

Bendigo Ophir Gold Project

Freshwater Ecology Management and Monitoring Plan Prepared for Matakanui Gold Limited

23 October 2025

Boffa Miskell is proudly a Toitū net carbonzero certified consultancy

Document Quality Assurance

This document may be cited as:

Boffa Miskell Limited 2025. Bendigo Ophir Gold Project: Freshwater Ecology Management and Monitoring Plan. Report prepared by Boffa Miskell Limited for Matakanui Gold Limited.

For any information regarding this report please contact:

[Name] | [Discipline] | [Professional Level] | info@boffamiskell.co.nz

Revision /version:	Issue date:	Prepared by:	Description:	Issued by:
Draft / Final V1	21 October 2025	lan Boothroyd Senior Principal	Draft report issued to client	Ian Boothroyd Senior Principal
Final	23 October 2025	lan Boothroyd Senior Principal	Final	lan Boothroyd Senior Principal

Approved for issue:

Ian Boothroyd | Ecology | Partner | 23 October 2025

Release and Reliance

This report has been prepared by Boffa Miskell Limited on the specific instructions of our Client. It is solely for our Client's use for the purpose for which it is intended in accordance with the agreed scope of work. Boffa Miskell does not accept any liability or responsibility in relation to the use of this report contrary to the above, or to any person other than the Client. Any use or reliance by a third party is at that party's own risk. Where information has been supplied by the Client or obtained from other external sources, it has been assumed that it is accurate, without independent verification, unless otherwise indicated. No liability or responsibility is accepted by Boffa Miskell Limited for any errors or omissions to the extent that they arise from inaccurate information provided by the Client or any external source.

File name & Project number: [Document1] BMxxxxx

Template revision: 20250522 0000

CONTENTS

1.0	Introduction			
	1.1	Background	1	
	1.2	Objective	1	
	1.3	Purpose	1	
	1.4	Information sources	2	
2.0	Res	ponsibilities and Competencies	2	
	2.1	Purpose	2	
	2.2	Responsibilities	3	
3.0	Exis	sting Ecological Values	3	
	3.1	Overview	3	
	3.2	Shepherds Creek	3	
	3.3	Rise and Shine Creek	4	
4.0	Stre	eam Diversions as Effects Management	4	
5.0	Des	ign of Stream Diversion	6	
	5.1	Diversion design principles	6	
	5.2	Diversion design guidelines	7	
	5.3	Construction Principles	8	
6.0	Post-Construction Monitoring			
	6.1	Overview	11	
	6.2	Monitoring parameters	11	
	6.3	Frequency of monitoring	11	
	6.4	Riparian Planting Monitoring	12	
	6.5	Indicative Performance Targets	12	
	6.6	Reporting	12	
7.0	Refe	erences	13	

Appendices

Appendix 1: Shepherd Creek Rehabilitation Plan (Growplan 2025)

1.0 Introduction

1.1 Background

Matakanui Gold Limited ("MGL") is seeking approvals for the Bendigo-Ophir Gold Project ("BOGP"), a new gold mine, ancillary facilities and environmental mitigation measures on Bendigo and Ardgour Stations in the Dunstan Mountains of Central Otago. The project site is located approximately 20 km north of Cromwell.

The BOGP is located within the footprint of Minerals Exploration Permit 60311, which overlays several pastoral stations that have grazed sheep and cattle in the area for over 100 years. MEP60311 is held by MGL under the Crown Minerals Act 1991. MGL has land access agreements with Bendigo and Ardgour Stations. The BOGP is located adjacent to land administered by the Department of Conservation ("DOC"), including the Bendigo Historic Reserve, the Bendigo Conservation Area and the Ardgour Conservation Area. BOGP mineral extraction activities will not occur in these areas.

Ecological work will include rehabilitation on direct disturbed areas, ecological uplift activities and pest exclusion area(s) adjacent to the footprint on nearby areas such as Ardgour and Bendigo Stations. A full description of the various activities comprising the establishment, operation and rehabilitation within the BOGP is provided in the Assessment of Environmental Effects prepared by Mitchell Daysh Limited.

To manage effects on freshwater values the BOGP will divert watercourses to divert clean water from disturbed areas. This plan sets out the purpose, principles, design and monitoring of the diversion channels.

1.2 Objective

The objective of the Freshwater Ecology Management and Monitoring Plan (FEMMP) is to provide details for the design and development of ecologically functional diversion channels as remedy for the loss of watercourses from the construction and operation of the BOGP.

1.3 Purpose

This management and monitoring plan is proposed for the construction and operation of the stream diversions. The purpose of the management and monitoring is to set out:

- Responsibilities and competencies.
- · Protocol for effects minimisation.
- Diversion design principles.
- · Diversion design.
- · Monitoring.
- Reporting.

1.4 Information sources

This plan draws on the existing information set out in:

- Bendigo Ophir Gold Project: Assessment of Effects on Aquatic Habitat. Report prepared by Water Ways Consulting, June 2025.
- Bendigo Ophir Gold Project: Assessment of Freshwater Ecology Effects. Report prepared by Boffa Miskell, October 2025.

2.0 Responsibilities and Competencies

2.1 Purpose

The Environment Manager holds overall accountability for implementation of and compliance with all ecology management plans (including this freshwater plan) (Figure 1). Additional roles and responsibilities are detailed where relevant in the various individual plans. The Project Ecologist has specific responsibilities for the freshwater plan as set out below

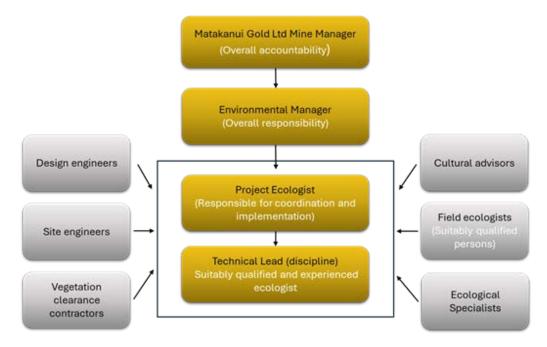


Figure 1. Overview of roles and responsibilities for the environment management at BOGP.

2.2 Responsibilities

The responsibilities of the Project Ecologist are:

- Confirming and approving the FEMMP.
- Briefing contractors on the purpose and content of the FEMMP.
- · Undertaking or contracting visual inspections and monitoring
- FEMMP reporting

3.0 Existing Ecological Values

3.1 Overview

In their assessment of effects, Water Ways (2025) characterised each of the watercourses and their catchments, in particular Shepherds Creek and Rise and Shine Creek. In general, the study found that the ecological value of the Shepherds and Rise and Shine Creeks and associated tributaries varied from moderate-to-high in the upper reaches to moderate-to-low in the lower reaches. It is not our intention to repeat the findings here, but we summarise the ecological values below.

3.2 Shepherds Creek

The presence of the Ardgour Conservation Area in the headwaters provides a clean water supply to the stream and there is a low level of nitrogen increase in the farmed perennial reach of Shepherds Creek indicating that stock impacts are more limited to physical damage than to declines in water quality.

Shepherds Creek has several tributaries that, aside from Jean Creek, can be divided into two groups: the perennial flowing spring fed streams and the ephemeral streams that have very short duration flow periods. Shepherds Creek is considered representative of a low gradient Dunstan Mountains perennial small stream. This assessment indicates that Shepherds Creek can be divided into reaches:

- The upper reaches of Shepherd Creek: moderate to high ecological value. From the
 Ardgour Conservation Area boundary to at least the downstream gorge section in the
 middle of the project area. This reach has good water quality, low to moderate habitat
 diversity and no introduced aquatic species.
- Downstream of the gorge section: moderate ecological value. Habitat modification increases with various impacts including water abstraction, channel modifications (e.g., the dam), crack willow, and stock impacts are evident.

Water Ways (2025) report that most of the main stem of Shepherds Creek is a gentle gradient single channel stream 0.5 - 1.0 m wide flowing along a 10 - 100 m wide valley floor.

3.3 Rise and Shine Creek

Water Ways (2025) report that the Rise and Shine Creek catchment has a range of ephemeral, intermittent and perennial streams that support a fauna of high to low ecological value:

- The stream draining Mt Moka in the upper Rise and Shine catchment is considered a highquality habitat area, aside from the lower 200 m where historic and present modifications occur.
- Rise and Shine Creek downstream of the Mt Moka Stream confluence is a perennial stream and is considered to have low to moderate ecological value.
- Rise and Shine Creek and its tributaries upstream of the Mt Moka Stream confluence are intermittent and ephemeral water courses.

Water Ways (2025) report that none of the stream channels are large with a maximum width of 0.5 m and most less than 0.3 m wide.

4.0 Stream Diversions as Effects Management

The assessment of effects of the BOGP on aquatic ecological values is set out in Waterways (2025) and the aquatic effects management in Boffa Miskell (2025). The outcome of the effects management is set out in Table 1. The main outcome is the development of ecologically functional diversions of the watercourses.

Boffa Miskell (2025) confirms that the functional need of the proposed BOGP activities means that the loss of watercourses is unavoidable. Although loss will be minimised as much as possible, the proposed mine activities will result in the loss of **7,139 m of permanent stream** length whilst **1,631 m of intermittent stream** length will be modified in Shepherd Creek.

Effects management provides **remedy of 9,558 m (9,558 m² of stream area) of created permanent watercourse** through rehabilitation of the proposed diversion of Shepherd Creek, including the reinstated stream across the surface of the TSF at closure. A further 1,196 m length (~957 m² of stream area) of Shepherds Creek will be enhanced to improve aquatic ecological values. This amounts to a total enhancement of **10,754 m of stream length** (~**10,515 m² of stream area)** of stream values.

Estimates of stream loss and modification in Rise and Shine Creek suggest that some 1,483 m length of stream (~741.5 m²) will be lost and approximately 1,600 m of stream length (800 m² of stream area) will be created within the catchment, and the equivalent will apply for enhancement of aquatic ecological values.

 Table 1: Effects management hierarchy applied to freshwater values for the BOGP.

Effects management						
	Shepherd Creek	Rise and Shine Creek				
Ecological values	Moderate to high	Low to moderate				
Avoid	Options to locate the project elsewhere are not available due to the location of the gold resource. Unavoidable reclamation of some 7,799 m of perennial and intermittent stream length. This equates to approximately 7,000 m ² of stream area.	Options to locate the project elsewhere are not available due to the location of the gold resource. Unavoidable reclamation of some 1,483 m of perennial stream length (741.5 m²) and no loss of intermittent stream. Temporary diversion of some 880 m (440 m²) of perennial Mt. Mocha stream is unavoidable. This amounts to a total of approximately 1,181 m² of stream area.				
Minimise	Diversions to capture water from ephemeral watercourses and transfer it back into the creeks.	Diversions to capture water and transfer it back into the creeks.				
Remedy	Creation of some 7,643 m rehabilitated stream diversion (7,643 m²). Diversion channel to be created in year 1 ahead or at same time as the reclamation of Shepherds Creek. Rehabilitation of 1,196 m of Shepherds Creek retained in existing bed above gorge. Reinstatement of some 1,915 m of stream on surface of TSF at mine closure.	At the completion of mining the temporary diversion of 880 m of the Mt. Mocha Creek line will be remedied and rehabilitated, and with other diversion design requirements leads to creation of some 1,599 m (800 m²) of stream. Remediation of the connected flow between the SRX pit and SRX ELF.				
Offset	Principles of offset cannot be fully satisfied due to lag time from full loss to full gain in values.	Principles of offset cannot be fully satisfied due to lag time from full loss to full gain in values.				
Compensation	Additional compensation is proposed in the form of management of existing willows and transformation to native riparian vegetation over some 6,700 m of Bendigo and Clearwater Creeks (Willow concession area). Compensation completes the effects management by providing for the lag time to achieve ecological values.					

5.0 Design of Stream Diversion

5.1 Diversion design principles

The following high-level principles of design will be applied to the permanent and temporary diversion of the affected parts of Shepherds Creek and Rise and Shine Creek (as set out in Boffa Miskell 2025):

- As much as practicable, the diversion should be designed with an average width of no less than 0.8 m, and preferably 1 m for Shepherds Creek, and no less than 0.5 m for Rise and Shine Creek.
- As much as possible, the steam diversion channel must be a similar length and stream area than the channel to be reclaimed. This aims to ensure that there is no loss of extent and values of the watercourse.
- The channel design does not have to replicate the form of the channel to be reclaimed but would benefit from a low-flow (or baseflow) channel, a bank full channel and where available, a floodplain area.
- As much as possible, water flow should mimic the hydrology of the existing watercourse (i.e., flows intermittently or permanently same as existing channel).
- The channel should mimic, as much as practicable, the natural meanders of the stream to be reclaimed.
- Hydrologic heterogeneity and instream habitat complexity can be achieved through the creation of natural features such as runs, riffles and small and large pools.

In addition, we recommend the following:

- As far as is reasonably practicable, the habitat within the diversion is of a similar form and structure to the stream to be reclaimed (and like neighbouring tributaries). The final substrate present should mimic that naturally occurring in similar sized tributaries in the wider catchment to the extent that this is practicable.
- The stream profile should allow the planting of riparian vegetation close to and extending
 over and into the water surface at the margins to create ample stream edge habitat. This
 can be low stature planting that provides vegetation overhang over and into the
 watercourse and to enhance habitat for the aquatic ecosystem.
- To the extent practicable, riparian vegetation is to be planted along the length of the stream diversion. Riparian vegetation plays an important role in the ecological success of a stream diversion. Appropriate riparian species selection will enhance stream ecology through providing shade to the stream, reducing water temperature, producing habitat and providing a food source. As much as possible, riparian vegetation should extend along either side of the diversion channel.

When implemented the recommended principles and actions will provide acceptable remediation for the loss of the extent and values of Shepherds Creek and Rise and Shine Creek.

5.2 Diversion design guidelines

5.2.1 Overview

The design of the stream diversion must be fit for purpose and ensure that stream ecological functions are maintained or improved on. The diversion channels must provide appropriate aquatic habitat for macroinvertebrates and plants, while conveying water. The below are a guideline for the design and construction of the diversion.

5.2.2 Channel length and meander

The steam diversion channel must be the same length, or longer, than the channel to be reclaimed to ensure no loss of stream length (stream extent). The channel should mimic and improve upon, as far as practicable, the natural meanders of the stream to be reclaimed. Where possible, the addition of boulders, submerged logs, etc. will be used to aid meander development and increase flow heterogeneity.

5.2.3 Habitat diversity and channel complexity

Hydrologic heterogeneity and instream habitat complexity can be improved through the creation of natural features such as runs, riffles and small and large pools. These features can be created utilising natural substrates such as rocks, logs and large boulders. Gravels, cobbles and boulders should be used to increase stream heterogeneity and stability.

These should be consistent with the habitat present in the stream to be reclaimed and similar to neighbouring natural tributaries. The final substrate present should mimic that naturally occurring in similar sized tributaries in the wider catchment. The channel complexity and availability will 'naturalise' over time as the new diversion channel becomes established.

We recommend the inclusion of a shallow low flow channel in the initial channel design. The purpose of a low flow channel is to provide flow when climate conditions typically result in dry conditions. The low flow channel extends the period of habitat availability should dry conditions persist.

5.2.4 Stream depth, wetted width and velocity

Stream depth and wetted width affect the total area of habitat that can be utilised by aquatic biota, and the volume of water conveyed during normal flows. Stream width, depth and should mimic that of the channel to be reclaimed. With the design seeking to create a stream that meets an average depth and width, with some localised variation for the creation of large and small pools and meanders. These depths and widths shall be established at the detailed design stage.

As much as practicable, the channel design must create a low flow or baseflow channel, a bank full channel and a floodplain area. The low flow must connect to the seasonal groundwater flow to ensure water flow mimics that of the existing stream (i.e., permanently same as existing channel).

The designed channel should be an average width of no less than 0.8 m, and preferably 1 m for Shepherds Creek, and no less than 0.5 m for Rise and Shine Creek.

5.2.5 Fish Passage

Fish have not been detected as present in the Upper Shepherds Creek or the Rise and Shine Creek and there are several barriers to fish passage upstream and downstream in both Creeks. No provision for fish passage is required.

5.2.6 Riparian Vegetation

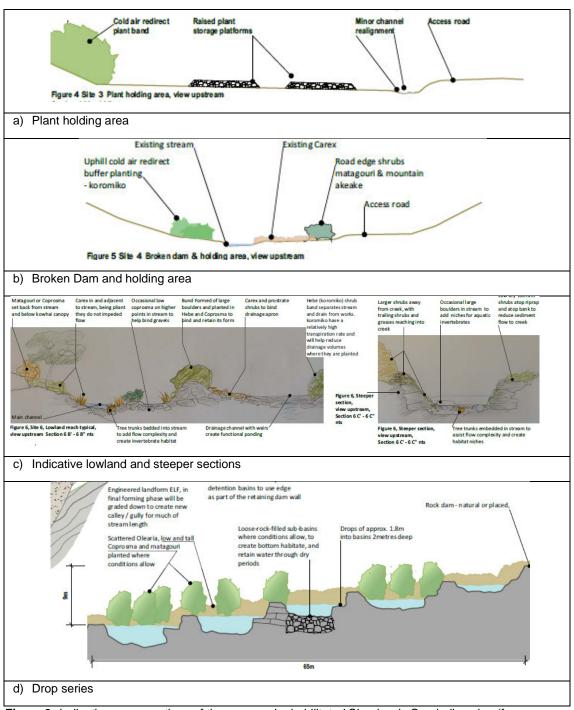
Riparian vegetation is to be planted along the length of the stream diversion. Riparian vegetation plays an important role in the ecological success of a stream diversion. Appropriate riparian species selection will enhance stream ecology through providing shade to the stream, reducing water temperature, providing habitat and a food source. Riparian vegetation should mimic the local vegetation and be appropriate for the local bioclimatic conditions.

The stream profile should allow the planting of riparian vegetation close to and extending over the water surface to create ample stream edge habitat. This will provide shading to the water surface, detritus in the form of fallen leaves and potential habitat for macroinvertebrate species.

5.2.7 Key features of the diversion rehabilitation

The key features of the diversion rehabilitation are outlined below and in Table 2:

- Drop structures and/or weirs designed to create series of stream pools and habitat diversity.
- Tree trunks embedded in the stream to provide flow complexity and habitat diversity.
- Mixed substrate diversity (occasional large boulders along with large, moderate and small sized gravels).
- Bund or swale alongside road edge to prevent road silt and materials entering the diversion channel.
- Transplant of plants from Shepherds Creek to diversion channel via holding area.
- Engineered structures may be necessary in more complex or steeper reaches.


Access for maintenance and other purposes is required alongside the diversion. Example and indicative cross-sections of the proposed landscape diversion channel are shown in Figure 2 and drawn from the rehabilitation plan provided in Appendix 1.

5.3 Construction Principles

- As much as practicable, the stream diversion channel should be constructed offline and prior to any instream works within the channel to be reclaimed.
- During construction, and at completion of the diversion channel, it should be inspected by a Freshwater Ecologist to ensure ecological principals have been integrated.

Table 2: Key features of the Shepherds Creek and Rise and Shine Creek diversions and applied to Diversion principles.

Diversion Principle	Shepherds Creek	Rise and Shine Creek
To the extent practicable, the diversion should be designed with an average width of no less than 0.5 m, and preferably 1 m.	The diversion is expected to be formed with an average width of no less than 0.8 m, and preferably 1 m.	The diversion is expected to be formed with an average width of no less than 0.5 m, and preferably 1 m.
To the extent practicable, the steam diversion channel must be a similar length and stream area than the channel to be reclaimed. This aims to ensure that there is no loss of extent and values of the watercourse.	The steam diversion channel length and stream area of the diversion does not meet the equivalent of loss and compensation is proposed.	The steam diversion channel length and stream area of the diversion does not meet the equivalent of loss and compensation is proposed.
The channel design does not have to replicate the form of the channel to be reclaimed but would benefit from a low flow (or baseflow) channel, a bank full channel and where available, a floodplain area.	The proposed design features a low flow (or baseflow) channel, a bank full channel and where available, a floodplain area.	The proposed design features a low flow (or baseflow) channel, a bank full channel and where available, a floodplain area.
To the extent practicable, water flow should mimic the hydrology of the existing watercourse (i.e., flows intermittently or permanently same as existing channel).	Hydrological conditions of the diversion channel are expected to mimic the hydrology of the existing watercourse, or features will be designed to accommodate modified hydrology.	Hydrological conditions of the diversion channel are expected to mimic the hydrology of the existing watercourse, or features will be designed to accommodate modified hydrology.
The channel should mimic, as much as practicable, the natural meanders of the stream to be reclaimed.	The diversion channel will mimic natural stream character to the extent it is practicable.	The diversion channel will mimic natural stream character to the extent it is practicable.
Hydrologic heterogeneity and instream habitat complexity can be achieved through the creation of natural features such as runs, riffles and small and large pools.	The diversion channel will mimic natural stream character.	The diversion channel will mimic natural stream character.

Figure 2: Indicative cross-sections of the proposed rehabilitated Shepherds Creek diversion (from Growplan, Appendix 1).

6.0 Post-Construction Monitoring

6.1 Overview

Immediately following the livening of the diversion channel and inspection should be undertaken by a suitably qualified Freshwater Ecologist. It should ensure that the diversion channel is operating as intended.

To measure the overall success of the diversion channel ongoing monitoring is required. The success is to be measured using habitat and macroinvertebrate community composition metrics. These are detailed below.

6.2 Monitoring parameters

The following monitoring parameters and methods will be undertaken as set out in Table 3.

Table 3. Proposed monitoring parameters and methods, BOGP.

Monitoring attribute	Method	Metrics	Protocol (where appropriate)
Habitat	Rapid Habitat Assessment (RHA)	HQS	Clapcott et al. (2020)
Settled sediment	In-stream visual estimate of % sediment cover	Fine sediment cover (%)	Sediment Assessment Method 2 (Clapcott et al. 2011)
Algal cover	Periphyton cover (%)	No algae (bare substrate) Films Mats, Filaments.	National Environmental Monitoring Standards for Periphyton (NEMS 2022a)
Macroinvertebrates	Benthic macroinvertebrates	• Taxa number • MCI, • EPT, • %EPT	National Environmental Monitoring Standards for Macroinvertebrates (NEMS 2022b)
Riparian planting	Cover% Planted success%	Cover% Planted success%	

6.3 Frequency of monitoring

Ecological Monitoring of the stream channel should be undertaken after years 1, 2 and 5 post-livening to ensure the channels are meeting ecological objectives.

6.4 Riparian Planting Monitoring

The riparian vegetation planting should be inspected at least every six months by a suitably qualified person in the year following the planting. The plants should be inspected to assess plant health. Where any plants appear to be in poor health or dying, the plants shall be removed and replanted, or care measures implemented as soon as is practicable.

Pest plants shall be assessed within the riparian planting. Where pest plants are considered to be dominating the vegetation and/or smothering desired plants then control activities shall be undertaken as soon as is practicable.

6.5 Indicative Performance Targets

The indicative targets for the performance of the diversions are set out in Table 4. These performance targets have been drawn from the existing ecological values as assessed by Waterways (2025) report, NOF from the NPS-FM and related metrics (i.e., RHA).

Table 4. Indicative thresholds for diversions at BOGP.

Diversion	Shepherd's Diversion	Rise and Shine Diversion(s)	
Metric			
Habitat			
Habitat Quality Score band	Good	Good	
Deposited fine sediments	Band B	Band B	
NOF Table 16			
Macroinvertebrates			
Taxa number	10-13	8-10	
MCI	>90	>90	
EPT	5-7	3-5	
MCI Band	Band C	Band C	
NOF Table 14			

6.6 Reporting

A report summarising the ecological monitoring will be prepared and submitted to Council in November in the year of sampling.

7.0 References

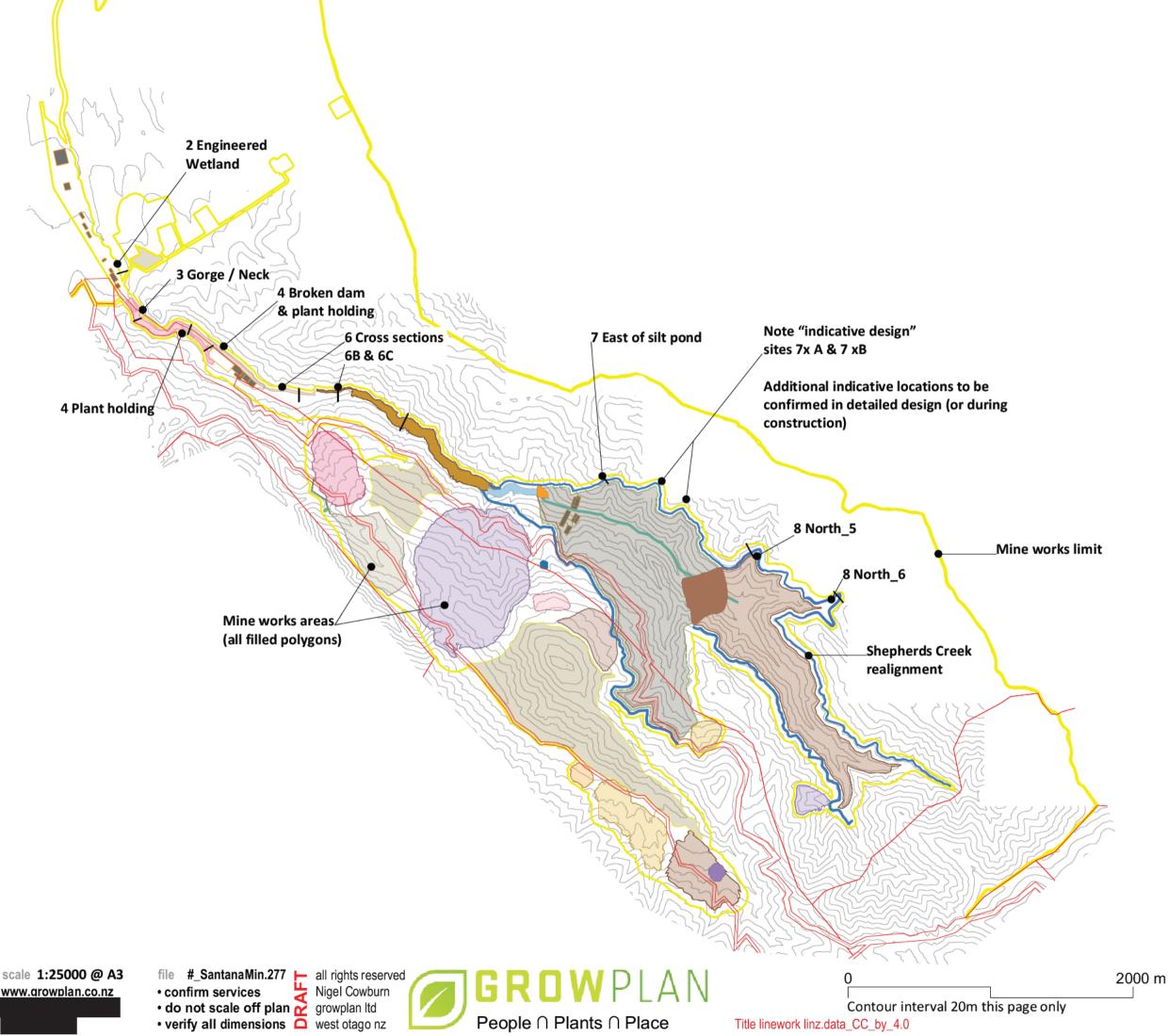
- Boffa Miskell (2025). Bendigo Ophir Gold Project: Assessment of Freshwater Ecological Effects. Report prepared by Boffa Miskell Ltd., October 2025.
- Clapcott, J., Casanovas, P., & Doehring, K. (2020). Indicators of freshwater quality based on deposited sediment and rapid habitat assessment (3402). 31 p. https://environment.govt.nz/assets/Publications/Files/indicators-of-freshwater-quality.pdf
- Clapcott, J., Young, R., Harding, J. S., Matthaei, C., Quinn, J., & Death, R. (2011). Sediment Assessment Methods: Protocols and guidelines for assessing the effects of deposited fine sediment on in-stream values. 108 p.
- NEMS (2022a). National Environmental Monitoring Standards: Periphyton. Sampling and Measuring Periphyton from Wadeable Rivers and Streams. Version 1.0.0, July 2022. Ministry for the Environment.
- NEMS (2022b). National Environmental Monitoring Standards: Macroinvertebrates. Collection and Processing of Macroinvertebrate Samples from Rivers and Streams. Version 1.0.0, June 2022. Ministry for the Environment.
- Water Ways (2025). Bendigo Ophir Gold Project: Assessment of Effects on Aquatic Habitat. Report prepared by Water Ways Consulting, June 2025.

Appendix 1: Shepherd Creek Rehabilitation Plan (Growplan 2025) Approach and outline

Plant selection and planting design is a combination of ecological function for the particularities of the site, with aesthetic elements primarily as cues for care

To increase understanding and valuing of the planted landscape it is essential planting makes sense and is not seen as 'just weeds'. Patterns and forms that look 'designed' are cues for care and inquisitiveness - this increases staff buy-in and can help toward having qualified staff to manage the two-decade closure phase

The overarching approach is to design, construct, revegetate and maintain for a no-net -loss outcome


Plant selection is based on several factors:

- Known to occur on-site now, or within circa 15Km from site, or known to have been present within the last 5000 years
- Beneficial to and supportive of wildlife birds, skinks and geckos, and terrestrial and aquatic invertebrates
- Weighted towards aesthetic value
- Valued by Maori
- Will withstand local climate and site conditions
- Lower palatability plants where possible to lessen effects of grazing pests, and eventually sheep post closure

Trees and/or shrubs overhanging creeks help sustain invertebrates via leaf breakdown products entering the water, shading also helps keep water cooler

Utilizing hard materials from site (or local area), and transplanting plants where practicable

Depending on site conditions and site context the water drop structures may be partly formed in basement rock, and constructed in boulders, sheet piling, or precast concrete, or a combination thereof and the forms naturalised

drawing Overview

Santana Minerals

www.growplan.co.nz

Situation Shepherd's Creek leaving the hills New stream flow drops onto rocks to dissipate energy and Height change upstream to down approx. 8 metres oxygenate flow **Approach** An engineered wetland as a final polishing and Central flow path is either monitoring stage, including aquatic species as living only planted in grasses and sensors e.g koura (a forest fire-fighting pond practice) sedges or with additional and *Daphnia* species sparsely planted trees Location map Position 2000 m Pond bases armoured Channel enters and exits wetland in its natural position 1:3000 @ A3 1:100,000 @ A3 with graded boulders and flows through five detention basins / ponds and course woody debris, both as check Stream realigned above existing ground and channel dams and as habitat Bands of sparsely planted bog pine, invert, with pond depth a maximum of 1.5 m above kanuka & kowhai for pond shading. invert A workable approach Open planting provides for flood flows to securing course Existing channel filled with loose angular rock to woody debris is maintain some dry weather flow. This would also inverting tree root reduce the deep incision / erosion of this channel Plants for engineered wetland A Central band of cutty grass and plates and driving narrow leaf snow tussock along the them into the Ponds lined with oxidized brown loess - a ubiquitous stream in places to the fence line to Chionochloa rigida narrow-leaf snow tussock channel base with an local soil mineral used to line local orchard irrigation allow views in. The monocots permit Carex coriacea cutty grass excavator ponds. Flow exits ponds over a low drop of approx. 1m fast stream flow without being torn Discaria toumatou matagouri on to a rock rubble base and exits pond into a slow out Halocarpus bidwilli bog pine flowing channel to the next basin Kunzea ericoides kanuka Sophora microphyla* kowhai Section 1" - 1' Plant selection for ability to thrive in riparian and wet zones of dryland areas Planting layout and pattern leaves the channel and Western edge of matagouri ponds in low grasses and sedges occasionaly planted to planted into retired pasture Mine works limit fenceline to enable views into the space _Existing stream line Grasses Shade shelter matagouri & sedges band, Wetland Wetland boundary Gully high-voids Retention pool: boundary rock fill slow release Halocarpus bidwilli bog pine Figure 2, Site 1 Engineered Wetland, view upstream Section 1' - 1" nts

drawing Site 1 **Engineered Wetland** Bendigo Santana Minerals

scale 1:600 @ A3 main www.growplan.co.nz

file #_SantanaMin.277 confirm services • do not scale off plan growplan ltd

• verify all dimensions \(\sigma\) west otago nz

all rights reserved Nigel Cowburn

40 m

Situation

Shepherd's Creek passing through The Neck

Approach

Channel remains at its existing height, but moved towards slope with some minor slope cut to facilitate

reaches upstream

dryland areas

Continuation of pool rifle sequence as designed into Low shrubland planting atop riprap adjacent access Planting able to thrive in riparian and wet zones of Planting is low and sparse to maximize stage flow 3A["] Riprap on outside bend and road Scattered medium shrubs and occasional kowhai on apron, with soil pockets to depth to allow planting bank, well outside channel Stream Bund along road edge to keep road silt (and vehicles) out of realigned creek - not shown Watertable at road edge with underdrain Rock armouring of stream base to resist high flows Figure 3 Site 2 Gorge at the Neck, view upstream \[\text{Prostrate / low-growing} \] Hebe subalpine & H salicifolia Section 3A' - 3A" nts native grasses and shrubs planted into gaps in rock descend bank into stream

low-growing native grasses and shrubs Location map descend bank into 1:100,000 @ A3

2000 m

30 m

Plants for the Gorge at the Neck

Carex dipsacea

Carmichaelia sp.

Hebe salicifolia

Hebe subalpina

Pimelea notia Sophora microphyla

armouring

file #_SantanaMin.277 | all rights reserved confirm services • do not scale off plan growplan ltd

Nigel Cowburn • verify all dimensions \square west otago nz

drawing The Gorge at the Neck scale 1:300 @ A3

www.growplan.co.nz

Santana Minerals

Title linework linz.data_CC_by_4.0 Contour interval 1 metre

Existing main channel stem

3A'

Prostrate /

stream

Stream channel as open as possible to maximise frost drainage from below plant

Aggregate access road

holding area

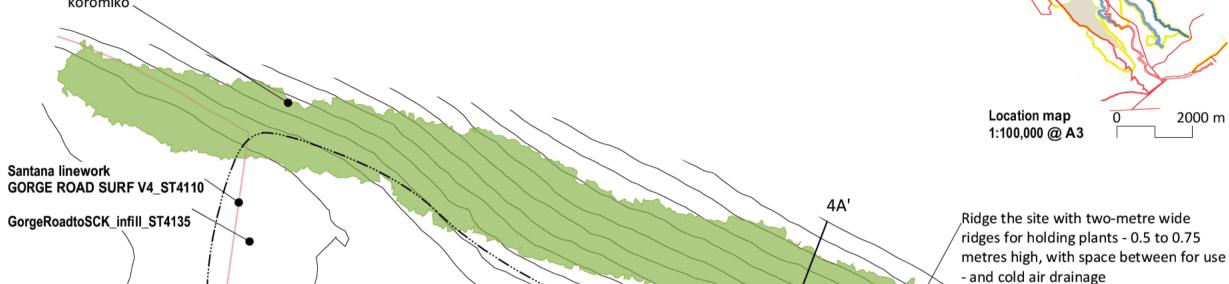
People ∩ Plants ∩ Place

Situation

Shepherd's Creek plant transplant holding* and staging area, and for re-vegetation plant handling

Approach

Plant storage planforms using a ridge and wide base 'furrow' for vehicle access and frost drainage, and to keep above high flow levels


Create planted uphill cold air redirect / buffer

To maximise frost drainage limit downstream shrub planting to ground covers and trailing plants, with shrubs only as scattered plants well back from the main channel

Site will require access - not shown

* Not a nursery. A perception may exist that site-grown plants are more robust but growth is very slow with high mortality that it is not worthwhile

Divert downhill cold air flow with (short term - a bund / windrow), and longer term a dense shrub band of kanuka and koromiko

This area should be claimed for additional plant holding, and to ensure it doesn't become cluttered with items and restrict frost drainage

Leave area as retired pasture Riprap / road apron edge

Access road

stream edge Cold air redirect Raised plant Minor channel storage platforms plant band realignment

Access road

No planting at

Ridging with open centre area for high flood flows 4A"

> Realigned stream with pool-riffle sequence, a range of boulder sizes, and wood (hardwood tree trunks) embedded in new channel base

Location map

1:100,000 @ A3

2000 m

Figure 4 Site 3 Plant holding area, view upstream Section 4A' - 4A" nts

drawing Plant holding area Site 3 Bendigo 20250711 Santana Minerals

scale 1:400 @ A3 www.growplan.co.nz

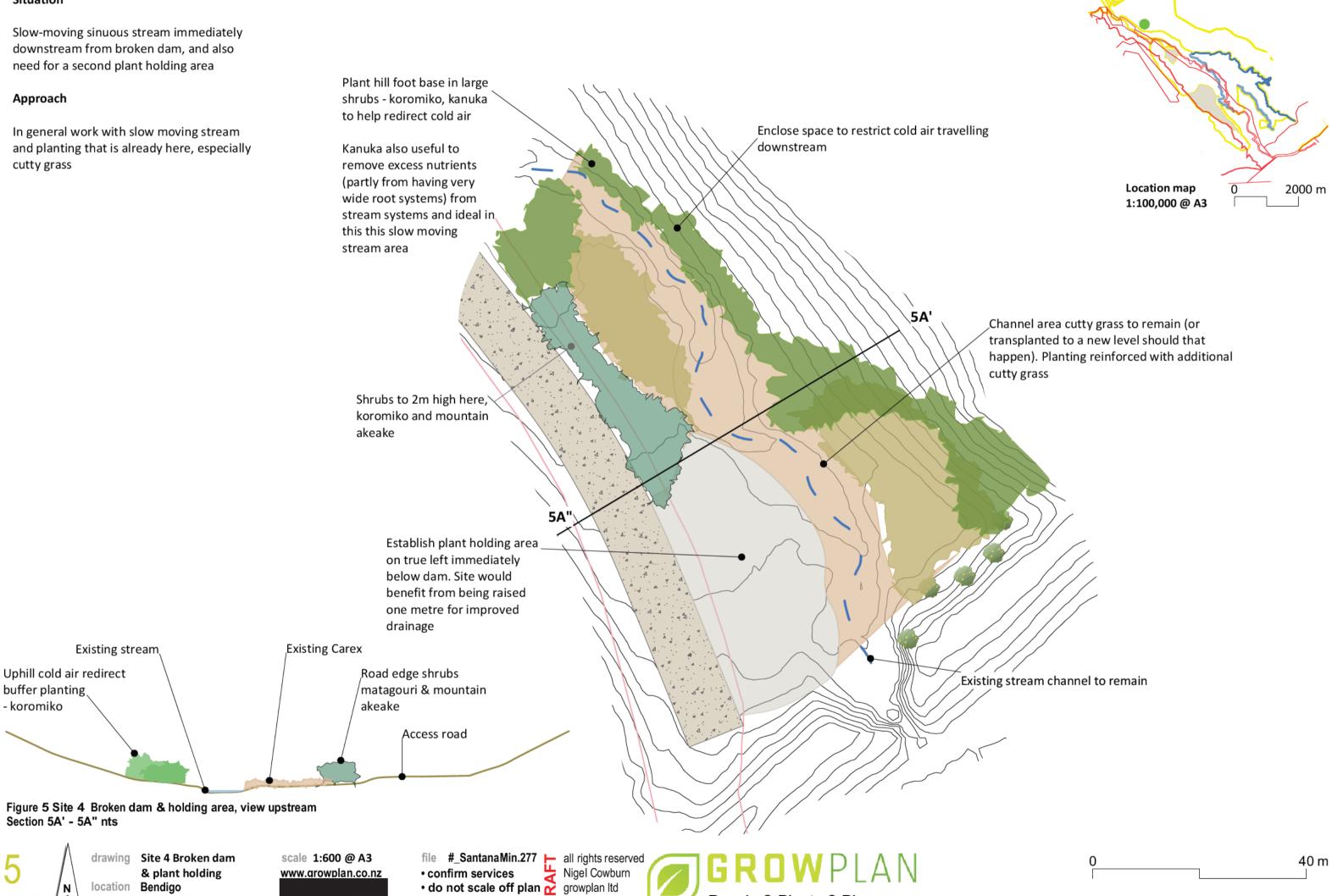
file #_SantanaMin.277 confirm services

all rights reserved Nigel Cowburn • do not scale off plan growplan ltd • verify all dimensions \square west otago nz

Existing stream path

Shelter band of kanuka planted

as three rows on ~3m centres to


20 m

allow water to flow through

Situation

downstream from broken dam, and also need for a second plant holding area

cutty grass

20250711

location Bendigo Santana Minerals

• verify all dimensions \square west otago nz

People ∩ Plants ∩ Place

Shepherd's Creek lowland form (with adjacent dirty water channel) east of processing plant, and steeper section at Shepherd's Fill area

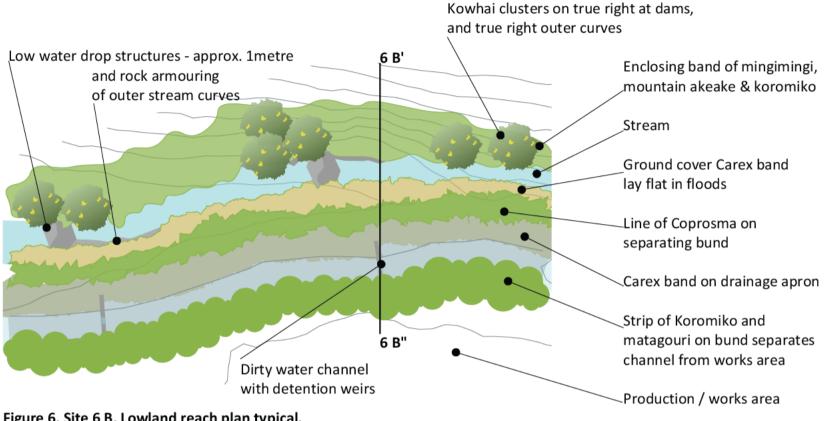


Figure 6, Site 6 B, Lowland reach plan typical, 1:300 @ A3

Matagouri or Coprosma Carex in and adjacent Occasional low Bund Formed of large Carex and prostrate coprosma on higher boulders and planted in set back from stream to stream, being pliant shrubs to bind they do not impeded Hebe and Coprosma to and below kowhai canopy points in stream to drainage apron help bind gravels bind and retain its form flow where they are planted Main channel Figure 6, Site 6, Lowland reach typical, Tree trunks bedded into stream Drainage channel with weirs view upstream Section 6 B' - 6 B" nts to add flow complexity and create functional ponding

Hebe (koromiko) shrub band separates stream and drain from works. koromiko have a relatively high transpiration rate and will help reduce drainage volumes

Scattered mingimingi,

mountain akeake &

koromiko, where

planting allows

Kowhai clusters

dams, and true right outer curves

true right at

Water drop.

curves

structures - < 2m,

with rock riprap.

on outer stream

Figure 6, Steeper section, view upstream, Section 6 C' - 6 C" nts

Larger shrubs away Occasional large from creek, with boulders in stream to trailing shrubs and add niches for aquatic grasses reaching into invertebrates

Carex band adjacent

6 C'

perennial flow

Figure 6, Site 6 C, steeper reach plan typical form, 1:300 @ A3

creek

Low dry-tolerant shrubs atop riprap and atop bank to reduce sediment flow to creek

Location map

1:100,000 @ A3

2000 m

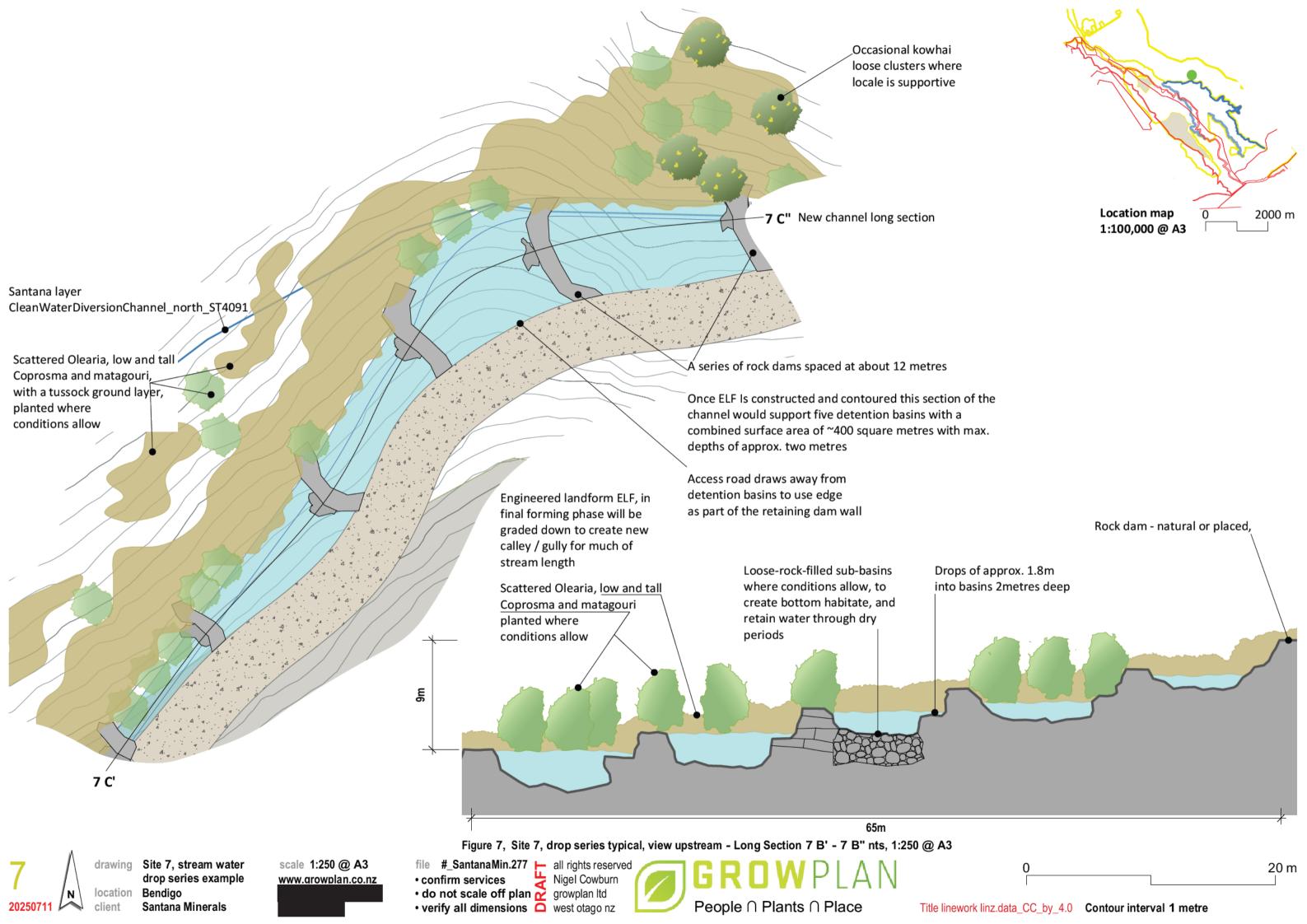
Figure 6, Steeper section, view upstream, Section 6 C' - 6 C" nts

Tree trunks embedded in stream to assist flow complexity and create habitat niches

20 m

20250711

drawing 6 Shepherds Creek filled areas Bendigo Santana Minerals


scale 1:300 @ A3 www.growplan.co.nz

create invertebrate habitat

file #_SantanaMin.277 confirm services

Nigel Cowburn • do not scale off plan growplan ltd • verify all dimensions \(\bigcup \) west otago nz

North_5 Upper Shepherd Creek Note Hillside and diversion channel detention Indicative design and additional basin and planting concept indicative locations to be confirmed in detailed design (or during construction) Water flows in to basin in high flow state and detained to preserve minumum vernal state - a seasonal wet pond Dry shrubland species; Carmichaelia sp., Olearia avicenniifolia, and pockets of Porous in-flow wall (e.g. weeping wall) kowhai to take and release some low flow Location map 2000 m Detention basin would function both to Trailing and prostrate plants reach into 1:100,000 @ A3 detain flow, and retain some flow for channel aquatic species and to increase local humidity for plants in a very dry location 8A' Due to uncertainties around final landform potential basin volume is hard to estimate but could range upwards Road water crossing - a splash or grill Santana CAD linework items from 400 cubic metres preferred, else culvert Water path through basin, lenhthened with a rock or sheet pile baffle to extend water path length and increase detention time, protecting aqautic species, and settling out fines Hebe bands either side of accessway Basin lining: competent rock where exists, else oxidized loess lining, and armoured with rock to protect lining from flows **8A**"Future cross section line Waste rock stack, expected to be graded down towards new channel area resulting in chanel area becoming a new gully This could enable a larger dam than shown (and additional habitat), or a future dam expansion should precipitation increase

drawing Shepherds Creek site North_5 Bendigo Santana Minerals

file #_SantanaMin.277 confirm services

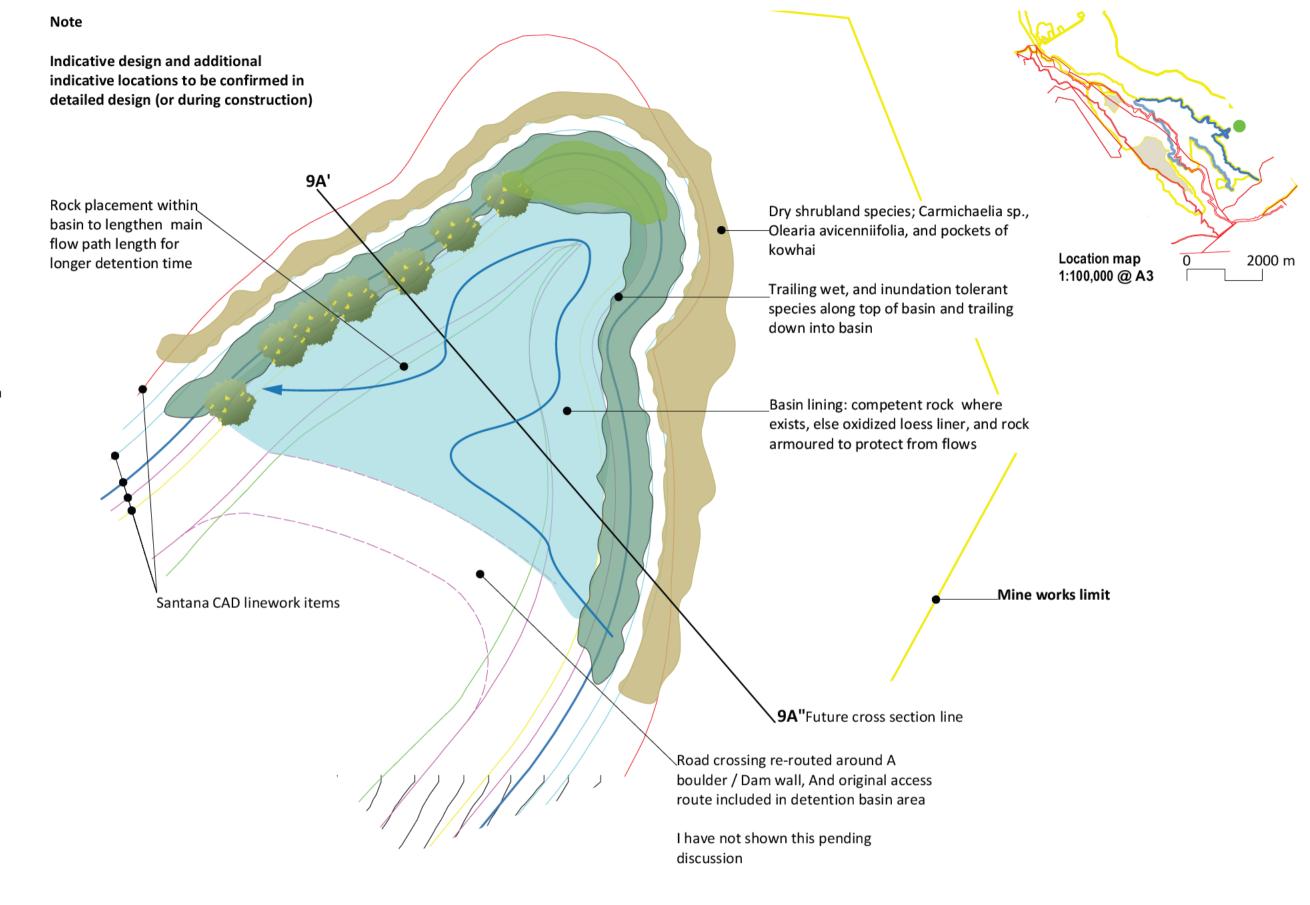
all rights reserved Nigel Cowburn confirm services
 do not scale off plan
 growplan ltd • verify all dimensions \square west otago nz

North 6 Upper Shepherd Creek

Hillside and diversion channel detention basin and planting concept, also results in an easier and safer driving path

Water inflow to basin in high flow state and detained to preserve minimum vernal state - a seasonal wet pond

Basin is a run-of-stream approach with (anchored) boulder placement to direct


- not shown pending discussion

Detention basin would function both to detain flow, and retain some flow for aquatic species and to increase local humidity for plants in a very dry location

Volume would range upwards from 500 cubic metres

Data issue

No contours as data missing, need DEM file

drawing Shepherds Creek site North_6 location Bendigo

Santana Minerals

Height	botanical name	common name	Position	Wildlife	in cult.	Authority	Form & notes
1.0	Carmichaelia compacta	native broom	dry sites		Υ	Walker 2004	
1.0	Chionochloa rigida	narrow-leaf snow tussock	wet tolerant		Υ	Exists to North & South	
1.5	Chionochloa rubra	red tussock	stream margins		Υ	Occurs on site	
0.7	Coprosma cheesemanii	-	-	birds	Υ	Grove 2002	Spreads post grazing
2.0	Coprosma propinqua*	mingimingi	-	skinks	Y	Walker 2004	Low palatability
0.5	Carex dipsacea	teasel sedge	stream sides		Y	Dunstan ED	
0.7	Carex comans	sedge	stream sides		Υ	Dunstan ED	
0.7	Carex coriacea	cutty grass	wet tolerant		Υ	Occurs on site	
2.0	Discaria toumatou	matagouri	-	inverts.1	Υ	Occurs on site	1 - inverts. attract birds
7.0	Festuca matthewsii*	southern blue fescue	wet edge		Y	Has existed in area	Size highly variable
4.0	Halocarpus bidwilli	bog pine	wet tolerant	birds	Υ	Walker 2004	
1.5	Hebe subalpina	-	dryland wet flushes		Υ	Walker 2004	Spreading farm avail.
1.5	Hebe odora	-	-		Y	Dunstan ED	
2.0	Hebe salicifolia	koromiko	wet tolerant		Y	Has existed in area	
5.0	Kunzea ericoides	kanuka	wet tolerant		Y	Occurs on site	
3.0	Olearia avicenniifolia	mountain akeake	-	inverts.	Υ	Walker 2004	
0.5	Pimelea aridula aridula	pimelea	-	inverts.	Υ	Exists in locale	Wide low shrub
0.3	Pimelea oreophila lepta	pimelea	stream sides	inverts.	Υ	Exists in locale	Sprawls, low palat.
0.3	Pimelea prostrata ssp. prostrata	pinātoro / NZ daphne	stream sides	inverts.	Υ	Exists in locale	Sprawls, low palat.
0.5	Pimelea notia	pimelea	stream sides	inverts.	N	Has existed in area	Sprawls, low palat.
4.0	Pseudopanax ferox	horoeka	-	inverts.	Υ	Has existed, Pole 2022	
5.0	Sophora microphyla*	kowhai	stream sides	birds	Υ	Occurs on site	3 metre tall shrub forms exist
1.5	Teucrium parviflorum	teucridium	stream sides	inverts.	Υ	Wardle 2001	

Table 4a Plant selection and information.

Plant authorities / references

Davies-Colley, R.J. & Payne G.W. 2023 Cooling streams with riparian trees: Thermal regime depends on total solar radiation penetrating the canopy. Austral Ecology, 48:1064–1073. url: https://onlinelibrary.wiley.com/doi/10.1111/aec.13345

Pole, M. 2022 A vanished ecosystem: Sophora microphylla (Kōwhai) dominated forest recorded in mid-late Holocene rock shelters in Central Otago, New Zealand. Palaeontologia Electronica, 25(1):a1. DOI: https://doi.org/10.26879/1169 and

https://www.palaeo-electronica.org/content/2022/3503-vanished-ecosystem

Wardle, P. 2001 Distribution of native forest in the upper Clutha district, Otago, New Zealand, New Zealand Journal of Botany, 39:3, 435-446.

DOI: https://doi.org/10.1080/0028825X.2001.9512747

Grove P.B, Mark, A.F., Dickinson, K.J.M. 2002 Vegetation monitoring of recently protected tussock grasslands in the southern South Island, New Zealand. DOI: https://doi.org/10.1080/03014223.2002.9517700

Email me if a paper is difficult to obtain as I have pdfs of all

Plant authorities / references

Walker et 2014 Effects of secondary shrublands on bird, lizard and invertebrate faunas in a dryland landscape. J NZ Ecol. Soc url: https://newzealandecology.org/system/files/articles/3123.pdf - Has a useful Bendigo lizards study.

ED - Ecological District classification system

A number of studies note how impoverished native species are in the Bendigo area. Researchers including Pole have proved the existence of a number of species no longer growing here but that have grown at least to the North and South of site in the last two to five thousand years

Plants and wildlife values

All non-monocots ('grasses' rushes, sedges, tussocks and trrue grasses) Produce nectar and / or pollen, and produce seeds.

Every non-monocot is in a system that includes either invertebrates, birds or lizards, and sometime all three are attracted. Above instances are known and documented examples

drawing Species selection information location Bendigo Santana Minerals

file #_SantanaMin.277 confirm services

• do not scale off plan growplan ltd verify all dimensions west otago nz

^{*} Known Maori applications / value

Carex comans Highly variable in form and colour

Carex coriacea Perennial sedge - dies partly back in winter

Carmichaelia compacta Cromwell broom, develops wide low clumps

Chionochloa macra Slim snow tussock

chionochloa rigida Narrow-leaved snow tussock

Chionochloa rubra Red tussock

Coprosma propinqua, mingimingi * Especially of value to lizards

Discaria toumatou matagouri An invertebrate essential

Halocarpus bidwillii Wet tolerant, and when established dry too


Hebe odora Garden example, in nature form more loose

Hebe salicifolia, koromiko * * Plants with known use by Maori

images

Santana Minerals

Kunzea ericoides kanuka Useful in removing excess nutrients, useful in seepage areas and gullies

Olearia avicenniifolia Mountain akeake Native tree daisy to 2-3 metres

Sophora microphylla, kowhai * Highly variable form, several natural shrub and tree forms exist in Otago

Teucridium parvifolium Deciduous shrub, attracts invertebrates

scale www.growplan.co.nz file #_SantanaMin.277 confirm services

all rights reserved Nigel Cowburn People ∩ Plants ∩ Place Plants without images: Carex dipsacea Coprosma cheesemanii

Festuca matthewsii * Hebe subalpina Pimelea species

All plant images - Nigel Cowburn Growplan Ltd • do not scale off plan r growplan ltd • verify all dimensions \square west otago nz Title linework linz.data_CC_by_4.0 Contour interval 1 metre

Together. Shaping Better Places.

Boffa Miskell is a leading New Zealand environmental consultancy with nine offices throughout Aotearoa. We work with a wide range of local, international private and public sector clients in the areas of planning, urban design, landscape architecture, landscape planning, ecology, biosecurity, Te Hīhiri (cultural advisory), engagement, transport advisory, climate change, graphics, and mapping. Over the past five decades we have built a reputation for creativity, professionalism, innovation, and excellence by understanding each project's interconnections with the wider environmental, social, cultural, and economic context.

 Whangarei
 Auckland
 Hamilton
 Tauranga
 Wellington
 Nelson
 Christchurch
 Queenstown
 Dunedin

 09 358 2526
 09 358 2526
 07 960 0006
 07 571 5511
 04 385 9315
 03 548 8551
 03 366 8891
 03 441 1670
 03 470 0460