

Appendix 1 – Calculation

TP108 Calculations

MALEN	MAVEN AS	SOCIATES		Number 15010	Sheet 1	Rev A
Job Title Calc Title	TP108 Calculati	nfield FAA on - Pre-Development etland 4		uthor AO	Date 19/12/2024	Checked
1. Runoff Curve Numb	er (CN) and initia	Abstraction (la)				
Soil name and classification		otion (cover type, treatme	ent, and	Curve Number CN*	Area (ha) 10000m2= 1ha	CN x area
С		Residential lots		89.6		0.0
С		Road pavement		98		0.0
С		Carpark		98		0.0
С	Op	pen space (Pervious)		74	53.5004	3959.0
* from Appendix B				Totals =	53.5004	3959.03
	5 x pervious area		53.500	<u>4</u> 5.	0 mm	
2. Time of Concentrati	total area	53.5	500		0 mm	
2. Time of Concentrati Contours level in meters	total area	53.9	500 Lower leve	el	0 mm	
2. Time of Concentrati Contours level in meters Channelisation factor	total area s H	53.9 gh Level = 1	500 Lower leve (From Ta	el able 4.2)		
2. Time of Concentrati Contours level in meters Channelisation factor Catchment length	total area s H	53.9 gh Level	500 Lower leve (From Ta km (along	el ible 4.2) drainage pa	ath)	
2. Time of Concentrati Contours level in meters Channelisation factor Catchment length Catchment Slope	total area son B C L Se	53.9 gh Level = 1 = 0.1 = 0.016	Lower leve (From Ta km (along m/m (by	el able 4.2)	ath)	
2. Time of Concentrati Contours level in meters Channelisation factor Catchment length Catchment Slope	total area s H	53.9 gh Level	Lower leve (From Ta km (along m/m (by	el ible 4.2) drainage pa	ath) method)	
2. Time of Concentrati Contours level in meters Channelisation factor Catchment length Catchment Slope Runoff factor,	total area ion S H C L Si CN = 200 - CN	53.9 gh Level = 1 = 0.1 >= 0.016 74.0	Lower leve (From Ta km (along m/m (by	el able 4.2) drainage pa equal area	ath) method)	
2. Time of Concentrati Contours level in meters Channelisation factor Catchment length Catchment Slope Runoff factor,	total area ion S Hi C L Si 200 - CN 0-CN)-0.55 Sc-0.30	53.9 gh Level = 1 = 0.1 >= 0.016 74.0	Lower leve (From Ta km (along m/m (by	el able 4.2) drainage pa equal area 0.5	ath) method)	hrs
2. Time of Concentration Contours level in meters Channelisation factor Catchment length Catchment Slope Runoff factor, $t_c = 0.14 \text{ C L}^{0.66} \text{ (CN/200)}$ $= 0.14$	total area ion S H C L Si CN = 200 - CN 0-CN) ^{-0.55} Sc ^{-0.30} 4 1	53.9 gh Level = 1 = 0.1 c= 0.016 74.0 200- 74.0	Lower leve (From Ta km (along m/m (by	able 4.2) drainage pa equal area 0.5	ath) method) =0.17 =0.11	
Channelisation factor Catchment length Catchment Slope Runoff factor, $t_c = 0.14 \text{ C L}^{0.66} \text{ (CN/200}$	total area ion S H C L Si CN = 200 - CN 0-CN) ^{-0.55} Sc ^{-0.30} 4 1	53.9 gh Level = 1 = 0.1 c= 0.016 74.0 200- 74.0	Lower leve (From Ta km (along m/m (by	able 4.2) drainage pa equal area 0.5	ath) method) =0.17 =0.11	hrs mins

MAVEN ASSOC	CIATES	Job Nu 2150		Sheet 2	Rev A
Job Title Sunfield FAA Calc Title TP108 Calculation - Pre-D Wetland 4		Auth AO		Date 19/12/2024	Checked 0
1. Data Catchment Area A=	= 0.53500 k	m2(100ha =	1km2)		
Runoff curve number CN=	74.0 (1	rom workshe	et 1)		
Initial abstraction la-	= 5.0 n	nm (from work	(sheet 1)		
Time of concentration to-	= 0.17 h	rs (from work	sheet 1)		
2. Calculate storage, S =(1000/CN - 10)2	5.4 =		89.2 n	nm	
3. Average recurrence interval, ARI	90th %	95th %	2	10	100 (yr)
4. 24 hour rainfall depth	25	33	80	140	228 (mm
5. Compute c* = P24 - 2la/P24 - 2la+2S	0.08	0.11	0.28	0.42	0.55
6. Specific peak flow rate q*	0.020	0.028	0.065	0.090	0.110
7. Peak flow rate, q _p =q*A*P ₂₄	0.268	0.494	2.782	6.741	13.418 m3/
3. Runoff depth, $Q_{24} = (P_{24}-la)^2/(P_{24}-la)+S$	3.7	6.7	34.2	81.3	159.3 mm
9. Runoff volume, $V_{24} = 1000 \times Q_{24} A$	1958.94	3577.54	18322.79	43481.53	85206.62 (m3

MAVEN	MAVEN ASSOCIATES		lumber 5010	Sheet 3	Rev A
Job Title Calc Title	Sunfield FAA TP108 Calculation - Post Development Wetland 4 - Pervious		thor AO	Date 19/12/2024	Checked 0
1. Runoff Curve Num	nber (CN) and initial Abstraction (Ia)				
Soil name and classification	Cover description (cover type, treatments)		Curve Number CN*	Area (ha) 10000m2=1 ha	Product of CN x area
С	Urban-commercial and bussines	SS	98		0.0
С	Road pavement		98		0.0
С	Berms + Footpath		85	7.7400	0.0
C * from Appendix B	Open space (Pervious)		74 Totals =	7.7132 7.7132	570.7 570.7
la (average) = 2. Time of Concentra Channelisation factor Catchment length Catchment Slope	C = 0.6 L = 0.5	(From Tak			
Runoff factor,	CN = 74.0		0.5	9	
200	200 - CN 200- 74.0				
t _c = 0.14 C L ^{0.66} (CN/2					
= 0.		3.48		= 0.17	hrs
				0.44	
SCS Lag for HEC-HM	$t_p = 2/3 t_c$			6.71 NO GOOD use	

MAVEN ASSOC	CIATES	Job Nun 21501		Sheet 4	Rev A
Job Title Sunfield FAA Calc Title TP108 Calculation - Post D Wetland 4 - Pervio	The state of the s	Autho AO		Date 19/12/2024	Checked 0
Data Catchment Area	0.07713 k	km2(100ha =	1km2)		
Runoff curve number CN=	74.0 (from workshe	et 1)		
Initial abstraction la=	5.0 r	mm (from wor	ksheet 1)		
Time of concentration tc=	0.17 h	nrs (from work	sheet 1)		
2. Calculate storage, S =(1000/CN - 10)25			89.2 r	mm	
3. Average recurrence interval, ARI	90th %	95th %	2	10	100 (yr)
4. 24 hour rainfall depth	25	33	80	140	228 (mn
Percentage Increase 4. 24 hour rainfall depth, P24	25	33	15.1 92.08	17.0 163.8	32.7 (%) 302.556 (mn
5. Compute c* = P24 - 2la/P24 - 2la+2S	0.08	0.11	0.32	0.46	0.62
6. Specific peak flow rate q*	0.170	0.170	0.170	0.170	0.170
7. Peak flow rate, q _p =q*A*P ₂₄	0.328	0.433	1.207	2.148	3.967 m3
8. Runoff depth, Q ₂₄ = (P ₂₄ -la) ² /(P ₂₄ -la)+S	3.7	6.7	43.0	101.7	228.9 mm
9. Runoff volume, V ₂₄ = 1000xQ ₂₄ A	282.42	515.78	3317.14	7841.69	17655.81 (m3
10, Retention volume, imp*5mm	0	0			m³
	[2]				
			- 1		

MAVEN	MAVEN ASSC	CIATES	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Number 15010	Sheet 5	Rev A
Job Title Calc Title	Sunfield TP108 Calculation - Wetland 4 - I	Post Development		uthor AO	Date 19/12/2024	Checked 0
1. Runoff Curve Num	nber (CN) and initial Ab	straction (Ia)				
Soil name and classification		(cover type, treatmologic condition)	ent, and	Curve Number CN*	Area (ha) 10000m2=1 ha	Product of CN x area
C		mercial and bussine	ess	98		0.00
С		ad pavement		98	45.7901	4487.43
С		ns + Footpath		85		0.00
C * from Appendix B	Open	space (Pervious)		74 Totals =	45.7901	0.00 4487.43
la (average) = 2. Time of Concentra Channelisation factor Catchment length Catchment Slope		0.6	790 (From Ta km (along			
Runoff factor,	CN =		ŧ I	0.9	6	
t _c = 0.14 C L ^{0.66} (CN/2	200 - CN 00-CN) ^{-0.55} Sc ^{-0.30}	200- 98.0				
= 0.	14 0.6	0.63 1.02	3.4	8	= 0.17	-
SCS Lag for HEC-HM	$t_p = 2\hbar$	3 t _e			=0.11	
						,

MA	MAVEN ASSOC	CIATES	Job Nur 2150	377.70	Sheet 6	Rev A
Job Title Calc Title	Sunfield FAA TP108 Calculation - Post [Wetland 4 - Imperv	Development	Auth AO	27	Date 19/12/2024	Checked 0
1. Data Catchm	nent Area A=	= 0.45790 k	tm2(100ha =1	(km2)		
Runoff	curve number CN=	98.0 (from workshee	et 1)		
Initial a	ostraction la=	0.0 r	nm (from work	sheet 1)		
Time of	concentration tc=	0.17 h	nrs (from work	sheet 1)		
2. Calcula	te storage, S =(1000/CN - 10)25			5.2 r	mm	
3 Averag	e recurrence interval, ARI	PWV - SMA L 90th %	.ive - SMAF1 95th %	2	10	100 (yr)
J. Morag	o rodariono intorval, rusi	000170	000170		,0]	100 (51)
	rainfall depth	25	33	80	140	228 (mm
	tage Increase	0.5		15.1	17.0	32.7 (%)
1. 24 hour	rainfall depth, P24	25	33	92.08	163.8	302.556 (mn
5. Compu	te c* = P24 - 2la/P24 - 2la+2S	0.71	0.76	0.90	0.94	0.97
3. Specific	c peak flow rate q*	0.170	0.170	0.170	0.170	0.170
7. Peak flo	ow rate, q _p =q*A*P ₂₄	1.946	2.569	7.168	12.751	23.552 m3.
8. Runoff	depth, $Q_{24} = (P_{24}-la)^2/(P_{24}-la)+S$	20.7	28.5	87.2	158.8	297.5 mm
9. Runoff	volume, $V_{24} = 1000 x Q_{24} A$	9481.56	13059.36	39916.44	72703.43	136207.16 (m3
10 Retenti	on volume, imp*5mm	2290	- 1			m³
Combin	ned v24	9764	13575.14	43233.58	80545.12	153862.97
Post V2	24- Pre V24	7805	9998	24911	37064	68656 m ³
Rechar	ge pit		6868.52			
Detenti	on volume	5516	3129			m³
F00' E'	AN / 15:	0000			checks	
	VV - Live storage provided g Depth Coefficient	3903 0.5		4968.48	1,065.96	m³ m
	m Wetland Area	7805		10310	2,504.96	m ²
	ay volume	585		1,311.00	725.62	m ²
Live Sto	orage Required		3129			m^2
Length	230	Ratio 1:	5			

MAVEN	MAVEN ASSOCIATES	Job Number 215010	Sheet 7	Rev A
Job Title	Sunfield Stage 2	Author	Date	Checked
Calc Title	Catchment Summary for Wetland Design 4	AO	19/12/2024	0

re Developmnet	53.5004	100%	0	0%
ost Development	7.7132	14%	45.7901	86%

	Runoff Volum	e V24 (m3)	Peak Flow F	Rate (m3/s)	Volume
	Pre	Post	Pre	Post	Required
90th %	1959	9764	0.27	2.27	7805.0
95th %	3578	13575	0.49	0.43	9997.6
2yr	18323	43234	2.78	1.21	24910.8
10yr	43482	80545	6.74	2.15	37063.6
100yr	85207	153863	13.42	3.97	68656.4

M A E N	Maven Associates	Job Number 215010	Sheet 1	Rev A
Job Title	Sunfield	Author	Date	Checked
Calc Title	SW Pond 4 SMAF Orifice Size Calc	YW	13/01/2025	

Detention Volume

3129.00 m³ (See SMAF Summary)

Flow Rate (Qp) if released over 24 hours

0.03622 m³/sec (Average Discharge Flow-Rate)

Tank Details

Tank Height 0.130 m
Orifice Height 0.000 m (Above tank base)

Orifice Sizing (to atmo)

Q_P=0.62*A*(2*G*H_{2/3})^{1/2}

Q_P 0.03622 m³/sec (Peak Discharge Flow-Rate)

G= 9.810 m²/sec

H_T= 0.130 m (Height of water above Discharge Point)

 $H_{2/3}$ = 0.087 m (Average Head of Water in pond = Two-Thirds of H_T)

A= 0.0447945 m² (Cross-Sectional of the Discharge Pipe)

Circular Area Formula

 $A=(\pi^*D^2)/4$

A= 0.0447945 m² (Cross-Sectional of the Discharge Pipe)

D= 0.2388182 m (Diameter of Discharge Pipe)

Use 10mm Orifice (minimum size)

238.81816 (Diameter of Discharge Orifice in mm)

Qmax = $0.0724 \text{ m}^3/\text{sec}$ Qi (265mm) $0.0446 \text{ m}^3/\text{sec}$