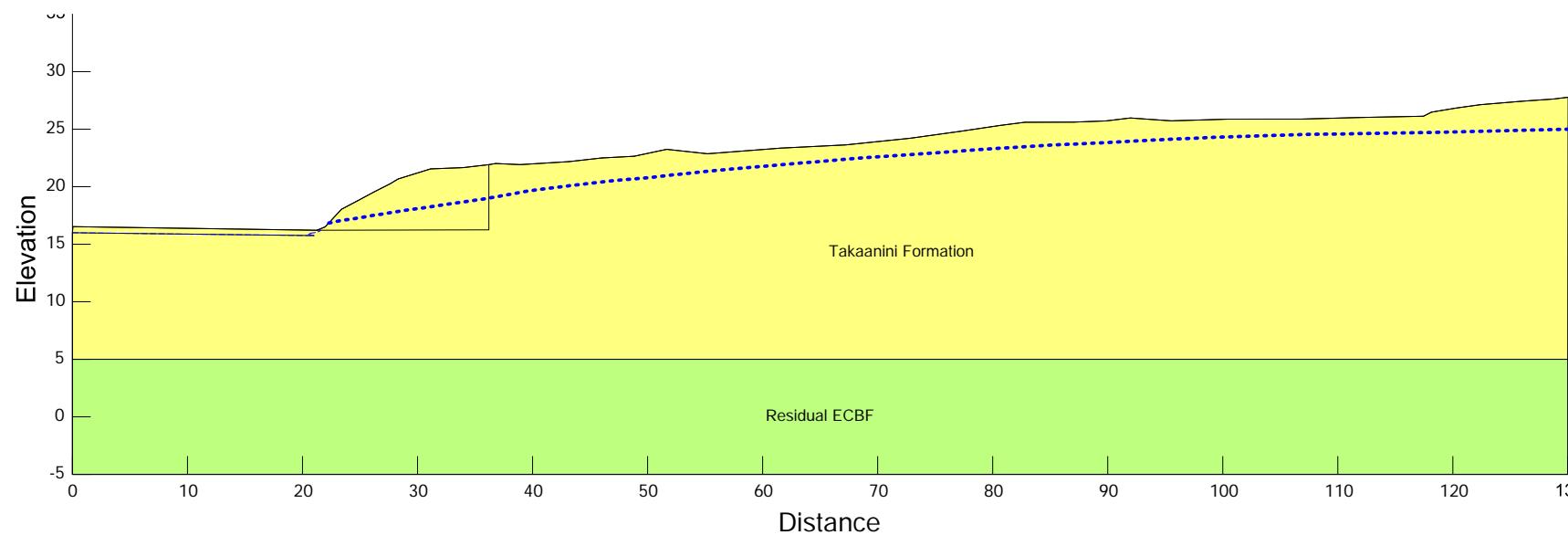
Point Chevalier Station

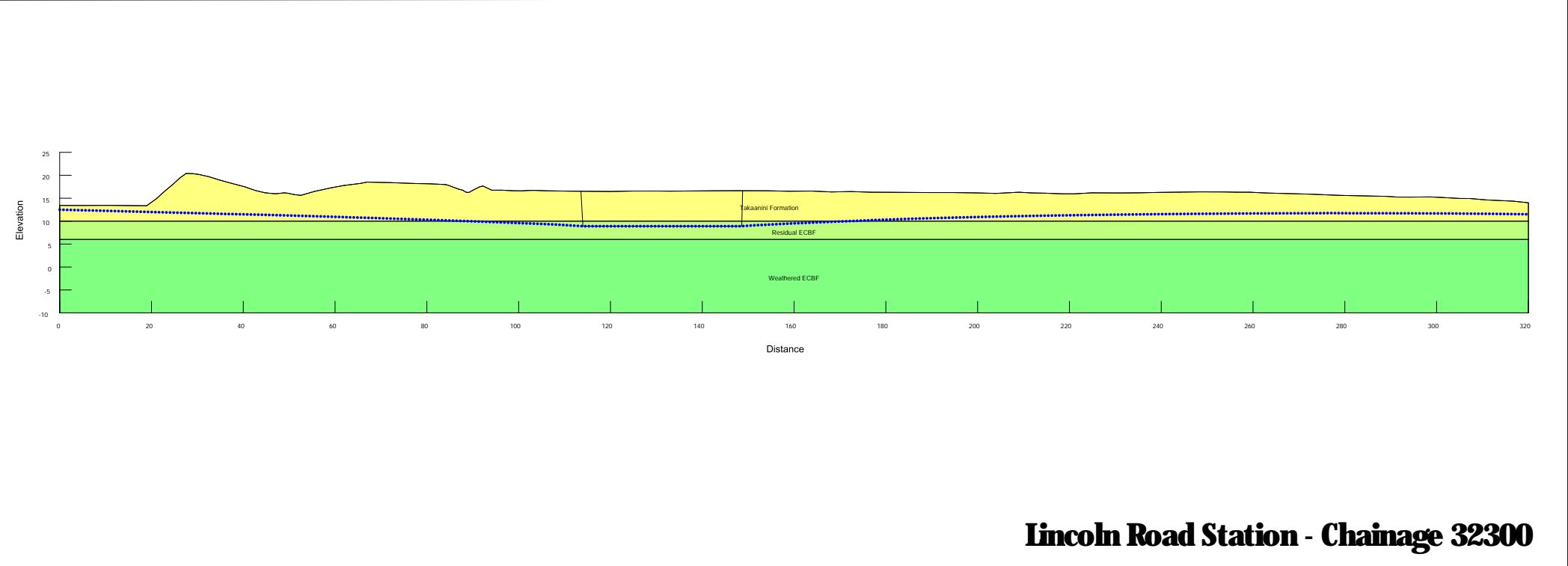
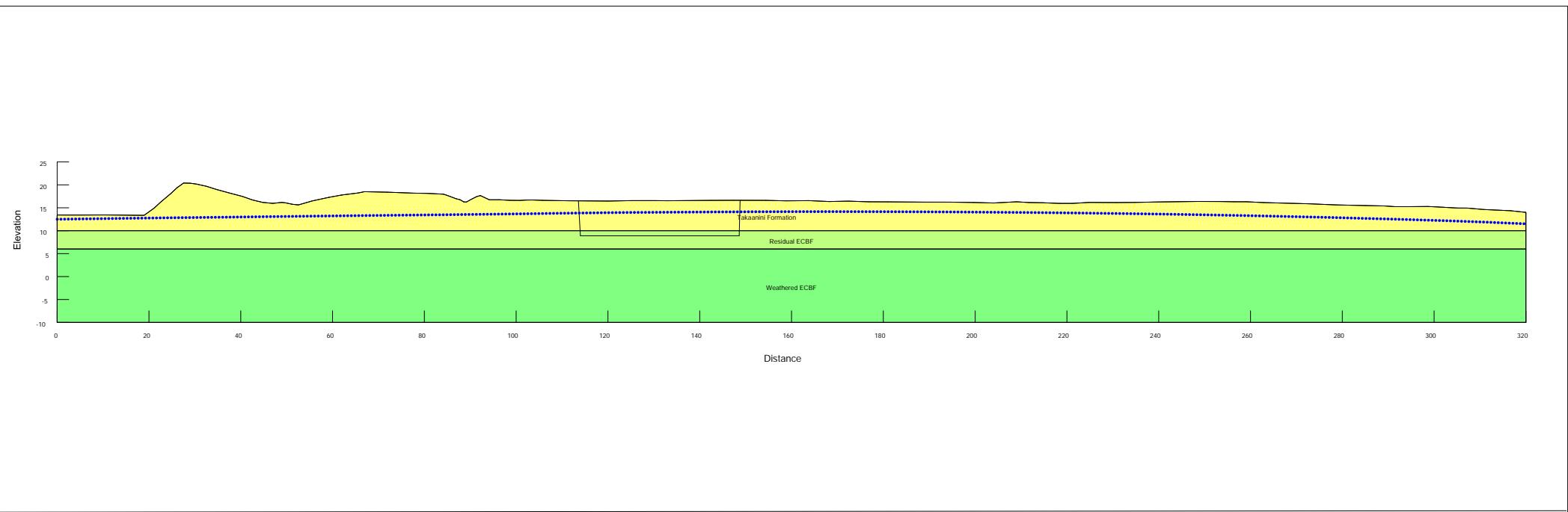

Linear unconfined flow into a trench (flow one side)

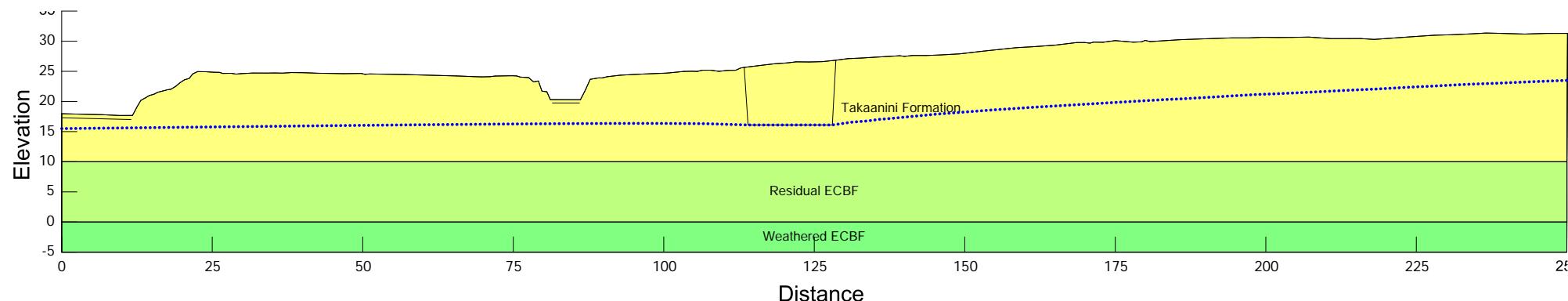
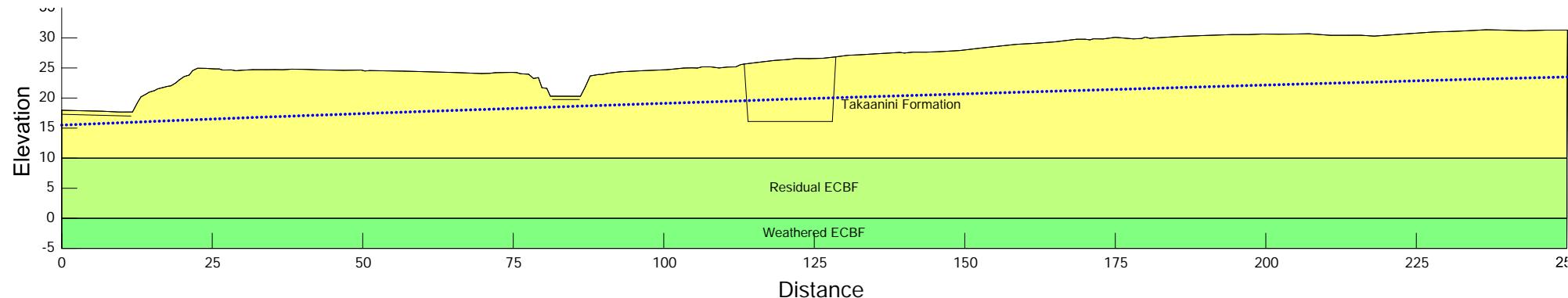
Chainage Start (m)	Section 1 59700	Section 2 59750	Section 3 59800	Section 4 59850	Section 5 59900	Section 6 59950	Section 7 60000	Section 8 60050	Section 9 60100
Average Invert elevation (m AHD)	21.2	21.4	21.6	21.6	21.2	20.8	20.2	19.8	19.2
Average WL elevation (m AHD)	22.6	23.9	24.9	25.0	23.9	22.9	21.8	20.8	18.6
Excavation below WT?	Yes	No							
Inflow									
Hydraulic conductivity, K (m/s)	2.00E-07								
Elevation of base of aquifer, z_{bot} (m AHD)	16.2	16.4	16.6	16.6	16.2	15.8	15.2	14.8	14.2
Distance to constant-head boundary, A (m)	5.77	9.21	11.41	11.58	9.55	7.68	6.09	4.40	N/A
Width of aquifer transverse to groundwater flow, L (m)	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	20.0
Head at the constant-head boundary, H (m AHD)	22.6	23.9	24.9	25.0	23.9	22.9	21.8	20.8	18.6
Head in the excavation, h_d (m AHD)	20.7	20.9	21.1	21.1	20.7	20.3	19.7	19.3	18.7
Specific Yield	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
K (m/d)	0.017	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Required dd (m)	1.92	3.07	3.80	3.86	3.18	2.56	2.03	1.47	N/A
Radius of influence (m)	3.53	3.84	4.02	4.03	3.86	3.70	3.56	3.41	N/A
Results									
Calculated inflow, Q_i (m ³ /s)	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	N/A
Calculated inflow, Q_i (m ³ /d)	1.57	1.74	1.84	1.85	1.75	1.66	1.59	1.51	N/A
Total inflow (m ³ /day)	N/A								
Cumulative inflow (m ³)	N/A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

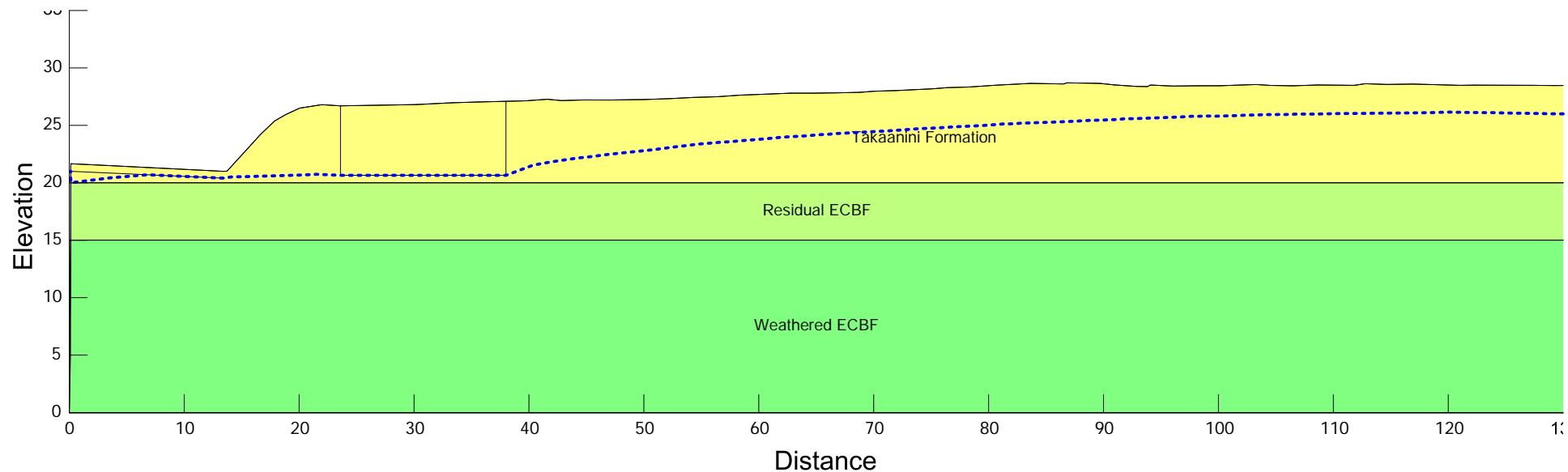
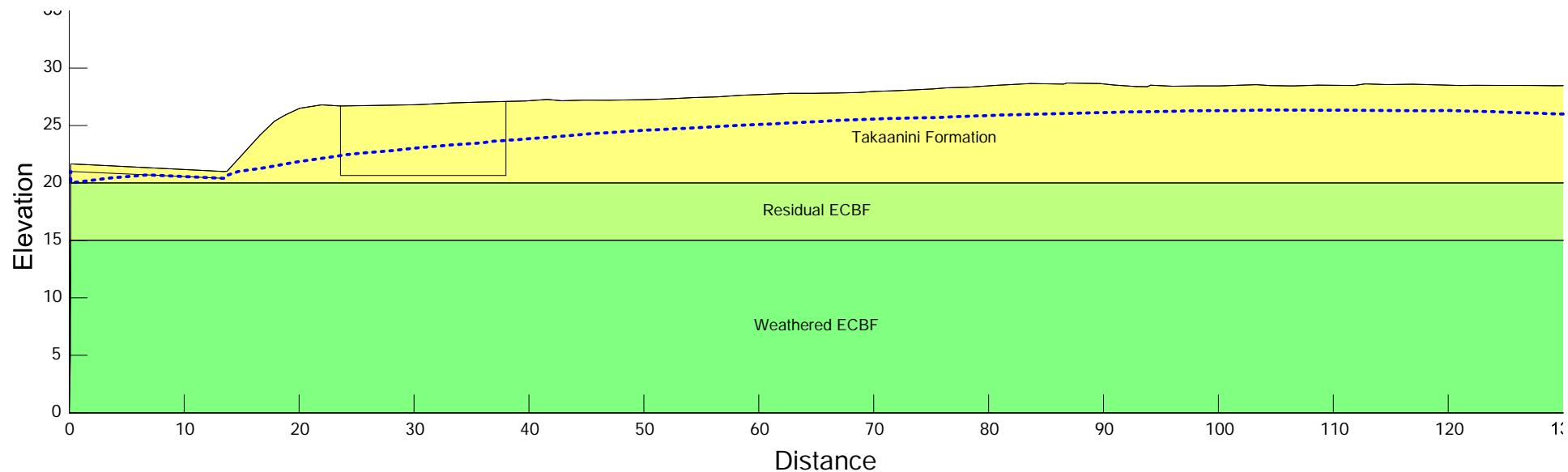


C.Head Boundary factor
3 x required dd

0.032 m³/day/m
13.52 m³/day
4,935 m³/year
4.94 ML



Max inflow	1.9 m ³ /day
Average inflow	1.7 m ³ /day
Max R0	4.0 m
Average R0	3.8 m



Appendix F. Seep/W Pore Pressure Profiles



Royal Road Station - Chainage 21960



Huruhuru Road - Chainage 31600

Lincoln Road Station - Chainage 32300

Te Atatū Station - Chainage 50100

Point Chevalier Station - Chainage 59940