

13. APPENDICES

APPENDIX A - HEC RAS MODEL PARAMETERS

Manning Roughness n

Existing Buildings, Streams and Road delineated

Pre development Infiltration Layer CN

Post development Infiltration Layer CN for 100yr

Post development Infiltration Layer CN for 2yr and 10yr

MPD Infiltration Layer CN

Impervious Percentage Maximum Probable Development

Within site - AUP MPD Outside site - AUP MPD

Impervious Percentage Postdevelopment

Within site - Proposed Outside site - AUP MPD

Impervious Percentage Predevelopment

Within site - Existing Impervious Outside site - AUP MPD

Existing Culverts

Culverts	Size(mm)	Sources	
CV#1_1	875, 525, 975 & 900x2	GLS	
CV#2_1	600 & 750x2	Aerial photo	
CV#4	600 Aerial ph		
CV#5	600	Aerial photo	
CV#6_1	600	Aerial photo	
CV#9_6	600	Aerial photo	
CV#_1	2500	Aerial photo	
CV#GIS_2	900) Aerial photo	
CV#GIS_3	900	Aerial photo	
CV#GIS_4	600	Aerial photo	
Pond1	300	Survey	
Pond2	300	Survey	
Pond3	300	Survey	
Pond4	300	Survey	
Pond5	975	Survey	
Pond6	2600	Survey	
CV6	300	Survey	
CV7	300	Survey	
CV8	550	Survey	
CV9	250	Survey	
CV10	450 Survey		
CV_11	450 Survey		
NR01	350 Survey		
NR02	150	Survey	
NR03	300	Survey	
NR04	300 Survey		
Stg1	900 & 525	Survey	

Existing Eastern Catchment

Existing Western Catchment

Propsoed Major Culverts

Culverts	Size(mm)	Sources	
1	2000 x 5000	Proposed	
2	1500 x 1500	Proposed	
3	2000 x 4000	Proposed	
4	2000 x 6000	Proposed	
5	1000 x 2000	Proposed	
6	1500 x 2000	Proposed	
7	600	Proposed	
Stg 1 Prima	1200	Proposed	
Stg 1 Seco	1500 x 4500 Box culvert	Proposed	

Proposed Eastern Catchment

Proposed Western Catchment

HEC RAS Catchment wide model extents and location of Inflow Boundary Condition extraction for the reduced model

HEC RAS - Inflow Hydrograph Summary

Flow hydrographs extracted from catchment wide model and input in to reduced model

BOUNDARY INFLOW	Peak flow (m3/s)			
	1%AEP	1%AEPCC	10%AEPCC	50%AEPCC
N1	2.81	5.14	2.04	0.77
N2	3.70	6.65	2.61	0.94
N3	3.95	6.92	2.92	1.19
N4	2.34	4.11	1.71	0.61
N5	2.86	5.16	2.13	0.94
S10	1.31	2.25	0.99	0.45
S11	1.39	2.36	1.12	0.51
S11b	0.64	1.12	0.48	0.03
S12	1.10	2.02	0.89	0.39
S2	2.13	0.88	1.34	0.48
S3	2.69	4.36	2.29	1.13
S4	7.40	12.85	2.89	1.02
S5	1.69	3.21	1.28	0.56
S6	17.22	31.90	12.35	2.81
S7	4.45	7.45	3.43	1.53
S8	0.74	1.18	0.58	0.28
S9	2.30	4.17	1.65	0.70
UPSTREAM	43.99	86.15	34.33	11.15

APPENDIX B - HEC HMS MODEL PARAMETERS FOR RV DRY POND

Retirement Village Stormwater Dry Pond

Catchment pipe network routing for 50%, 20%, 10%, 5% and 2%AEP storms

HMS Basin model

Impervious Area = $14.45 \, \text{Ha}$ (CN = 98, Ia = 0, Lag = $6.7 \, \text{min}$)

Pervious Area = 3.61 Ha (CN = 74, Ia = 5, Lag = 6.7min)

Note: It is noted that Primary Pipe network is sized for a 10%AEP storm. Routed flows for the 5% and 2% AEP storms exceed the pipe capacity for a 10min duration during the storm. However for the purposes of the catchment wide modelling this shall have negligible impact.

50% AEP Hydrograph - Input to HEC RAS as inflow boundary condition

10% AEP Hydrograph - Input to HEC RAS as inflow boundary condition

20% AEP Hydrograph - Input to HEC RAS as inflow boundary condition

5% AEP Hydrograph - Input to HEC RAS as inflow boundary condition

2% AEP Hydrograph - Input to HEC RAS as inflow boundary condition

