

FLOOD ASSESSMENT REPORT

Vineway Ltd

DOCUMENT CONTROL RECORD

PROJECT:	Delmore
CLIENT:	Vineway Ltd
PROJECT LOCATION:	53A, 53B & 55 Russell Road and 88, 130 & 132 Upper Ōrewa Road

Revision	Date	Originator	Checker	Approver	Description
A	29/01/25	HS			DRAFT
В	11/02/2025	HS	JK	JK	Resource consent

Table of contents

1.	Introduction	5
2.	Standards	5
3.	Site description	5
4.	Catchment Description	7
	Land Use	
5.	Site Survey	
5.1.	Culvert and Bridges Structure	9
6.	Hydrological Model	12
	Method Used	
	. Hydrological Model Extent	
6.3.	. Model Set-up	
7.	Hydrological Parameters	13
8.	Hydraulic Model	15
8.1.	. Method Used	
8.2.	. 1D-2D Linkage	
8.3.	. Model Extent	
	. Tidal Boundary Conditions	
8.5.	. Losses	17
9.	Model Scenarios	17
10.	Validation Methodology	20
10.1	1. Existing Surface (Pre Development)	
10.2	2. Design Surface (Post development)	
10.3	3. Model Time Steps	21
10.4	5	
10.5	5	
10.6	6. Outflow Boundary Conditions	23
11.	Results	
11.1.	. Model Mass Error	

	Results Discussion	
11.1. F	Results Comparison	27
	Maximum Probable Development – Future Development Zone	
11.3. <i>A</i>	Auckland Council RFHA Results comparison	
12.	Risk Assessment	
13.	Conclusion	
14	Limitation	22
17.		

1. INTRODUCTION

McKenzie & Co. Consultants have been engaged by Vineway Ltd to provide a Flood Assessment Report in support of the proposed 109Ha development located at 53A, 53B & 55 Russell Road and 88, 130 & 132 Upper Ōrewa Road, Ōrewa. The development is a residential development for approximately 1250 residential lots.

This report is prepared in support of Vineway Ltd's application for approvals under the Fast-track Approvals Act 2024 by addressing the key flooding matters that relate to this proposal. It is important to note that this report only covers flood hazards, while other infrastructure matters, including earthworks, sediment and erosion control, roading and access, stormwater, wastewater, water supply and utility works, are addressed in separate infrastructure reports.

The primary objective of this flood hazard assessment report is to demonstrate how the proposed system is designed to manage stormwater runoff to minimise flood damage and adverse effects on both the built and natural environments. This report will evaluate the minimum floor levels required for the proposed development, ensuring compliance with the Auckland Unitary Plan (AUP). Additionally, it will assess potential impacts on flood behaviour, specifically examining any effects on water levels and flow velocities both upstream and downstream due to the proposed development activities. The flood assessment report is a critical component of the Stormwater Management Plan for the Delmore development. It will support planning and decision-making by identifying necessary flood mitigation measures and establishing safe floor levels to protect infrastructure and surrounding properties.

To fully comprehend this report, it should be read together with the application, plan drawings, and other supporting documents referred to in this report.

2. STANDARDS

Auckland Council Stormwater Code of Practice Version 4,

Auckland Council Modelling Guideline,

Auckland Technical Publication TP108.

3. SITE DESCRIPTION

The proposed development site is legally described as Lot 1 DP 336616, Lot 1 DP 497022 & Lot 2 DP 497022, Lot 2 DP 418770, Lot 1 DP 153477 & Lot 2 DP 153477, as illustrated in Figure 1 below. The site is zoned Future Urban Zone (FUZ).

The development is accessed from Grand Drive in the northeast, and Russell Road and Upper Ōrewa Road from the south.

Currently, the site is used for agricultural purposes with livestock roaming across a significant portion of the site. Some bush areas subject to consent notices, and a pine tree stand in the North Eastern portion of the site.

All properties are contained within a single stormwater catchment, which discharges out a single point under the Northern Motorway.

The location of the development is shown below in Figure 1.

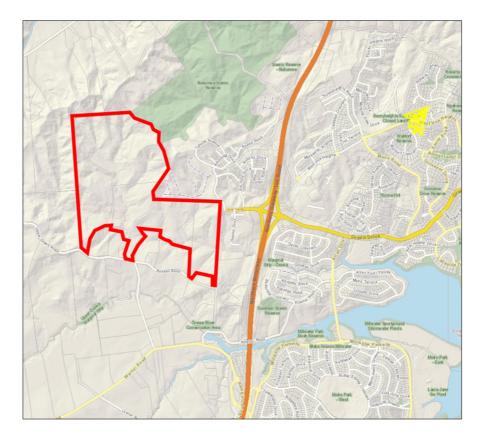


Figure 1 - Site Location – Extent of affected properties

AC Geomaps shows extensive flow paths and flood plains on the site and across the contributing catchment. These are shown in Figure 2 below.

Figure 2 - Site Location with AC Geomaps flow paths and flood plains

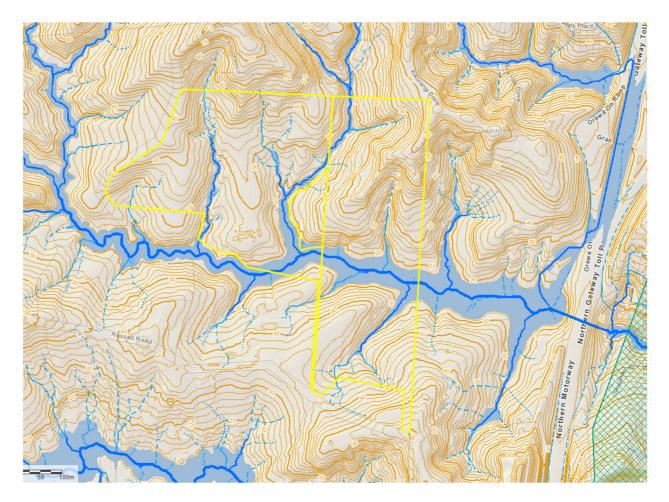


Figure 3 - Development Site with topography, flow paths and flooding (AC Geomaps)

The outlet of the catchment is to the east where flows exit via a 2100mm diameter culvert under the northern motorway SH1. The culvert discharges into the Southern Stream ¹ (refer Ōrewa West ICMP). A catchment plan showing the sub-catchments is appended.

4. CATCHMENT DESCRIPTION

The catchment is part of the Ōrewa West Catchment per the 'Auckland Council – Catchment Management Plan Update, Ōrewa West Catchment – January 2014'. The Delmore site is within the Southern Tributary of the Ōrewa West Catchment. The southern tributary discharges via an existing motorway culvert and continues downstream until it reaches the confluence with the Grand Drive catchment before discharging into the coast.

¹ Ōrewa West ICMP 2011

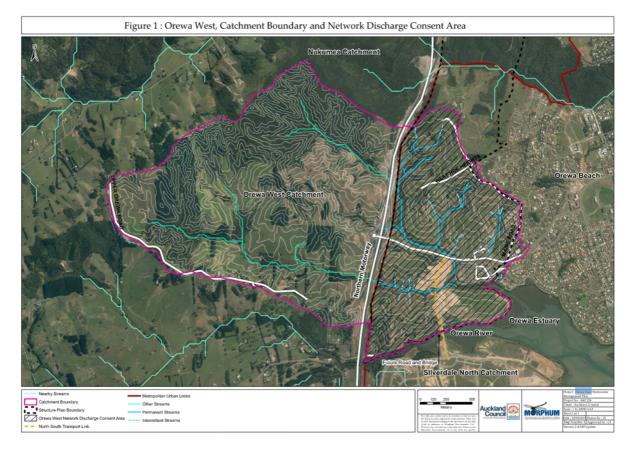


Figure 4 - Ōrewa West Catchment

4.1. Land Use

This property and upstream catchments are within the FUZ and Rural Production Zone defined by AUP. The Maximum Probable Development (MPD) for impervious surfaces in the FUZ has been taken as 60% based on the average lot typology proposed in the Masterplan.

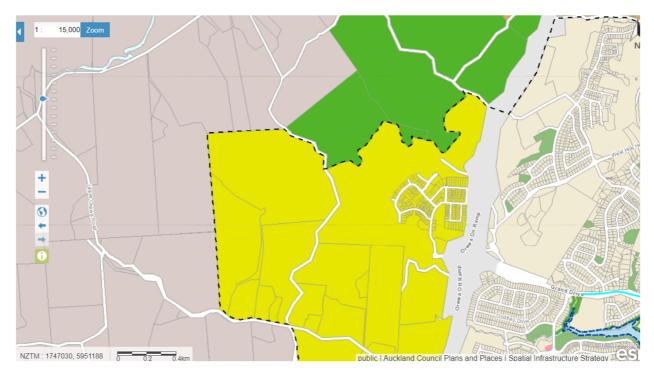


Figure 5 - Land Use

5. SITE SURVEY

5.1. Culvert and Bridges Structure

A topographical survey has been conducted to determine any hydraulic structures within the ICMP catchment areas.

A visual survey was conducted to assess the condition of the existing motorway culvert. During the survey, no obstructions were observed at the culvert's inlet or outlet. A minor baseflow was noted just above the culvert inlet, and shrubs around the outlet wing wall were present. The culvert is measured at approximately 133m with and inlet invert level of 6.84mRL and outlet invert level of 6.29mRL, which equates to a gradient of approximately 0.4%.

Figure 6 - Photo of culvert under State Highway 1

Figure 7 - Inlet of Culvert under State Highway 1

Further downstream of the motorway culvert, there are 2 bridges that are within the main flow path of the Delmore contributing catchment. The 2 bridges are the Tauhere Road footbridge and the Arran Drive bridge. The bridges have been included in the model.

Figure 8 - Downstream bridge piles

Figure 9 - Downstream bridge piles

For the purpose of modelling, all existing culverts have been modelled with zero percent blockage, in line with the condition observed on-site. A 50% and 100% blocked scenario (Scenario 1 and 2) has also been prepared to determine whether there is still sufficient headwater clearance from the motorway due to the increase in impervious areas from the FUZ.

6. HYDROLOGICAL MODEL

6.1. Method Used

The hydrological model was developed using the TP108 SCS methodology. Sub-catchments were delineated based on the current and proposed topography, and the surface type was based on the current land use for the pre-development model and the proposed land use for the proposed development model.

6.2. Hydrological Model Extent

Catchment Delineation is based on the terrain from a combination of Topographical, Drone, Design Surfaces, and Auckland Council DEM 2016 data. The catchment extent is shown below in Figure 10.

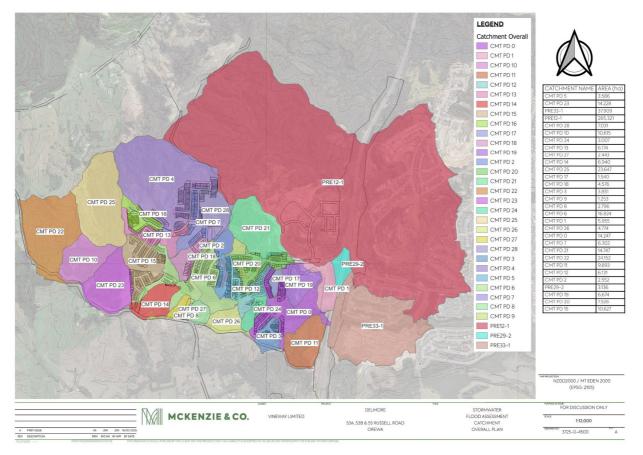


Figure 10 - Catchment extents

6.3. Model Set-up

A total of 16 scenarios of the hydrologic model have been developed. The existing scenarios aim to establish a baseline for the flood model with and without climate change. The MPD within the development extent will assess the impact of flooding due to the development. The MPD within the wider FUZ boundaries will determine that there is capacity in the proposed culverts taking into consideration future upstream development outside of the Delmore Masterplan.

Table 1 - Scenarios

Scenario				LAND USE (Development
Number	SCENARIO_ID	ARI (Year)	CLIMATE CHANGE	Extent)
				EXISTING
1	EXDHCLM050AEP	2	EXISTING	DEVELOPMENT
				EXISTING
2	EXDHCLM020AEP	5	EXISTING	DEVELOPMENT
				EXISTING
3	EXDHCLM010AEP	10	EXISTING	DEVELOPMENT
				EXISTING
4	EXDHCLM001AEP	100	EXISTING	DEVELOPMENT
			2.1DC INCREASE	EXISTING
5	EXD21CC050AEP	2	IN TEMPERATURE	DEVELOPMENT
			2.1DC INCREASE	EXISTING
6	EXD21CC020AEP	5	IN TEMPERATURE	DEVELOPMENT
			2.1DC INCREASE	EXISTING
7	EXD21CC010AEP	10	IN TEMPERATURE	DEVELOPMENT
			3.8DC INCREASE	
0		100		EXISTING
8	EXD38CC001AEP	100	IN TEMPERATURE	DEVELOPMENT
			2.1DC INCREASE	MAXIMUM PROBABLE
9	MPD21CC050AEP	2	IN TEMPERATURE	DEVELOPMENT
			2.1DC INCREASE	MAXIMUM PROBABLE
10	MPD21CC020AEP	5	IN TEMPERATURE	DEVELOPMENT
			2.1DC INCREASE	MAXIMUM PROBABLE
11	MPD21CC010AEP	10	IN TEMPERATURE	DEVELOPMENT
		10		
		100	3.8DC INCREASE	MAXIMUM PROBABLE
12	MPD38CC001AEP	100	IN TEMPERATURE	DEVELOPMENT
			2.1DC INCREASE	
13	D_MPD21CC050AEP	2	IN TEMPERATURE	DELMORE MPD
			2.1DC INCREASE	
14	D MPD21CC020AEP	5	IN TEMPERATURE	DELMORE MPD
		-		
15		10	2.1DC INCREASE	
15	D_MPD21CC010AEP	10	IN IEMPERATURE	DELMORE MPD
			3.8DC INCREASE	
16	D_MPD38CC001AEP	100	IN TEMPERATURE	DELMORE MPD

7. HYDROLOGICAL PARAMETERS

The 24-hour rainfall depth has been obtained from the TP108 rainfall maps. A climate change uplift has been adopted from the Auckland Council Stormwater Code of Practice Version 4.

Table 2 - Hydrological parameters

ARI (Years)	Percent Increase 2.1 Climate Change	Percent Increase 3.8 Climate Change	Historical Rainfall Depth (mm)	Rainfall Depth with 2.1 Climate Change (mm)	Rainfall Depth with 3.8 Climate Change (mm)
2	15.1%	27.4%	91	104.7	115.9
5	16.4%	29.6%	127	147.8	164.6
10	17.0%	30.8%	155	181.4	202.7
20	17.2%	31.2%	180	211.0	236.2
50	17.6%	31.9%	210	247.0	277.0
100	18.1%	32.7%	233	275.2	309.2

Based on the Geotechnical Report conducted by Riley Consultants, the underlying soil is predominantly clay. Hydrological Soil Type C has been adopted for the analysis, and a Curve Number (CN) of 74 has been adopted. For impervious surfaces, a curve number of 98 is adopted, which is in accordance with the TP108 guidelines. The table below outlines the hydrological parameters adopted.

Table 3 - Curve Numbers

Parameters	Pervious Soil (Type C Assumed)	Impervious Surface
Curve Number (CN)	74	98
Initial Abstraction (Ia)	5	0
Channelisation Factors (Primarily Grass Channels)	0.8	0.8
Time of Concentration (Mins)	Varies depending on catchment length and slope. Minimum of 10 minutes	Varies depending on catchment length and slope. Minimum of 10 minutes

Inflow nodes have been applied at the top of sub-catchment boundaries, and a time of concentration of 10 minutes has been adopted except for sub-catchments 'PRE12-1', 'PRE29-1', and 'PRE33-1', for which the node has been applied as a lumped inflow at the bottom of catchments. This is to ensure consistency in the model and the lag time of flow can be determined by the model.

The hydrological data has been calculated using HEC-HMS and is included in the Appendix.

8. HYDRAULIC MODEL

8.1. Method Used

The hydraulic model will be run in HEC-RAS. It is a 2D model, with minor hydraulic structures represented as 1D nodes. A full 2D model is considered appropriate due to the limited pipe networks in the area, and stormwater is primarily conveyed through a very well-defined overland flow path (OLFP).

The flow run-off calculated in the hydrologic model is applied as a lumped inflow boundary condition in its sub-catchments.

For the hydraulic modelling, 18 scenarios will be prepared for the flood assessment. The standard cell size adopted is a 4x4m grid, with a refinement of 2x2m cells applied in OFLPs and watercourses. This corresponds to cell areas of 16m² and 4m², respectively, aligning with the Auckland Modelling Guidelines' Table 3-2, which recommends cell areas of 20m² for general areas and 4m² for watercourses and OFLPs. The total modelling area is 386.3 ha with 204544 generated cells with an average cell area 9.0m₂. The model is 2D, with culverts modelled in 1D.

Each sub-catchments peak and temporal flows are calculated by the HEC-HMS SCS method using the normalised hydrograph Auckland Council TP108 over a 24-hour storm duration and applied as an inflow node in RAS. The temporal pattern has been adopted from the Auckland Council Code of Practice Version 4.

The coordinate system for the surface model will be under NZGD2000 – Mount Eden 2000 (EPSG2105) and the Vertical Datum will be on New Zealand Vertical Datum 2016 (NZVD2000)

8.2. 1D-2D Linkage

All hydraulic structures identified on the survey have been applied as a 1D element. The meshes are then adjusted to account for any barriers and openings of the structure. The table below outlines the proposed structure in the hydraulic model.

Location	Structure Type	Size / Diameter	Model ID	Northing (mN)	Easting (mE)
Northern Gateway Toll Road	Culvert	2100mm	Motorway_Culv	832004.0131	390984.8906
Tauhere Road	Footbridge	_	TauhereRd_FtBr	831911.839	391318.647
Arran Drive	Bridge	_	ArranDr_Bridge	831932.0558	391652.6631

Table 4 - Structures

For the proposed scenarios, there will be an additional 11 box culverts and two circular culverts. The dimensions and embedment depth of the culverts are summarised below.

Table 5 - Culverts

Proposed Culvert Culvert Parameters

	Span (mm)	Rise (mm)	Embedment (mm)
Culvert 1	4000	2000	500
Culvert 2	2000	1500	400
Culvert 3	5000	5000	1250
Culvert 4	5000	5000	1250
Culvert 5	4000	2500	700
Culvert 6	4000	2000	500
Culvert 7	6000	2000	500
Culvert 8	2000	2000	500
Culvert 9	4000	3000	800
Culvert 10	6000	2000	500
Culvert 11	4000	4000	1000
Culvert 12 (circular)	900	900	225
Culvert 13 (circular)	1500	1500	400

8.3. Model Extent

Figure 11 illustrates the extent of the hydraulic model. The extent captures the upstream contributing catchment to the Delmore development and the downstream area up to 50m downstream of the Arran Drive bridge. This extent has been adopted as it allows for assessing any upstream and downstream effects from the development.

Figure 11 - Extent of the hydraulic model

8.4. Tidal Boundary Conditions

A review of the 'Development of an Updated Coastal Marine Area Boundary for the Auckland Region – Prepared for Auckland Council – July 2012' shows in Table A-2 a Mean High-Water Springs-10 (MHWS10) of 1.42mRL based on the Auckland Vertical Datum of 1946. Adjusting this to the New Zealand Vertical Datum 2016 with an offset value of 302mm yields an MHWS of 1.12mRL.

The Auckland Council 'Regionwide Rural Rapid Flood Model Build Report – May 2023' indicates that the MHWS10 for the Ōrewa region (Model Unit I) ranges from 1.42 to 2.30mRL, with an NZVD adjustment of 1.12mRL to 2.00mRL.

A MHWS10 of 2.10mRL (NZVD2016) has been adopted. In the climate change scenario, an uplift of 1m, equivalent to 3.10mRL, has been added to the MHWS.

The MHWS will be applied as a downstream boundary condition approximately 50m downstream of the Arran Drive bridge.

8.5. Losses

Manning's roughness coefficient will be applied to the model surface as per the following table. The manning's value will be applied as a land cover polygon in HEC-RAS.

2D Surfaces	Adopted Mannings Value, n
Urban Residential Parcels	0.1
Building Footprints	0.5
Rural Residential Parcels	0.06
Roads/ JOALS	0.05
Shrubs	0.1
Roof	0.5
Grass	0.06
High Vegetation Area	0.15

Table 6 - Mannings Values

For hydraulic structures, the following losses has been assumed:

Table 7 - Mannings Numbers

Structure Type	Adopted Mannings Value, n
Culvert (1D)	0.02
Culvert - Embedded (1D)	0.06

Refer to Drawings 4514 & 4515 for the land cover plan.

9. MODEL SCENARIOS

For the hydraulic models, 18 scenarios have been undertaken. The table below summarises the total number of scenarios that will be prepared along with the scenario identifier.

Table 8 - Scenarios

Number	SCENARIO ID	ARI (Year)	CLIMATE CHANGE	LAND USE (Development Extent)	Tailwater Condition	Network
				EXISTING		
1	EXDHCLM050AEPTWABASE	2	EXISTING	DEVELOPMENT	MHWS10	Base
2	exdhclm020aeptwabase	5	existing	EXISTING DEVELOPMENT	MHWS10	Base
3	exdhclm010aeptwabase	10	EXISTING	EXISTING DEVELOPMENT	MHWS10	Base
4	EXDHCLM005AEPTWABASE	20	EXISTING	EXISTING DEVELOPMENT	MHWS10	Base
5	EXDHCLM002AEPTWABASE	50	existing	EXISTING DEVELOPMENT	MHWS10	Base
6	EXDHCLM001AEPTWABASE	100	EXISTING	EXISTING DEVELOPMENT	MHWS10	Base
7	MPD21CC050AEPTWBBASE	2	2.1DC INCREASE IN TEMPERATURE	MPD	MHWS10 + 1m	Base
8	MPD21CC020AEPTWBBASE	5	2.1DC INCREASE IN TEMPERATURE	MPD	MHWS10 + 1m	Base
9	MPD21CC010AEPTWBBASE	10	2.1DC INCREASE IN TEMPERATURE	MPD	MHWS10 + 1m	Base
10	MPD21CC005AEPTWBBASE	20	2.1DC INCREASE IN TEMPERATURE	MPD	MHWS10 + 1m	Base
11	MPD21CC002AEPTWBBASE	50	2.1DC INCREASE IN TEMPERATURE	MPD	MHWS10 + 1m	Base
12	MPD21CC001AEPTWBBASE	100	2.1DC INCREASE IN TEMPERATURE	MPD	MHWS10 + 1m	Base
13	MPD38CC050AEPTWBBASE	2	3.8DC INCREASE IN TEMPERATURE	MPD	MHWS10 + 1m	Base
14	MPD38CC020AEPTWBBASE	5	3.8DC INCREASE IN TEMPERATURE	MPD	MHWS10 + 1m	Base
15	MPD38CC010AEPTWBBASE	10	3.8DC INCREASE	MPD	MHWS10 + 1m	Base
16	MPD38CC005AEPTWBBASE	20	3.8DC INCREASE IN TEMPERATURE	MPD	MHWS10 + 1m	Base
17	MPD38CC002AEPTWBBASE	50	3.8DC INCREASE IN TEMPERATURE	MPD	MHWS10 + 1m	Base
18	MPD38CC001AEPTWBBASE	100	3.8DC INCREASE IN TEMPERATURE	MPD	MHWS10 + 1m	Base

The following table summarises the purpose of the scenarios.

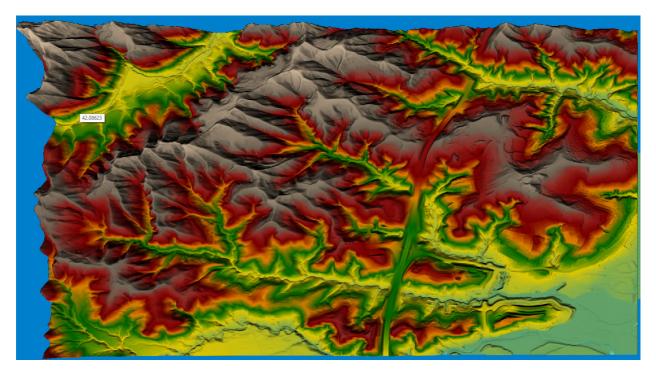
Table 9 - Scenario purpose

Number	SCENARIO_ID	Purpose
Norriber		
1	EXDHCLM001AEPTWBBASE_EXT	Baseline of current flood risk
2	EXDHCLM050AEPTWABASE_EXT	Baseline of current flood risk
3	EXDHCLM020AEPTWABASE_EXT	Baseline of current flood risk
4	EXDHCLM010AEPTWABASE_EXT	Baseline of current flood risk
5	MPD38CC001AEPTWBBASE_PDT	Assessing proposed culvert capacity and minimum floor levels
6	MPD38CC001AEPTWBBL01_PDT	Assessing overtopping risk on Motorway
7	MPD38CC001AEPTWBBBL050_PDT	Assessing overtopping risk on Motorway
8	EXD38CC001AEPTWBBASE_EXT	Baseline of current flood risk with climate change
9	D_MPD38CC001AEPTWBBASE_PDT	Comparison against baseline for upstream and downstream effects assessment
10	MPD21CC050AEPTWABASE_PDT	Assessing proposed culvert capacity and minimum floor levels
11	MPD21CC010AEPTWABASE_PDT	Assessing proposed culvert capacity and minimum floor levels
12	MPD21CC020AEPTWABASE_PDT	Assessing proposed culvert capacity and minimum floor levels
13	EXD21CC050AEPTWABASE_EXT	Baseline of current flood risk with climate change
14	EXD21CC010AEPTWABASE_EXT	Baseline of current flood risk with climate change
15	EXD21CC020AEPTWABASE_EXT	Baseline of current flood risk with climate change
16	D_MPD21CC050AEPTWABASE_PDT	Comparison against baseline for upstream and downstream effects assessment
17	D_MPD21CC020AEPTWABASE_PDT	Comparison against baseline for upstream and downstream effects assessment

		Comparison against baseline for
		upstream and downstream effects
18	D_MPD21CC010AEPTWABASE_PDT	assessment

10. VALIDATION METHODOLOGY

Multiple locations will be selected within the model area and compared against the TP108 graphical model to verify the model data against the graphical method. An additional check will be compared against the Auckland Council RFHA model to assess consistency with council output.


Flows and volumes will be compared to determine the difference between them. Any significant differences will be reviewed and assessed as appropriate.

10.1. Existing Surface (Pre Development)

A topographical and drone survey for the proposal area was undertaken, and this data has been used for all land within the proposed development site.

LiDAR data 2016 NZVD2016 provided by LINZ Data services, at 1m resolution, is used as the existing ground surface model for the wider area around the contributing catchment where topographic data was not available.

The terrain is shown in Figure 12 below.

10.2. Design Surface (Post development)

A detailed design surface was used to prepare a terrain model for the post-development scenario

models. Figure 13 below shows these at the development site.

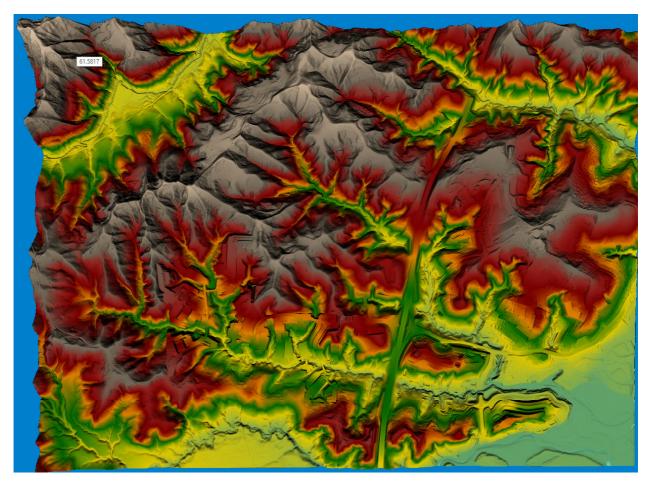


Figure 13 - Post-Development Surface

10.3. Model Time Steps

An adaptive time step based on a maximum Courant of 4 and a minimum Courant number of 1 was adopted. The base time step is 1 second with a maximum halving of 0.5 seconds and maximum doubling of 4 seconds. The time step was chosen to aid with stability within the model during computation.

10.4. Contributing Catchment

Figure 14 below shows the contributing catchment named "15L" of the $\bar{\rm O}$ rewa West ICMP. The size of this catchment is 275ha.

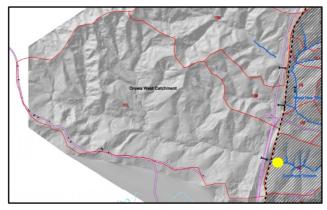


Figure 14 - Ōrewa West ICMP Catchment 15L

Based on the terrain data, an independent catchment analysis has been conducted. The total number of sub-catchments demarcated is 32, which accounts for the cut-off for the future proposed culvert within the Delmore development. Refer to Figure 10 for details.

The following table lists each sub-catchment area.

Subcatchment Name	Area (ha)	Subcatchment Name	Area (ha)	Subcatchment Name	Area (ha)
CMT PD 0	14.247	CMT PD 19	6.674	CMT PD 3	3.851
CMT PD 1	5.955	CMT PD 2	2.552	CMT PD 4	39.863
CMT PD 10	10.615	CMT PD 20	7.526	CMT PD 5	3.586
CMT PD 11	9.893	CMT PD 21	14.747	CMT PD 6	16.824
CMT PD 12	6.131	CMT PD 22	24.152	CMT PD 7	6.302
CMT PD 13	6.174	CMT PD 23	14.228	CMT PD 8	2.796
CMT PD 14	6.94	CMT PD 24	3.007	CMT PD 9	1.253
CMT PD 15	10.627	CMT PD 25	23.647	PRE12-1	265.321
CMT PD 16	4.259	CMT PD 26	4.774	PRE29-2	3.136
CMT PD 17	1.54	CMT PD 27	2.443	PRE33-1	37.909
CMT PD 18	4.576	CMT PD 28	7.031		

Table 10 – Sub-catchment areas

The total sum equivalent to the ICMP boundaries is 266ha. An additional 306ha (consisting of catchments PRE12-1, PRE29-2 and PRE33-1) is applied downstream to determine the full extent of downstream flow.

10.5. Inflow Boundary Conditions

Contributing catchments have been delineated as per Catchment Plan drawing 3725-0-4500. Each subcatchment is assigned a 1D node with the relevant catchment areas and appropriate land cover. The hydrological inflow is configured with a 10-minute time of concentration, and each node is positioned at the highest point of its corresponding sub-catchment to ensure the full time of concentration is accurately represented in the model.

For catchments PRE12-1, PRE29-2, and PRE33-1, the time of concentration has been calculated using the equal area method based on the potential flow length and slope. The inflow nodes have been applied at the bottom of the respective sub-catchments. This approach is used because the model has not considered the hydraulic structures within these sub-catchments. The purpose of these inflows is to determine the total downstream flows to assess downstream effects.

The 24-hour inflow hydrographs for each node have been calculated using HEC-HMS, as discussed in the chapter 6.

10.6. Outflow Boundary Conditions

The outflow boundary condition for the flood analysis is located approximately 50m downstream of the Arran Drive bridge.

A review of the 'Development of an Updated Coastal Marine Area Boundary for the Auckland Region – Prepared for Auckland Council – July 2012' shows in Table A-2 a Mean High-Water Springs-10 (MHWS10) of 1.42mRL based on the Auckland Vertical Datum of 1946. Adjusting this to the New Zealand Vertical Datum 2016 with an offset value of 302mm yields an MHWS of 1.12mRL.

The Auckland Council 'Regionwide Rural Rapid Flood Model Build Report – May 2023' indicates that the MHWS10 for the Ōrewa region (Model Unit I) ranges from 1.42 to 2.30mRL, with an NZVD adjustment of 1.12mRL to 2.00mRL.

For modelling, an MHWS10 of 2.10mRL (NZVD2016) has been adopted for all storm events up to the 10% AEP with and without climate change. In the climate change scenario, an uplift of 1m, equivalent to 3.10mRL, has been added to the MHWS+1m for the 1% AEP scenarios.

11. RESULTS

11.1. Model Mass Error

All model runs reported less than 1% of mass volume error.

11.2. Results Discussion

The following table shows the water surface elevation, peak velocity and flow for location A, B, E & F.

Scenario		Water Surface	Peak Velocity	Peak Flow	Depth
Number	Scenario ID (Location A)	Elevation (m)	(m/s)	(m3/s)	(m)
1	EXDHCLM001AEPTWBBASE_EXT	30.99	1.04	8.80	1.81
2	EXDHCLM050AEPTWABASE_EXT	30.60	0.38	2.50	1.42
3	EXDHCLM020AEPTWABASE_EXT	30.71	0.58	3.96	1.53
4	EXDHCLM010AEPTWABASE_EXT	30.79	0.72	5.16	1.61

Table 11 – Recorded Results at Location A

			-		
5	MPD38CC001AEPTWBBASE_PDT	31.50	1.18	14.44	2.32
6	MPD38CC001AEPTWBBL01_PDT	31.50	1.16	14.40	2.32
7	MPD38CC001AEPTWBBBL050_PDT	31.50	1.18	14.45	2.32
8	EXD38CC001AEPTWBBASE_EXT	31.24	1.39	14.59	2.06
9	D_MPD38CC001AEPTWBBASE_PDT	31.50	1.18	14.44	2.32
10	MPD21CC050AEPTWABASE_PDT	30.74	0.47	3.49	1.56
11	MPD21CC010AEPTWABASE_PDT	31.05	0.79	7.33	1.87
12	MPD21CC020AEPTWABASE_PDT	30.92	0.66	5.61	1.74
13	EXD21CC050AEPTWABASE_EXT	30.66	0.49	3.36	1.48
14	EXD21CC010AEPTWABASE_EXT	30.90	0.89	6.92	1.72
15	EXD21CC020AEPTWABASE_EXT	30.80	0.73	5.28	1.62
16	D_MPD21CC050AEPTWABASE_PDT	30.74	0.47	3.49	1.56
17	D_MPD21CC020AEPTWABASE_PDT	30.92	0.66	5.61	1.74
18	D_MPD21CC010AEPTWABASE_PDT	31.05	0.79	7.33	1.87

Scenario Number	Scenario ID (Location B)	Water Surface Elevation (m)	Peak Velocity (m/s)	Peak Flow (m3/s)	Depth (m)
1	EXDHCLM001AEPTWBBASE_EXT	31.29	1.43	7.43	0.90
2	EXDHCLM050AEPTWABASE_EXT	30.94	0.79	1.78	0.55
3	EXDHCLM020AEPTWABASE_EXT	31.03	1.03	3.21	0.64
4	EXDHCLM010AEPTWABASE_EXT	31.10	1.18	4.34	0.71
5	MPD38CC001AEPTWBBASE_PDT	31.18	2.98	10.05	0.76
6	MPD38CC001AEPTWBBL01_PDT	31.14	3.09	10.17	0.74
7	MPD38CC001AEPTWBBBL050_PDT	31.18	2.99	10.05	0.76
8	EXD38CC001AEPTWBBASE_EXT	31.53	1.67	11.81	1.12
9	D_MPD38CC001AEPTWBBASE_PDT	31.18	2.98	10.05	0.76
10	MPD21CC050AEPTWABASE_PDT	30.80	1.56	2.54	0.42
11	MPD21CC010AEPTWABASE_PDT	30.95	2.20	5.19	0.57
12	MPD21CC020AEPTWABASE_PDT	30.89	1.95	4.01	0.51
13	EXD21CC050AEPTWABASE_EXT	31.00	0.93	2.58	0.60
14	EXD21CC010AEPTWABASE_EXT	31.20	1.32	5.91	0.81
15	EXD21CC020AEPTWABASE_EXT	31.11	1.19	4.44	0.72
16	D_MPD21CC050AEPTWABASE_PDT	30.80	1.56	2.54	0.42
17	D_MPD21CC020AEPTWABASE_PDT	30.89	1.95	4.01	0.51

18	D_MPD21CC010AEPTWABASE_PDT	30.95	2.20	5.19	0.57
			Peak		
Scenario		Water Surface	Velocity	Peak Flow	Depth
Number	Scenario ID (Location E)	Elevation (m)	(m/s)	(m3/s)	(m)
1	EXDHCLM001AEPTWBBASE_EXT	15.20	1.96	38.50	6.00
2	EXDHCLM050AEPTWABASE_EXT	10.97	1.81	10.64	1.76
3	EXDHCLM020AEPTWABASE_EXT	12.06	1.93	18.13	2.86
4	EXDHCLM010AEPTWABASE_EXT	13.09	2.01	24.17	3.89
5	MPD38CC001AEPTWBBASE_PDT	17.65	1.49	49.38	8.45
6	MPD38CC001AEPTWBBL01_PDT	19.49	0.29	13.44	10.28
	MPD38CC001AEPTWBBBL050_PDT	19.70			
7			0.94	34.97	10.49
8	EXD38CC001AEPTWBBASE_EXT	17.15	1.82	57.51	7.95
9	D_MPD38CC001AEPTWBBASE_PDT	17.46	1.51	50.05	8.26
10	MPD21CC050AEPTWABASE_PDT	12.49	1.67	19.05	3.28
11	MPD21CC010AEPTWABASE_PDT	14.97	1.64	36.28	5.76
12	MPD21CC020AEPTWABASE_PDT	14.02	1.70	28.63	4.82
13	EXD21CC050AEPTWABASE_EXT	11.39	1.95	14.65	2.19
14	EXD21CC010AEPTWABASE_EXT	14.21	2.07	30.37	5.01
15	EXD21CC020AEPTWABASE_EXT	13.14	2.02	24.68	3.94
16	D_MPD21CC050AEPTWABASE_PDT	12.06	1.66	17.81	2.85
17	D_MPD21CC020AEPTWABASE_PDT	13.68	1.75	26.63	4.47
18	D_MPD21CC010AEPTWABASE_PDT	14.67	1.72	34.66	5.47

Scenario Number	Scenario ID (Location F - Downstream Assessment)	Water Surface Elevation (m)	Peak Velocity (m/s)	Peak Flow (m3/s)	Depth (m)
1	EXDHCLM001AEPTWBBASE_EXT	6.63	1.10	18.22	2.94
2	EXDHCLM050AEPTWABASE_EXT	6.00	0.87	9.64	2.31
3	EXDHCLM020AEPTWABASE_EXT	6.29	0.99	13.33	2.61
4	EXDHCLM010AEPTWABASE_EXT	6.42	1.03	15.13	2.74
5	MPD38CC001AEPTWBBASE_PDT	6.28	1.59	20.83	2.58
6	MPD38CC001AEPTWBBL01_PDT	5.12	0.12	0.15	1.43
7	MPD38CC001AEPTWBBBL050_PDT	5.56	1.01	6.24	1.87
8	EXD38CC001AEPTWBBASE_EXT	6.80	1.14	20.73	3.11
9	D_MPD38CC001AEPTWBBASE_PDT	6.27	1.58	20.61	2.57
10	MPD21CC050AEPTWABASE_PDT	5.86	1.38	13.50	2.16

11	MPD21CC010AEPTWABASE_PDT	6.09	1.50	17.42	2.40
12	MPD21CC020AEPTWABASE_PDT	6.01	1.46	16.04	2.32
13	EXD21CC050AEPTWABASE_EXT	6.18	0.95	11.90	2.50
14	EXD21CC010AEPTWABASE_EXT	6.54	1.07	16.84	2.85
15	EXD21CC020AEPTWABASE_EXT	6.43	1.03	15.20	2.74
16	D_MPD21CC050AEPTWABASE_PDT	5.81	1.35	12.69	2.11
17	D_MPD21CC020AEPTWABASE_PDT	5.98	1.45	15.51	2.29
18	D_MPD21CC010AEPTWABASE_PDT	6.07	1.49	17.01	2.37

11.1. Results Comparison

Results of pre-development scenarios with climate change has been compared with the Delmore MPD scenarios with climate change to assess any increase or decrease in water level and if there any associated increase in risk upstream and downstream due to the change. The table below summarises the findings across four scenarios of interests. A total of 7 locations have been assessed and shown on Figure 15 below.



Figure 15 - Locations of pre-development and MPD water level comparisons

Scenario Number (Post)	Scenario Number (Pre)	AEP (Years)	Locatio n	ARI (Years)	Depth Differenc e (-ve = decrease) , (m)	Velocity Differenc e (m/s)
			A		0.079	-0.028
			В		-0.196	0.624
			С		-0.612	0.42
			D		-0.12	0.867
			E		0.667	-0.291
			F		-0.377	0.406
16	13	2	G	2	-0.111	0.65
			A		0.123	-0.067
17	15	5	В	5	-0.215	0.759

Table 12 - Depth and velocity difference between pre-development and MPD

			С		-0.592	0.568
			D		-0.17	1.057
			E		0.538	-0.263
			F		-0.447	0.417
			G		-0.173	0.714
			A		0.158	-0.102
			В		-0.248	0.884
			С		0.187	0.664
			D		0.177	1.147
			E		0.459	-0.349
			F		-0.471	0.42
18	14	10	G	10	0.026	0.719
			A		0.256	-0.21
			В		-0.351	1.319
			С		-1.107	0.93
			D		-0.408	1.499
			E		0.311	-0.315
			F		-0.525	0.443
9	8	100	G	100	-0.164	0.737

From the comparison above, there is an observed increase in location A and E for all storm events. Location A, which is upstream of the Delmore development, reported an increase of up to 256mm during the 100 Year ARI event. However, the area is in bush land and the run-off is contained within the existing channel profile without any spilling anticipated so there are no anticipated consequences. Figure 16 below shows the cross-section profile along with the water level during various storm events.

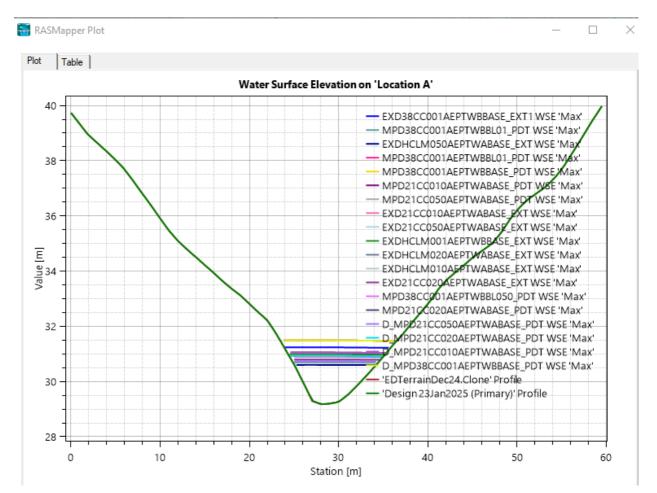


Figure 16 - Water surface elevation at Location A for various scenarios

As for location E, which is taken approximately 320m upstream of the motorway culvert, there is a reported increase across all storm events. The largest depth difference increase is during the 2-year event, where the water level during the Delmore MPD scenario is 12.1mRL and the pre-development is 11.4mRL giving a difference of approximately 700mm. The flood extent on location E is contained within the existing channel as per the figure below, with no anticipated consequences.

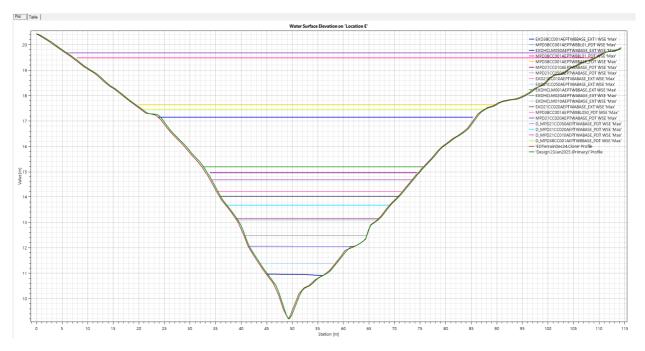


Figure 17 - Water surface elevation at Location E for various scenarios

Downstream of the motorway culvert, reduction in water levels is observed for all storm events. The culvert flow and headwater level for the 100-year storm are as per the table below.

Measurement Criteria	Value	Time to Peak
Headwater (m)	17.46	01Jan2024 1330
Tailwater (m)	9.2	01Jan2024 1330
Total Flow (m3/s)	20.43	01Jan2024 1330
Total Culvert Flow (m3/s)	20.43	01Jan2024 1330
Headwater (m)	17.15	01Jan2024 1330
Tailwater (m)	8.84	01Jan2024 1330
Total Flow (m3/s)	20.46	01Jan2024 1330
Total Culvert Flow (m3/s)	20.46	01Jan2024 1330
	Headwater (m) Tailwater (m) Total Flow (m3/s) Total Culvert Flow (m3/s) Headwater (m) Tailwater (m) Total Flow (m3/s)	Headwater (m)17.46Tailwater (m)9.2Total Flow (m3/s)20.43Total Culvert Flow (m3/s)20.43Headwater (m)17.15Tailwater (m)8.84Total Flow (m3/s)20.46

Table 13 - Flow and water depth comparison downstream of motorway culvert between pre-development and MPD

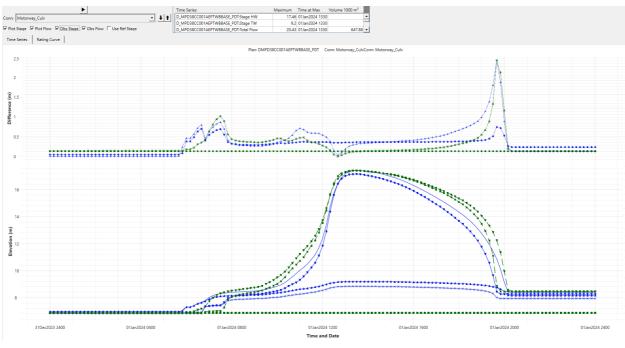


Figure 18 – Motorway culvert inflow hydrograph

Figure 19 shows the difference in water level between the pre- and post-development scenario at 1% AEP storm event.

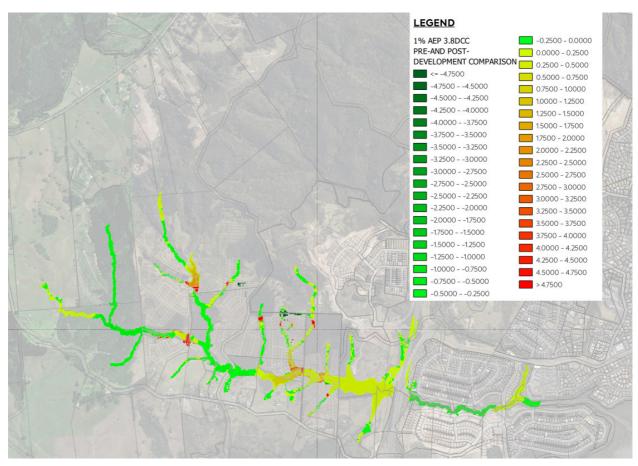


Figure 19 - Flood difference for 1% MPD plus CC, for pre- and post-development

11.2. Maximum Probable Development – Future Development Zone

Scenario with the full Delmore development and the maximum probable development within the Future Urban Zone outside the Delmore development zone have been assessed to determine the minimum floor level and the ultimate pipe capacity, The purpose of this scenario is to ensure that the culvert network have sufficient capacity to accommodate future development outside the Delmore Masterplan that is within the AUP FUZ zone. The identification of this scenario is EXD38CC001AEPTWBBASE_EXT which also known as Scenario number 8.

All proposed culverts within the Delmore development are embedded 25% of their total height for ecological requirements.

Based on the wider FUZ, all minimum ground levels for individual lot platforms are above the 1% AEP MPD flood level by a minimum of 200mm, and minimum proposed floor levels are 300mm above lot platforms. This provides a total freeboard of 500mm for habitable areas.

11.3. Auckland Council RFHA Results comparison

Figure 20 below shows the RFM peak elevation and velocity (Source: Healthy Waters). The snippet from the Council RFHA model can be best represented by location E scenario number 5 (MPD38C001AEPTWBBASE_PDT).

The model prepared by McKenzie & Co reported a flood level of 17.65mRL which is comparable to the Council model. The velocity is reported higher (1.49m/s) which is likely due to the variation in location where the measurements is taken.

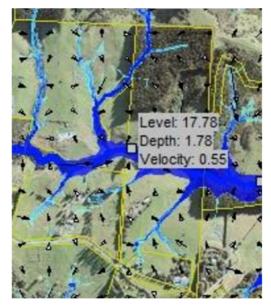


Figure 20 - RFM peak elevation and velocity (Source: Healthy Waters)

12.RISK ASSESSMENT

A risk assessment against E36 of the Auckland Unitary plan has been completed and is included in the Appendix. This shows that the overall flood risk from the development is low.

13.CONCLUSION

The flood assessment for the Delmore development demonstrates that the proposed development has been designed to manage stormwater runoff effectively. The assessment confirms that the minimum floor levels for the proposed lots are above the 1% AEP flood levels (unblocked scenario) and overland flow paths are contained within existing streams and channels.

Modelling results indicate that the proposed development has resulted in minor increase in flood depth upstream of the proposed development, however, since it is within the existing channel and away from any habitable area, the risk is considered less than minor.

14.LIMITATION

This flood assessment report has been prepared by McKenzie and Co for Vineway Limited to evaluate the flood risks associated with the Delmore development. This report is intended solely for this purpose, and McKenzie and Co accept no responsibility for its use by other parties or for any other purpose.

The results rely on the accuracy of available data and modelling assumptions, including rainfall events, catchment response, and boundary conditions. The assessment does not account for future changes in land use, except for those indicated in the Auckland Unitary Plan. Simplifications in model geometry, such as terrain and drainage structures, may result in localized impacts not being fully represented.

Any use of this report outside its intended purpose is at the sole risk of the user, and McKenzie and Co accept no liability for such use.

APPENDIX A – Flood Hazard Risk Assessment

APPENDIX B – Engineering Flood Drawings

See Engineering Plans 3725-0-4500 to 3725-0-4515

APPENDIX C – HEC HMS inflow input

Reference	3725
Client	Vineway Ltd
Project	Delmore Development
Address	55 Russell Road Orewa
Description	Time of Concentration / Impervious Input for HEC-HMS - DELMORE POST DEV

Revision	Description	Prepared By	Checked By	Approved By
A	FIRST ISSUE	HS		

															6.6667	
Catchment Label	Catchment Area	Subcatchment 1	Subcatchment 2	Catchment Slope	Catchment Length	Channel Factor	Impervious (Sub C1)	Impervious (Sub C2)	Impervious (Combined)	Soil Type	SCS Curve Number	Weighted CN	ام weighted	te	Lag Time	Storage S
	ha	ha	ha	m/m	km		%	%	%				mm	hours	hours	mm
										Pasture - Type C						
CMT PD 0	14.24000	14.2400		0.050	0.100	0.8	45%		45%	(Mud/Sandstone)	74	84.8	2.75	0.16667	0.11111	46
										Pasture - Type C						
CMT PD 1	5.95000	5.9500		0.050	0.100	0.8	3%		3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
										Pasture - Type C						
CMT PD 10	10.61000	10.6100		0.050	0.100	0.6	7%		7%	(Mud/Sandstone)	74	75.7	4.65	0.16667	0.11111	82
0.47.00.44				0.050	0.400				201	Pasture - Type C			105	0.466.67		
CMT PD 11	9.89000	9.8900		0.050	0.100	0.8	3%		3%	(Mud/Sandstone) Pasture - Type C	74	74.7	4.85	0.16667	0.11111	86
CMT PD 12	6.13000	6.1300		0.050	0.100	0.6	65%		65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
	6.15000	0.1500		0.050	0.100	0.6	05%		03%	Pasture - Type C	/4	09.0	1.75	0.10007	0.1111	29
CMT PD 13	6.17000	6.1700		0.050	0.100	0.6	65%		65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
	0	0.000		0.000	0.100	0.0	0570		0070	Pasture - Type C		05.0		0.10007	0	
CMT PD 14	6.94000	6.9400		0.050	0.100	0.8	10%		10%	(Mud/Sandstone)	74	76.4	4.50	0.16667	0.11111	78
										Pasture - Type C						
CMT PD 15	10.62000	10.6200		0.050	0.100	0.6	65%		65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
										Pasture - Type C						
CMT PD 16	4.26000	4.2600		0.050	0.100	0.6	65%		65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
										Pasture - Type C						
CMT PD 17	1.54000	1.5400		0.050	0.100	0.6	65%		65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
										Pasture - Type C						
CMT PD 18	4.58000	4.5800		0.050	0.100	0.6	7%		7%	(Mud/Sandstone)	74	75.7	4.65	0.16667	0.11111	82
										Pasture - Type C						
CMT PD 19	6.67000	6.6700		0.050	0.100	0.8	3%		3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
CMT PD 2	2.55000	2.5500		0.050	0.100	0.8	3%		3%	Pasture - Type C (Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
	2.55000	2.5500		0.050	0.100	0.8	3%		3%	Pasture - Type C	/4	/4./	4.00	0.10007	0.1111	00
CMT PD 20	7.52000	7.5200		0.050	0.100	0.6	65%		65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
										Pasture - Type C						
CMT PD 21	14.74000	14.7400		0.050	0.100	0.8	3%		3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
										Pasture - Type C						
CMT PD 22	24.15000	24.1500		0.050	0.100	0.6	7%		7%	(Mud/Sandstone)	74	75.7	4.65	0.16667	0.11111	82
										Pasture - Type C						
CMT PD 23	14.23000	14.2300		0.050	0.100	0.6	7%		7%	(Mud/Sandstone)	74	75.7	4.65	0.16667	0.11111	82
										Pasture - Type C						
CMT PD 24	3.01000	3.0100		0.050	0.100	0.8	35%		35%	(Mud/Sandstone)	74	82.4	3.25	0.16667	0.11111	54
										Pasture - Type C						
CMT PD 25	23.64000	23.6400		0.050	0.100	0.6	7%		7%	(Mud/Sandstone)	74	75.7	4.65	0.16667	0.11111	82
CMT PD 2C	4 77000	4700		0.050	0.400				201	Pasture - Type C		7.7	4.05	0.46667	0.000	
CMT PD 26	4.77000	4.7700		0.050	0.100	0.8	3%		3%	(Mud/Sandstone) Pasture - Type C	74	74.7	4.85	0.16667	0.11111	86
CMT PD 27	2.44000	2.4400		0.050	0.100	0.8	3%		3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
	2.44000	2.7700		0.050	0.100	0.0	376		570	Pasture - Type C	/4	,4./	4.05	0.10007	0.1111	
CMT PD 28	7.03000	7.0300		0.050	0.100	0.8	25%		25%	(Mud/Sandstone)	74	80.0	3.75	0.16667	0.11111	64

								Pasture - Type C						
CMT PD 3	3.85000	3.8500	0.050	0.100	0.6	45%	45%	(Mud/Sandstone)	74	84.8	2.75	0.16667	0.11111	46
								Pasture - Type C						
CMT PD 4	39.86000	39.8600	0.050	0.100	0.6	40%	40%	(Mud/Sandstone)	74	83.6	3.00	0.16667	0.11111	50
								Pasture - Type C						
CMT PD 5	3.59000	3.5900	0.050	0.100	0.6	65%	65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
								Pasture - Type C						
CMT PD 6	16.82000	16.8200	0.050	0.100	0.6	7%	7%	(Mud/Sandstone)	74	75.7	4.65	0.16667	0.11111	82
								Pasture - Type C						
CMT PD 7	6.30000	6.3000	0.050	0.100	0.6	65%	65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
								Pasture - Type C						
CMT PD 8	2.80000	2.8000	0.050	0.100	0.8	3%	3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
								Pasture - Type C						
CMT PD 9	1.25000	1.2500	0.050	0.100	0.8	3%	3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
								Pasture - Type C						
PRE12-1	265.27000	265.2700	0.014	3.000	0.6	50%	50%	(Mud/Sandstone)	74	86.0	2.50	0.72889	0.48593	41
								Pasture - Type C						
PRE29-2	3.14000	3.1400	0.014	0.100	0.6	65%	65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
								Pasture - Type C						
PRE33-1	38.04000	38.0400	0.020	1.111	0.6	65%	65%	(Mud/Sandstone)	74	89.6	1.75	0.32663	0.21775	29

Reference	3725
Client	Vineway Ltd
Project	Delmore Development
Address	55 Russell Road Orewa
Description	DEVELOPMENT

Revision	Description	Prepared By	Checked By	Approved By
А	FIRST ISSUE	HS		

															6.6667	,
	Catchment			Catchment	Catchment		Impervious	Impervious	Impervious		SCS Curve	Weighted	١a		Lag	Storage
Catchment Label	Area	Subcatchment 1	Subcatchment 2	Slope	Length	Channel Factor	(Sub C1)	(Sub C2)	(Combined)	Soil Type	Number	CN	weighted	tc	Time	s
	ha	ha	ha	m/m	km		%	%	%				mm	hours	hours	mm
					i i	1				Pasture - Type C						
CMT PD 0	14.24000	14.2400		0.050	0.100	0.8	3%		3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
										Pasture - Type C						
CMT PD 1	5.95000	5.9500		0.050	0.100	0.8	3%		3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
										Pasture - Type C						
CMT PD 10	10.61000	10.6100		0.050	0.100	0.8	7%		7%	(Mud/Sandstone)	74	75.7	4.65	0.16667	0.11111	82
										Pasture - Type C						
CMT PD 11	9.89000	9.8900		0.050	0.100	0.8	3%		3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
										Pasture - Type C						
CMT PD 12	6.13000	6.1300		0.050	0.100	0.8	3%		3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
										Pasture - Type C						
CMT PD 13	6.17000	6.1700		0.050	0.100	0.8	3%		3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
										Pasture - Type C						
CMT PD 14	6.94000	6.9400		0.050	0.100	0.8	3%		3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
										Pasture - Type C						
CMT PD 15	10.62000	10.6200		0.050	0.100	0.8	3%		3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
										Pasture - Type C						
CMT PD 16	4.26000	4.2600		0.050	0.100	0.8	3%		3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
										Pasture - Type C						
CMT PD 17	1.54000	1.5400		0.050	0.100	0.8	3%		3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
										Pasture - Type C						
CMT PD 18	4.58000	4.5800		0.050	0.100	0.8	7%		7%	(Mud/Sandstone)	74	75.7	4.65	0.16667	0.11111	82
										Pasture - Type C						
CMT PD 19	6.67000	6.6700		0.050	0.100	0.8	3%		3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
										Pasture - Type C						
CMT PD 2	2.55000	2.5500		0.050	0.100	0.8	3%		3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
0. (7.00.00	7.50005	7 5000		0.050					201	Pasture - Type C			105	0.466.67		
CMT PD 20	7.52000	7.5200		0.050	0.100	0.8	3%		3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
CMT PD 21	1171000	117400		0.050	0.100				20/	Pasture - Type C	74	747	4.05	0.46667	0 1111	00
CMIPDZI	14.74000	14.7400		0.050	0.100	0.8	3%		3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
CMT PD 22	2445000	244500		0.050	0.100				70/	Pasture - Type C	74	75.7	4.65	0.46667	0 1111	
CMI PD 22	24.15000	24.1500		0.050	0.100	0.8	7%		7%	(Mud/Sandstone) Pasture - Type C	74	75.7	4.65	0.16667	0.11111	82
CMT PD 23	14.23000	14.2300		0.050	0.100	0.8	70/		7%		74	75.7	4.65	0.16667	0 11 11 1	02
CMT PD 23	14.23000	14.2300		0.050	0.100	0.8	7%		1%	(Mud/Sandstone)	/4	/5./	4.00	/00001.0	0.11111	82

								Pasture - Type C						
CMT PD 24	3.01000	3.0100	0.050	0.100	0.8	3%	3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
								Pasture - Type C						
CMT PD 25	23.64000	23.6400	0.050	0.100	0.8	7%	7%	(Mud/Sandstone)	74	75.7	4.65	0.16667	0.11111	82
								Pasture - Type C						
CMT PD 26	4.77000	4.7700	0.050	0.100	0.8	3%	3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
								Pasture - Type C						
CMT PD 27	2.44000	2.4400	0.050	0.100	0.8	3%	3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
								Pasture - Type C						
CMT PD 28	7.03000	7.0300	0.050	0.100	0.8	3%	3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
								Pasture - Type C						
CMT PD 3	3.85000	3.8500	0.050	0.100	0.8	7%	7%	(Mud/Sandstone)	74	75.7	4.65	0.16667	0.11111	82
								Pasture - Type C						
CMT PD 4	39.86000	39.8600	0.050	0.100	0.8	7%	7%	(Mud/Sandstone)	74	75.7	4.65	0.16667	0.11111	82
								Pasture - Type C						
CMT PD 5	3.59000	3.5900	0.050	0.100	0.8	3%	3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
								Pasture - Type C						
CMT PD 6	16.82000	16.8200	0.050	0.100	0.8	7%	7%	(Mud/Sandstone)	74	75.7	4.65	0.16667	0.11111	82
								Pasture - Type C						
CMT PD 7	6.30000	6.3000	0.050	0.100	0.8	3%	3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
								Pasture - Type C						
CMT PD 8	2.80000	2.8000	0.050	0.100	0.8	3%	3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
								Pasture - Type C						
CMT PD 9	1.25000	1.2500	0.050	0.100	0.8	3%	3%	(Mud/Sandstone)	74	74.7	4.85	0.16667	0.11111	86
								Pasture - Type C						
PRE12-1	265.27000	265.2700	0.014	3.000	0.8	50%	50%	(Mud/Sandstone)	74	86.0	2.50	0.97186	0.64791	41
								Pasture - Type C						
PRE29-2	3.14000	3.1400	0.014	0.100	0.6	65%	65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
								Pasture - Type C						
PRE33-1	38.04000	38.0400	0.020	1.111	0.6	65%	65%	(Mud/Sandstone)	74	89.6	1.75	0.32663	0.21775	29

ſ	Reference	3725
Γ	Client	Vineway Ltd
Γ	Project	Delmore Development
Γ	Address	55 Russell Road Orewa
Γ	Description	Time of Concentration / Impervious Input for HEC-HMS - FUZ

Revision	Description	Prepared By	Checked By	Approved By
A	FIRST ISSUE	HS		

															6.6667	,
	Catchment			Catchment	Catchment		Impervious	Impervious	Impervious		SCS Curve	Weighted	Ia.		Lag	Storage
Catchment Label	Area	Subcatchment 1	Subcatchment 2	Slope	Length	Channel Factor	(Sub C1)	(Sub C2)	(Combined)	Soil Type	Number	CN	weighted	tc	Time	s
	ha	ha	ha	m/m	km		%	%	%				mm	hours	hours	mm
										Pasture - Type C						
CMT PD 0	14.24000	14.2400		0.050	0.100	0.6	65%		65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
										Pasture - Type C						
CMT PD 1	5.95000	5.9500		0.050	0.100	0.6	65%		65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
										Pasture - Type C						
CMT PD 10	10.61000	10.6100		0.050	0.100	0.6	7%		7%	(Mud/Sandstone)	74	75.7	4.65	0.16667	0.11111	82
0. (7.00.4)				0.050					6504	Pasture - Type C			475	0.40007		
CMT PD 11	9.89000	9.8900		0.050	0.100	0.6	65%		65%	(Mud/Sandstone) Pasture - Type C	74	89.6	1.75	0.16667	0.11111	29
CMT PD 12	6.13000	6.1300		0.050	0.100	0.6	65%		65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
CMIPDIZ	6.15000	6.1300		0.030	0.100	0.8	03%		03%	Pasture - Type C	74	09.0	1.75	0.10007	0.1111	29
CMT PD 13	6.17000	6.1700		0.050	0.100	0.6	65%		65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
0.111.0.15	0.17000	0.1700		0.050	0.100	0.0	0570		0370	Pasture - Type C	/4	05.0	1.75	0.10007	0.1111	25
CMT PD 14	6.94000	6.9400		0.050	0.100	0.6	65%		65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
										Pasture - Type C						
CMT PD 15	10.62000	10.6200		0.050	0.100	0.6	65%		65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
										Pasture - Type C						
CMT PD 16	4.26000	4.2600		0.050	0.100	0.6	65%		65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
										Pasture - Type C						
CMT PD 17	1.54000	1.5400		0.050	0.100	0.6	65%		65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
										Pasture - Type C						
CMT PD 18	4.58000	4.5800		0.050	0.100	0.6	65%		65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
										Pasture - Type C						
CMT PD 19	6.67000	6.6700		0.050	0.100	0.6	65%		65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
0.47.00.0	0.550.00	0.5500		0.050					6504	Pasture - Type C			475	0.40007		
CMT PD 2	2.55000	2.5500		0.050	0.100	0.6	65%		65%	(Mud/Sandstone) Pasture - Type C	74	89.6	1.75	0.16667	0.11111	29
CMT PD 20	7.52000	7.5200		0.050	0.100	0.6	65%		65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
CMT PD 20	7.52000	7.5200		0.030	0.100	0.8	03%		03%	Pasture - Type C	74	09.0	1.75	0.10007	0.1111	29
CMT PD 21	14,74000	14.7400		0.050	0.100	0.6	65%		65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
	110,1000	11,7100		0.000	000	0.0	0370		0070	Pasture - Type C		05.0		0.10007	0	
CMT PD 22	24.15000	24.1500		0.050	0.100	0.6	7%		7%	(Mud/Sandstone)	74	75.7	4.65	0.16667	0.11111	82
										Pasture - Type C						
CMT PD 23	14.23000	14.2300		0.050	0.100	0.6	7%		7%	(Mud/Sandstone)	74	75.7	4.65	0.16667	0.11111	82
						1				Pasture - Type C						
CMT PD 24	3.01000	3.0100		0.050	0.100	0.6	65%		65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29

								Pasture - Type C						
CMT PD 25	23.64000	23.6400	0.050	0.100	0.6	7%	7%	(Mud/Sandstone)	74	75.7	4.65	0.16667	0.11111	82
								Pasture - Type C						
CMT PD 26	4.77000	4.7700	0.050	0.100	0.6	65%	65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
								Pasture - Type C						
CMT PD 27	2.44000	2.4400	0.050	0.100	0.6	65%	65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
								Pasture - Type C						
CMT PD 28	7.03000	7.0300	0.050	0.100	0.6	65%	65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
								Pasture - Type C						
CMT PD 3	3.85000	3.8500	0.050	0.100	0.6	65%	65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
								Pasture - Type C						
CMT PD 4	39.86000	39.8600	0.050	0.100	0.6	40%	40%	(Mud/Sandstone)	74	83.6	3.00	0.16667	0.11111	50
								Pasture - Type C						
CMT PD 5	3.59000	3.5900	0.050	0.100	0.6	65%	65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
								Pasture - Type C						
CMT PD 6	16.82000	16.8200	0.050	0.100	0.6	65%	65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
								Pasture - Type C						
CMT PD 7	6.30000	6.3000	0.050	0.100	0.6	65%	65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
								Pasture - Type C						
CMT PD 8	2.80000	2.8000	0.050	0.100	0.6	65%	65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
								Pasture - Type C						
CMT PD 9	1.25000	1.2500	0.050	0.100	0.6	65%	65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
								Pasture - Type C						
PRE12-1	265.27000	265.2700	0.014	3.000	0.6	50%	50%	(Mud/Sandstone)	74	86.0	2.50	0.72889	0.48593	41
								Pasture - Type C						
PRE29-2	3.14000	3.1400	0.014	0.100	0.6	65%	65%	(Mud/Sandstone)	74	89.6	1.75	0.16667	0.11111	29
								Pasture - Type C						
PRE33-1	38.04000	38.0400	0.020	1.111	0.6	65%	65%	(Mud/Sandstone)	74	89.6	1.75	0.32663	0.21775	29

APPENDIX D – HEC RAS Results

DELMORE MPD SCENARIO

	Projec	t: Orewa Simulation Run: D_MPD21CC0	D20AEP	
	Start of Run: 01Jan202 End of Run: 02Jan202 Compute Time:22Jan202	4, 00:00 Meteorologic Model: 20		
Show Elements: All Elements $ \smallsetminus $		Volume Units: O MM 1000 M3		Sorting: Watershed Explorer
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (1000 M3)
CMT PD 5	0.03590	0.88233	1 January 2024, 12:12	4.35125
CMT PD 23	0.14230	2.69181	1 January 2024, 12:13	12.93813
PRE33-1	0.38040	7.56477	1 January 2024, 12:18	45.99319
PRE12-1	2.65270	34.86346	1 January 2024, 12:35	296.52226
CMT PD 28	0.07030	1.45622	1 January 2024, 12:13	7.00779
CMT PD 10	0.10610	2.00704	1 January 2024, 12:13	9.64677
CMT PD 24	0.03010	0.65368	1 January 2024, 12:13	3.15457
CMT PD 13	0.06170	1.51643	1 January 2024, 12:12	7.47832
CMT PD 27	0.02440	0.45149	1 January 2024, 12:13	2.17075
CMT PD 14	0.06940	1.33303	1 January 2024, 12:13	6.40671
CMT PD 25	0.23640	4.47185	1 January 2024, 12:13	21.49384
CMT PD 17	0.01540	0.37849	1 January 2024, 12:12	1.86655
CMT PD 18	0.04580	0.86637	1 January 2024, 12:13	4.16420
CMT PD 3	0.03850	0.87408	1 January 2024, 12:13	4.23856
CMT PD 9	0.01250	0.23129	1 January 2024, 12:13	1.11207
CMT PD 8	0.02800	0.51810	1 January 2024, 12:13	2.49103
CMT PD 6	0.16820	3.18175	1 January 2024, 12:13	15.29299
CMT PD 1	0.05950	1.10096	1 January 2024, 12:13	5.29343
CMT PD 26	0.04770	0.88262	1 January 2024, 12:13	4.24364
CMT PD 0	0.14240	3.23295	1 January 2024, 12:13	15.67718
CMT PD 7	0.06300	1.54838	1 January 2024, 12:12	7.63589
CMT PD 21	0.14740	2.72741	1 January 2024, 12:13	13.11347
CMT PD 22	0.24150	4.56833	1 January 2024, 12:13	21.95754
CMT PD 11	0.09890	1.83000	1 January 2024, 12:13	8.79866
CMT PD 12	0.06130	1.50660	1 January 2024, 12:12	7.42984
CMT PD 2	0.02550	0.47184	1 January 2024, 12:13	2.26861
PRE29-2	0.03140	0.77173	1 January 2024, 12:12	3.80582
CMT PD 19	0.06670	1.23418	1 January 2024, 12:13	5.93398
CMT PD 20	0.07520	1.84823	1 January 2024, 12:12	9.11459
CMT PD 15	0.10620	2.61013	1 January 2024, 12:12	12.87193
CMT PD 16	0.04260	1.04700	1 January 2024, 12:12	5.16332
CMT PD 4	0.39860	8.85409	1 January 2024, 12:13	42.82002

Global Summary Results for				- 0
		Project: Orewa Simulation	Run: D_MPD21CC010AEP	
	End of Run:	02Jan2024, 00:00 Mete	Model: PD_Scenario - Delmore MPD orologic Model: 10% AEP 2.1D RISE ol Specifications:Control 1	
Show Elements: All Element	its ~	Volume Units: 🔿 I	MM	Sorting: Watershed Explorer
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (1000 M3)
CMT PD 5	0.03590	1.11027	1 January 2024, 12:12	5.52623
CMT PD 23	0.14230	3.56606	1 January 2024, 12:13	17.16076
PRE33-1	0.38040	9.52740	1 January 2024, 12:18	58.41659
PRE12-1	2.65270	44.55714	1 January 2024, 12:35	381.08043
CMT PD 28	0.07030	1.89836	1 January 2024, 12:13	9.17420
CMT PD 10	0.10610	2.65888	1 January 2024, 12:13	12.79520
CMT PD 24	0.03010	0.84441	1 January 2024, 12:13	4.09920
CMT PD 13	0.06170	1.90818	1 January 2024, 12:12	9.49773
CMT PD 27	0.02440	0.60031	1 January 2024, 12:13	2.88781
CMT PD 14	0.06940	1.76139	1 January 2024, 12:13	8.47974
CMT PD 25	0.23640	5.92421	1 January 2024, 12:13	28.50882
CMT PD 17	0.01540	0.47627	1 January 2024, 12:12	2.37059
CMT PD 18	0.04580	1.14775	1 January 2024, 12:13	5.52328
CMT PD 3	0.03850	1.11898	1 January 2024, 12:12	5.46648
CMT PD 9	0.01250	0.30754	1 January 2024, 12:13	1.47941
CMT PD 8	0.02800	0.68888	1 January 2024, 12:13	3.31387
CMT PD 6	0.16820	4.21511	1 January 2024, 12:13	20.28419
CMT PD 1	0.05950	1.46387	1 January 2024, 12:13	7.04198
CMT PD 26	0.04770	1.17356	1 January 2024, 12:13	5.64542
CMT PD 0	0.14240	4.13876	1 January 2024, 12:12	20.21889
CMT PD 7	0.06300	1.94838	1 January 2024, 12:12	9.69785
CMT PD 21	0.14740	3.62647	1 January 2024, 12:13	17.44518
CMT PD 22	0.24150	6.05202	1 January 2024, 12:13	29.12386
CMT PD 11	0.09890	2.43323	1 January 2024, 12:13	11.70508
CMT PD 12	0.06130	1.89581	1 January 2024, 12:12	9.43616
CMT PD 2	0.02550	0.62737	1 January 2024, 12:13	3.01799
PRE29-2	0.03140	0.97110	1 January 2024, 12:12	4.83353
CMT PD 19	0.06670	1.64101	1 January 2024, 12:13	7.89412
CMT PD 20	0.07520	2.32569	1 January 2024, 12:12	11.57584
CMT PD 15	0.10620	3.28442	1 January 2024, 12:12	16.34780
CMT PD 16	0.04260	1.31748	1 January 2024, 12:12	6.55759
CMT PD 4	0.39860	11.38555	1 January 2024, 12:13	55.43410

Global Summary R	esults for Run "D_MPD21CC050A	EP"		- 0
	Project: Orew	va Simulation Run: D_MF	PD21CC050AEP	
E	tart of Run: 01Jan2024, 00:0 nd of Run: 02Jan2024, 00:0 compute Time:22Jan2025, 12:0	0 Meteorologic Mo	PD_Scenario - Delmo odel: 50% AEP 2.1D RISE ations:Control 1	re MPD
Show Elements: A	ll Elements \vee 🛛 Vol	ume Units: 🖲 MM 🔾 100	00 M3 Sorting:	Watershed Explorer
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (MM)
CMT PD 5	0.03590	0.58892	1 January 2024, 12:13	79.8129
CMT PD 23	0.14230	1.62042	1 January 2024, 12:13	54.9424
PRE33-1	0.38040	5.03805	1 January 2024, 12:18	79.6071
PRE12-1	2.65270	22.51752	1 January 2024, 12:35	71.8533
CMT PD 28	0.07030	0.90383	1 January 2024, 12:13	61.7743
CMT PD 10	0.10610	1.20820	1 January 2024, 12:13	54.9424
CMT PD 24	0.03010	0.41302	1 January 2024, 12:13	65.8994
CMT PD 13	0.06170	1.01215	1 January 2024, 12:13	79.8129
CMT PD 27	0.02440	0.26995	1 January 2024, 12:13	53.4574
CMT PD 14	0.06940	0.80637	1 January 2024, 12:13	56.0108
CMT PD 25	0.23640	2.69196	1 January 2024, 12:13	54.9424
CMT PD 17	0.01540	0.25263	1 January 2024, 12:13	79.8129
CMT PD 18	0.04580	0.52154	1 January 2024, 12:13	54.9424
CMT PD 3	0.03850	0.56250	1 January 2024, 12:13	70.2691
CMT PD 9	0.01250	0.13829	1 January 2024, 12:13	53.4574
CMT PD 8	0.02800	0.30977	1 January 2024, 12:13	53.4574
CMT PD 6	0.16820	1.91535	1 January 2024, 12:13	54.9424
CMT PD 1	0.05950	0.65827	1 January 2024, 12:13	53.4574
CMT PD 26	0.04770	0.52772	1 January 2024, 12:13	53.4574
CMT PD 0	0.14240	2.08051	1 January 2024, 12:13	70.2691
CMT PD 7	0.06300	1.03348	1 January 2024, 12:13	79.8129
CMT PD 21	0.14740	1.63074	1 January 2024, 12:13	53.4574
CMT PD 22	0.24150	2.75004	1 January 2024, 12:13	54.9424
CMT PD 11	0.09890	1.09417	1 January 2024, 12:13	53.4574
CMT PD 12	0.06130	1.00559	1 January 2024, 12:13	79.8129
CMT PD 2	0.02550	0.28212	1 January 2024, 12:13	53.4574
PRE29-2	0.03140	0.51510	1 January 2024, 12:13	79.8129
CMT PD 19	0.06670	0.73793	1 January 2024, 12:13	53.4574
CMT PD 20	0.07520	1.23361	1 January 2024, 12:13	79.8129
CMT PD 15	0.10620	1.74215	1 January 2024, 12:13	79.8129
CMT DD 16	0.04260	0.60000	1 120020 2024 12:12	70.9120

0.69883

5.64560

1 January 2024, 12:13

1 January 2024, 12:13

79.8129

68.0526

CMT PD 16

CMT PD 4

0.04260

0.39860

	Project: C	Drewa Simulation Run: D_MF	PD38CC001AEP	
	Start of Run: 01Jan2024, End of Run: 02Jan2024, Compute Time:28Jan2025,	00:00 Meteorologic Mo	PD_Scenario - Delmore odel: 1% AEP 3.8D RISE ations:Control 1	MPD
Show Elements: All I	Elements 🗸	Volume Units: MM O 100	00 M3 Sorting	Watershed Explorer
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (MM)
CMT PD 5	0.03590	2.06392	1 January 2024, 12:12	279.9134
CMT PD 23	0.14230	7.32712	1 January 2024, 12:13	239.6233
PRE33-1	0.38040	17.73684	1 January 2024, 12:18	279.3151
PRE12-1	2.65270	85.18434	1 January 2024, 12:34	267.5442
CMT PD 28	0.07030	3.77455	1 January 2024, 12:12	252.2588
CMT PD 10	0.10610	5.46316	1 January 2024, 12:13	239.6233
CMT PD 24	0.03010	1.64960	1 January 2024, 12:12	259.2443
CMT PD 13	0.06170	3.54719	1 January 2024, 12:12	279.9134
CMT PD 27	0.02440	1.24320	1 January 2024, 12:13	236.6728
CMT PD 14	0.06940	3.59917	1 January 2024, 12:13	241.6936
CMT PD 25	0.23640	12.17239	1 January 2024, 12:13	239.6233
CMT PD 17	0.01540	0.88536	1 January 2024, 12:12	279.9134
CMT PD 18	0.04580	2.35827	1 January 2024, 12:13	239.6233
CMT PD 3	0.03850	2.14888	1 January 2024, 12:12	266.1824
CMT PD 9	0.01250	0.63689	1 January 2024, 12:13	236.6728
CMT PD 8	0.02800	1.42663	1 January 2024, 12:13	236.6728
CMT PD 6	0.16820	8.66073	1 January 2024, 12:13	239.6233
CMT PD 1	0.05950	3.03159	1 January 2024, 12:13	236.6728
CMT PD 26	0.04770	2.43036	1 January 2024, 12:13	236.6728
CMT PD 0	0.14240	7.94806	1 January 2024, 12:12	266.1824
CMT PD 7	0.06300	3.62193	1 January 2024, 12:12	279.9134
CMT PD 21	0.14740	7.51018	1 January 2024, 12:13	236.6728
CMT PD 22	0.24150	12.43499	1 January 2024, 12:13	239.6233
CMT PD 11	0.09890	5.03906	1 January 2024, 12:13	236.6728
CMT PD 12	0.06130	3.52419	1 January 2024, 12:12	279.9134
CMT PD 2	0.02550	1.29925	1 January 2024, 12:13	236.6728
PRE29-2	0.03140	1.80522	1 January 2024, 12:12	279.9134
CMT PD 19	0.06670	3.39843	1 January 2024, 12:13	236.6728
CMT PD 20	0.07520	4.32332	1 January 2024, 12:12	279.9134
CMT PD 15	0.10620	6.10554	1 January 2024, 12:12	279.9134
CMT PD 16	0.04260	2.44911	1 January 2024, 12:12	279.9134
CMT PD 4	0.39860	22.05168	1 January 2024, 12:12	262.7193

FUZ MPD SCENARIO

	Project: Orewa	a Simulation Run: M	PD38CC001AEP	
Start of Ru End of Ru Compute		00 Meteorolog	l: PD_Scenario ic Model: 1% AEP 3.8 ecifications:Control 1	
Show Elements: All	Elements Volum	ne Units: 🖲 MM 🔾 1	000 M3 Sorting: Wa	atershed Explorer $$
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (MM)
CMT PD 5	0.03590	2.06392	1 January 2024, 1	279.9134
CMT PD 23	0.14230	7.32712	1 January 2024, 1	239.6233
PRE33-1	0.38040	17.73673	1 January 2024, 1	279.3150
PRE12-1	2.65270	85.18448	1 January 2024, 1	267.5442
CMT PD 28	0.07030	4.04161	1 January 2024, 1	279.9134
CMT PD 10	0.10610	5.46316	1 January 2024, 1	239.6233
CMT PD 24	0.03010	1.73048	1 January 2024, 1	279.9134
CMT PD 13	0.06170	3.54719	1 January 2024, 1	279.9134
CMT PD 27	0.02440	1.40278	1 January 2024, 1	279.9134
CMT PD 14	0.06940	3.98987	1 January 2024, 1	279.9134
CMT PD 25	0.23640	12.17239	1 January 2024, 1	239.6233
CMT PD 17	0.01540	0.88536	1 January 2024, 1	279.9134
CMT PD 18	0.04580	2.63308	1 January 2024, 1	279.9134
CMT PD 3	0.03850	2.21340	1 January 2024, 1	279.9134
CMT PD 9	0.01250	0.71864	1 January 2024, 1	279.9134
CMT PD 8	0.02800	1.60975	1 January 2024, 1	279.9134
CMT PD 6	0.16820	9.66997	1 January 2024, 1	279.9134
CMT PD 1	0.05950	3.42071	1 January 2024, 1	279.9134
CMT PD 26	0.04770	2.74232	1 January 2024, 1	279.9134
CMT PD 0	0.14240	8.18671	1 January 2024, 1	279.9134
CMT PD 7	0.06300	3.62193	1 January 2024, 1	279.9134
CMT PD 21	0.14740	8.47416	1 January 2024, 1	279.9134
CMT PD 22	0.24150	12.43499	1 January 2024, 1	239.6233
CMT PD 11	0.09890	5.68585	1 January 2024, 1	279.9134
CMT PD 12	0.06130	3.52419	1 January 2024, 1	279.9134
CMT PD 2	0.02550	1.46602	1 January 2024, 1	279.9134
PRE29-2	0.03140	1.80522	1 January 2024, 1	279.9134
CMT PD 19	0.06670	3.83464	1 January 2024, 1	279.9134
CMT PD 20	0.07520	4.32332	1 January 2024, 1	279.9134
CMT PD 15	0.10620	6.10554	1 January 2024, 1	279.9134
CMT PD 16	0.04260	2.44911	1 January 2024, 1	279.9134
CMT PD 4	0.39860	22.05168	1 January 2024, 1	262.7193

PRE-DEVELOPMENT SCENARIO

	Project: Orewa	a Simulation Run: E	XD21CC010AEP	
Start of End of Comput		:00 Meteorolo	el: ED_Scenario gic Model: 10% AEP 2 pecifications:Control 1	
Show Elements: A	All Elements \vee Volum	ne Units: 🔿 MM 💿 1	000 M3 Sorting: Wa	tershed Explorer $\!$
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (1000 M3)
CMT PD 5	0.03590	0.88324	1 January 2024, 1	4.24886
CMT PD 23	0.14230	3.56606	1 January 2024, 1	17.16076
PRE33-1	0.38040	9.52746	1 January 2024, 1	58.41659
PRE12-1	2.65270	38.44841	1 January 2024, 1	379.62221
CMT PD 28	0.07030	1.72958	1 January 2024, 1	8.32019
CMT PD 10	0.10610	2.65888	1 January 2024, 1	12.79520
CMT PD 24	0.03010	0.74055	1 January 2024, 1	3.56242
CMT PD 13	0.06170	1.51800	1 January 2024, 1	7.30236
CMT PD 27	0.02440	0.60031	1 January 2024, 1	2.88781
CMT PD 14	0.06940	1.70744	1 January 2024, 1	8.21368
CMT PD 25	0.23640	5.92421	1 January 2024, 1	28.50882
CMT PD 17	0.01540	0.37888	1 January 2024, 1	1.82263
CMT PD 18	0.04580	1.14775	1 January 2024, 1	5.52328
CMT PD 3	0.03850	0.96481	1 January 2024, 1	4.64293
CMT PD 9	0.01250	0.30754	1 January 2024, 1	1.47941
CMT PD 8	0.02800	0.68888	1 January 2024, 1	3.31387
CMT PD 6	0.16820	4.21511	1 January 2024, 1	20.28419
CMT PD 1	0.05950	1.46387	1 January 2024, 1	7.04198
CMT PD 26	0.04770	1.17356	1 January 2024, 1	5.64542
CMT PD 0	0.14240	3.50345	1 January 2024, 1	16.85342
CMT PD 7	0.06300	1.54998	1 January 2024, 1	7.45622
CMT PD 21	0.14740	3.62647	1 January 2024, 1	17.44518
CMT PD 22	0.24150	6.05202	1 January 2024, 1	29.12386
CMT PD 11	0.09890	2.43323	1 January 2024, 1	11.70508
CMT PD 12	0.06130	1.50816	1 January 2024, 1	7.25502
CMT PD 2	0.02550	0.62737	1 January 2024, 1	3.01799
PRE29-2	0.03140	0.97110	1 January 2024, 1	4.83353
CMT PD 19	0.06670	1.64101	1 January 2024, 1	7.89412
CMT PD 20	0.07520	1.85014	1 January 2024, 1	8.90012
CMT PD 15	0.10620	2.61283	1 January 2024, 1	12.56905
CMT PD 16	0.04260	1.04808	1 January 2024, 1	5.04182
CMT PD 4	0.39860	9.98897	1 January 2024, 1	48.06944

Global Summary Res	ults for Run "EXD21CO	020AEP"		– 🗆 X
	Project: Orewa	a Simulation Run: E	XD21CC020AEP	
End of Ru	Run: 01Jan2024, 003 un: 02Jan2024, 003 Time:22Jan2025, 123	:00 Meteorolo	el: ED_Scenari gic Model: 20% AEP 2 vecifications:Control 1	
Show Elements: All	Elements \sim Volum	e Units: 🔿 MM 💿 1	000 M3 Sorting: Wa	tershed Explorer ${\scriptstyle \sim}$
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (1000 M3)
CMT PD 5	0.03590	0.66428	1 January 2024, 1	3.19385
CMT PD 23	0.14230	2.69181	1 January 2024, 1	12.93813
PRE33-1	0.38040	7.56482	1 January 2024, 1	45.99319
PRE12-1	2.65270	30.06920	1 January 2024, 1	295.35153
CMT PD 28	0.07030	1.30080	1 January 2024, 1	6.25425
CMT PD 10	0.10610	2.00704	1 January 2024, 1	9.64677
CMT PD 24	0.03010	0.55695	1 January 2024, 1	2.67785
CMT PD 13	0.06170	1.14167	1 January 2024, 1	5.48915
CMT PD 27	0.02440	0.45149	1 January 2024, 1	2.17075
CMT PD 14	0.06940	1.28414	1 January 2024, 1	6.17419
CMT PD 25	0.23640	4.47185	1 January 2024, 1	21.49384
CMT PD 17	0.01540	0.28495	1 January 2024, 1	1.37006
CMT PD 18	0.04580	0.86637	1 January 2024, 1	4.16420
CMT PD 3	0.03850	0.72828	1 January 2024, 1	3.50048
CMT PD 9	0.01250	0.23129	1 January 2024, 1	1.11207
CMT PD 8	0.02800	0.51810	1 January 2024, 1	2.49103
CMT PD 6	0.16820	3.18175	1 January 2024, 1	15.29299
CMT PD 1	0.05950	1.10096	1 January 2024, 1	5.29343
CMT PD 26	0.04770	0.88262	1 January 2024, 1	4.24364
CMT PD 0	0.14240	2.63490	1 January 2024, 1	12.66865
CMT PD 7	0.06300	1.16572	1 January 2024, 1	5.60481
CMT PD 21	0.14740	2.72741	1 January 2024, 1	13.11347
CMT PD 22	0.24150	4.56833	1 January 2024, 1	21.95754
CMT PD 11	0.09890	1.83000	1 January 2024, 1	8.79866
CMT PD 12	0.06130	1.13426	1 January 2024, 1	5.45357
CMT PD 2	0.02550	0.47184	1 January 2024, 1	2.26861
PRE29-2	0.03140	0.77173	1 January 2024, 1	3.80582
CMT PD 19	0.06670	1.23418	1 January 2024, 1	5.93398
CMT PD 20	0.07520	1.39146	1 January 2024, 1	6.69018
CMT PD 15	0.10620	1.96507	1 January 2024, 1	9.44811
CMT PD 16	0.04260	0.78825	1 January 2024, 1	3.78992
CMT PD 4	0.39860	7.54010	1 January 2024, 1	36.24130

Global Summary Res	ults for Run "EXD21CC	050AEP"		– 🗆 ×
	Project: Orewa	Simulation Run: E	XD21CC050AEP	
End of R	Run: 01Jan2024, 00: un: 02Jan2024, 00: Time:22Jan2025, 12:	:00 Meteorolo	el: ED_Scenar gic Model: 50% AEP 3 ecifications:Control 1	
Show Elements: All	Elements Volum	e Units: 🖲 MM 🔾 1	000 M3 Sorting: Wa	atershed Explorer $ \sim$
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (MM)
CMT PD 5	0.03590	0.39717	1 January 2024, 1	53.4574
CMT PD 23	0.14230	1.62042	1 January 2024, 1	54.9424
PRE33-1	0.38040	5.03808	1 January 2024, 1	79.6071
PRE12-1	2.65270	19.40480	1 January 2024, 1	71.5520
CMT PD 28	0.07030	0.77775	1 January 2024, 1	53.4574
CMT PD 10	0.10610	1.20820	1 January 2024, 1	54.9424
CMT PD 24	0.03010	0.33301	1 January 2024, 1	53.4574
CMT PD 13	0.06170	0.68261	1 January 2024, 1	53.4574
CMT PD 27	0.02440	0.26995	1 January 2024, 1	53.4574
CMT PD 14	0.06940	0.76780	1 January 2024, 1	53.4574
CMT PD 25	0.23640	2.69196	1 January 2024, 1	54.9424
CMT PD 17	0.01540	0.17038	1 January 2024, 1	53.4574
CMT PD 18	0.04580	0.52154	1 January 2024, 1	54.9424
CMT PD 3	0.03850	0.43841	1 January 2024, 1	54.9424
CMT PD 9	0.01250	0.13829	1 January 2024, 1	53.4574
CMT PD 8	0.02800	0.30977	1 January 2024, 1	53.4574
CMT PD 6	0.16820	1.91535	1 January 2024, 1	54.9424
CMT PD 1	0.05950	0.65827	1 January 2024, 1	53.4574
CMT PD 26	0.04770	0.52772	1 January 2024, 1	53.4574
CMT PD 0	0.14240	1.57542	1 January 2024, 1	53.4574
CMT PD 7	0.06300	0.69699	1 January 2024, 1	53.4574
CMT PD 21	0.14740	1.63074	1 January 2024, 1	53.4574
CMT PD 22	0.24150	2.75004	1 January 2024, 1	54.9424
CMT PD 11	0.09890	1.09417	1 January 2024, 1	53.4574
CMT PD 12	0.06130	0.67818	1 January 2024, 1	53.4574
CMT PD 2	0.02550	0.28212	1 January 2024, 1	53.4574
PRE29-2	0.03140	0.51510	1 January 2024, 1	79.8129
CMT PD 19	0.06670	0.73793	1 January 2024, 1	53.4574
CMT PD 20	0.07520	0.83196	1 January 2024, 1	53.4574
CMT PD 15	0.10620	1.17493	1 January 2024, 1	53.4574
CMT PD 16	0.04260	0.47130	1 January 2024, 1	53.4574
CMT PD 4	0.39860	4.53899	1 January 2024, 1	54.9424

🖁 Global Summary Res	sults for Run "EXD38CC	001AEP"		- 0	×
	Project: Orewa	Simulation Run: E	XD38CC001AEP		
End of R	Run: 01Jan2024, 00 Run: 02Jan2024, 00 e Time:22Jan2025, 12	:00 Meteorol	del: ED_Scenar ogic Model: 1% AEP 3. pecifications:Control 1		
Show Elements: All	Elements \vee Volum	e Units: 🔿 MM 💿 1	000 M3 Sorting: Wa	tershed Explorer	\sim
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (1000 M3)	
CMT PD 5	0.03590	1.82914	1 January 2024, 1	8.49655	
CMT PD 23	0.14230	7.32712	1 January 2024, 1	34.09840	
PRE33-1	0.38040	17.73684	1 January 2024, 1	106.25145	
PRE12-1	2.65270	73.50164	1 January 2024, 1	707.31966	
CMT PD 28	0.07030	3.58186	1 January 2024, 1	16.63810	
CMT PD 10	0.10610	5.46316	1 January 2024, 1	25.42404	
CMT PD 24	0.03010	1.53363	1 January 2024, 1	7.12385	
CMT PD 13	0.06170	3.14368	1 January 2024, 1	14.60271	
CMT PD 27	0.02440	1.24320	1 January 2024, 1	5.77482	
CMT PD 14	0.06940	3.53600	1 January 2024, 1	16.42509	
CMT PD 25	0.23640	12.17239	1 January 2024, 1	56.64696	
CMT PD 17	0.01540	0.78465	1 January 2024, 1	3.64476	
CMT PD 18	0.04580	2.35827	1 January 2024, 1	10.97475	
CMT PD 3	0.03850	1.98239	1 January 2024, 1	9.22550	
CMT PD 9	0.01250	0.63689	1 January 2024, 1	2.95841	
CMT PD 8	0.02800	1.42663	1 January 2024, 1	6.62684	
CMT PD 6	0.16820	8.66073	1 January 2024, 1	40.30465	
CMT PD 1	0.05950	3.03159	1 January 2024, 1	14.08203	
CMT PD 26	0.04770	2.43036	1 January 2024, 1	11.28929	
CMT PD 0	0.14240	7.25542	1 January 2024, 1	33.70221	
CMT PD 7	0.06300	3.20991	1 January 2024, 1	14.91039	
CMT PD 21	0.14740	7.51018	1 January 2024, 1	34.88557	
CMT PD 22	0.24150	12.43499	1 January 2024, 1	57.86904	
CMT PD 11	0.09890	5.03906	1 January 2024, 1	23.40694	
CMT PD 12	0.06130	3.12330	1 January 2024, 1	14.50804	
CMT PD 2	0.02550	1.29925	1 January 2024, 1	6.03516	
PRE29-2	0.03140	1.80522	1 January 2024, 1	8.78928	
CMT PD 19	0.06670	3.39843	1 January 2024, 1	15.78608	
CMT PD 20	0.07520	3.83152	1 January 2024, 1	17.79780	
CMT PD 15	0.10620	5.41100	1 January 2024, 1	25.13465	
CMT PD 16	0.04260	2.17051	1 January 2024, 1	10.08226	
CMT PD 4	0.39860	20.52417	1 January 2024, 1	95.51386	

Scenario		Water Surface	Peak Velocity	Peak Flow	Depth
Number	Scenario ID (Location A)	Elevation (m)	(m/s)	(m3/s)	(m)
1	EXDHCLM001AEPTWBBASE_EXT	30.99	1.04	8.80	1.81
2	EXDHCLM050AEPTWABASE_EXT	30.60	0.38	2.50	1.42
3	EXDHCLM020AEPTWABASE_EXT	30.71	0.58	3.96	1.53
4	EXDHCLM010AEPTWABASE_EXT	30.79	0.72	5.16	1.61
5	MPD38CC001AEPTWBBASE_PDT	31.50	1.18	14.44	2.32
6	MPD38CC001AEPTWBBL01_PDT	31.50	1.16	14.40	2.32
7	MPD38CC001AEPTWBBBL050_PDT	31.50	1.18	14.45	2.32
8	EXD38CC001AEPTWBBASE_EXT	31.24	1.39	14.59	2.06
9	D_MPD38CC001AEPTWBBASE_PDT	31.50	1.18	14.44	2.32
10	MPD21CC050AEPTWABASE_PDT	30.74	0.47	3.49	1.56
11	MPD21CC010AEPTWABASE_PDT	31.05	0.79	7.33	1.87
12	MPD21CC020AEPTWABASE_PDT	30.92	0.66	5.61	1.74
13	EXD21CC050AEPTWABASE_EXT	30.66	0.49	3.36	1.48
14	EXD21CC010AEPTWABASE_EXT	30.90	0.89	6.92	1.72
15	EXD21CC020AEPTWABASE_EXT	30.80	0.73	5.28	1.62
16	D_MPD21CC050AEPTWABASE_PDT	30.74	0.47	3.49	1.56
17	D_MPD21CC020AEPTWABASE_PDT	30.92	0.66	5.61	1.74
18	D_MPD21CC010AEPTWABASE_PDT	31.05	0.79	7.33	1.87

Scenario Number	Scenario ID (Location B)	Water Surface Elevation (m)	Peak Velocity (m/s)	Peak Flow (m3/s)	Depth (m)
1	EXDHCLM001AEPTWBBASE_EXT	31.29	1.43	7.43	0.90
2	EXDHCLM050AEPTWABASE_EXT	30.94	0.79	1.78	0.55
3	EXDHCLM020AEPTWABASE_EXT	31.03	1.03	3.21	0.64
4	EXDHCLM010AEPTWABASE_EXT	31.10	1.18	4.34	0.71
5	MPD38CC001AEPTWBBASE_PDT	31.18	2.98	10.05	0.76
6	MPD38CC001AEPTWBBL01_PDT	31.14	3.09	10.17	0.74
7	MPD38CC001AEPTWBBBL050_PDT	31.18	2.99	10.05	0.76
8	EXD38CC001AEPTWBBASE_EXT	31.53	1.67	11.81	1.12
9	D_MPD38CC001AEPTWBBASE_PDT	31.18	2.98	10.05	0.76
10	MPD21CC050AEPTWABASE_PDT	30.80	1.56	2.54	0.42
11	MPD21CC010AEPTWABASE_PDT	30.95	2.20	5.19	0.57
12	MPD21CC020AEPTWABASE_PDT	30.89	1.95	4.01	0.51
13	EXD21CC050AEPTWABASE_EXT	31.00	0.93	2.58	0.60
14	EXD21CC010AEPTWABASE_EXT	31.20	1.32	5.91	0.81
15	EXD21CC020AEPTWABASE_EXT	31.11	1.19	4.44	0.72
16	D_MPD21CC050AEPTWABASE_PDT	30.80	1.56	2.54	0.42
17	D_MPD21CC020AEPTWABASE_PDT	30.89	1.95	4.01	0.51
18	D_MPD21CC010AEPTWABASE_PDT	30.95	2.20	5.19	0.57

3725-DELM	0	R	E
-----------	---	---	---

Scenario Number	Scenario ID (Location C)	Water Surface Elevation (m)	Peak Velocity (m/s)	Peak Flow (m3/s)	Depth (m)
2	EXDHCLM050AEPTWABASE_EXT	25.32	0.47	3.81	1.30
3	EXDHCLM020AEPTWABASE_EXT	26.12	0.58	6.82	1.91
4	EXDHCLM010AEPTWABASE_EXT	25.57	0.66	9.52	1.44
5	MPD38CC001AEPTWBBASE_PDT	25.86	1.89	27.55	1.82
6	MPD38CC001AEPTWBBL01_PDT	29.88	0.45	17.01	5.85
7	MPD38CC001AEPTWBBBL050_PDT	25.75	1.87	27.50	1.54
8	EXD38CC001AEPTWBBASE_EXT	26.56	0.96	28.25	2.53
9	D_MPD38CC001AEPTWBBASE_PDT	25.45	1.89	27.55	1.30
10	MPD21CC050AEPTWABASE_PDT	25.14	0.96	6.40	1.42
11	MPD21CC010AEPTWABASE_PDT	25.45	1.41	13.98	1.42
12	MPD21CC020AEPTWABASE_PDT	25.86	1.23	10.65	1.70
13	EXD21CC050AEPTWABASE_EXT	25.94	0.54	5.20	1.11
14	EXD21CC010AEPTWABASE_EXT	25.14	0.74	13.31	1.11
15	EXD21CC020AEPTWABASE_EXT	25.73	0.66	9.74	2.09
16	D_MPD21CC050AEPTWABASE_PDT	25.33	0.96	6.40	1.72
17	D_MPD21CC020AEPTWABASE_PDT	25.14	1.23	10.65	1.83
18	D_MPD21CC010AEPTWABASE_PDT	25.33	1.41	13.98	1.83

Scenario		Water Surface	Peak Velocity	Peak Flow	Depth
Number	Scenario ID (Location D)	Elevation (m)	(m/s)	(m3/s)	(m)
1	EXDHCLM001AEPTWBBASE_EXT	33.14	1.50	10.33	1.42
2	EXDHCLM050AEPTWABASE_EXT	33.04	0.89	2.97	1.02
3	EXDHCLM020AEPTWABASE_EXT	33.55	1.08	4.77	1.42
4	EXDHCLM010AEPTWABASE_EXT	33.21	1.21	6.22	1.12
5	MPD38CC001AEPTWBBASE_PDT	33.75	3.32	18.35	1.77
6	MPD38CC001AEPTWBBL01_PDT	35.48	1.95	18.15	3.62
7	MPD38CC001AEPTWBBBL050_PDT	33.33	3.32	18.35	1.19
8	EXD38CC001AEPTWBBASE_EXT	33.83	1.82	16.43	1.81
9	D_MPD38CC001AEPTWBBASE_PDT	33.43	3.32	18.35	1.35
10	MPD21CC050AEPTWABASE_PDT	33.15	1.87	4.78	1.45
11	MPD21CC010AEPTWABASE_PDT	33.43	2.52	9.10	1.45
12	MPD21CC020AEPTWABASE_PDT	33.75	2.28	7.23	1.30
13	EXD21CC050AEPTWABASE_EXT	33.45	1.00	3.97	1.18
14	EXD21CC010AEPTWABASE_EXT	33.15	1.37	8.31	1.18
15	EXD21CC020AEPTWABASE_EXT	33.32	1.22	6.37	1.53
16	D_MPD21CC050AEPTWABASE_PDT	33.33	1.87	4.78	1.31
17	D_MPD21CC020AEPTWABASE_PDT	33.15	2.28	7.23	1.77
18	D_MPD21CC010AEPTWABASE_PDT	33.33	2.52	9.10	1.77

Scenario Number		Water Surface Elevation (m)	Peak Velocity (m/s)	Peak Flow (m3/s)	Depth (m)
	Scenario ID (Location E)				
1	EXDHCLM001AEPTWBBASE_EXT	15.20	1.96	38.50	6.00
2	EXDHCLM050AEPTWABASE_EXT	10.97	1.81	10.64	1.76
3	EXDHCLM020AEPTWABASE_EXT	12.06	1.93	18.13	2.86
4	EXDHCLM010AEPTWABASE_EXT	13.09	2.01	24.17	3.89
5	MPD38CC001AEPTWBBASE_PDT	17.65	1.49	49.38	8.45
6	MPD38CC001AEPTWBBL01_PDT	19.49	0.29	13.44	10.28
7	MPD38CC001AEPTWBBBL050_PDT	19.70	0.94	34.97	10.49
8	EXD38CC001AEPTWBBASE_EXT	17.15	1.82	57.51	7.95
9	D_MPD38CC001AEPTWBBASE_PDT	17.46	1.51	50.05	8.26
10	MPD21CC050AEPTWABASE_PDT	12.49	1.67	19.05	3.28
11	MPD21CC010AEPTWABASE_PDT	14.97	1.64	36.28	5.76
12	MPD21CC020AEPTWABASE_PDT	14.02	1.70	28.63	4.82
13	EXD21CC050AEPTWABASE_EXT	11.39	1.95	14.65	2.19
14	EXD21CC010AEPTWABASE_EXT	14.21	2.07	30.37	5.01
15	EXD21CC020AEPTWABASE_EXT	13.14	2.02	24.68	3.94
16	D_MPD21CC050AEPTWABASE_PDT	12.06	1.66	17.81	2.85
17	D_MPD21CC020AEPTWABASE_PDT	13.68	1.75	26.63	4.47
18	D_MPD21CC010AEPTWABASE_PDT	14.67	1.72	34.66	5.47

Scenario	Scenario ID (Location F -	Water Surface	Peak Velocity	Peak Flow	Depth
Number	Downstream Assessment)	Elevation (m)	(m/s)	(m3/s)	(m)
1	EXDHCLM001AEPTWBBASE_EXT	6.63	1.10	18.22	2.94
2	EXDHCLM050AEPTWABASE_EXT	6.00	0.87	9.64	2.31
3	EXDHCLM020AEPTWABASE_EXT	6.29	0.99	13.33	2.61
4	EXDHCLM010AEPTWABASE_EXT	6.42	1.03	15.13	2.74
5	MPD38CC001AEPTWBBASE_PDT	6.28	1.59	20.83	2.58
6	MPD38CC001AEPTWBBL01_PDT	5.12	0.12	0.15	1.43
7	MPD38CC001AEPTWBBBL050_PDT	5.56	1.01	6.24	1.87
8	EXD38CC001AEPTWBBASE_EXT	6.80	1.14	20.73	3.11
9	D_MPD38CC001AEPTWBBASE_PDT	6.27	1.58	20.61	2.57
10	MPD21CC050AEPTWABASE_PDT	5.86	1.38	13.50	2.16
11	MPD21CC010AEPTWABASE_PDT	6.09	1.50	17.42	2.40
12	MPD21CC020AEPTWABASE_PDT	6.01	1.46	16.04	2.32
13	EXD21CC050AEPTWABASE_EXT	6.18	0.95	11.90	2.50
14	EXD21CC010AEPTWABASE_EXT	6.54	1.07	16.84	2.85
15	EXD21CC020AEPTWABASE_EXT	6.43	1.03	15.20	2.74
16	D_MPD21CC050AEPTWABASE_PDT	5.81	1.35	12.69	2.11
17	D_MPD21CC020AEPTWABASE_PDT	5.98	1.45	15.51	2.29
18	D_MPD21CC010AEPTWABASE_PDT	6.07	1.49	17.01	2.37

Scenario		Water Surface	Peak Velocity	Peak Flow	Depth
Number	Scenario ID (Location G)	Elevation (m)	(m/s)	(m3/s)	(m)
1	EXDHCLM001AEPTWBBASE_EXT	19.24	1.10	1.35	0.36
2	EXDHCLM050AEPTWABASE_EXT	19.18	0.74	0.31	0.21
3	EXDHCLM020AEPTWABASE_EXT	19.38	0.83	0.56	0.36
4	EXDHCLM010AEPTWABASE_EXT	19.33	0.90	0.80	0.24
5	MPD38CC001AEPTWBBASE_PDT	19.35	2.13	2.55	0.40
6	MPD38CC001AEPTWBBL01_PDT	19.71	2.12	2.58	0.77
7	MPD38CC001AEPTWBBBL050_PDT	19.36	2.13	2.54	0.27
8	EXD38CC001AEPTWBBASE_EXT	19.42	1.32	2.21	0.51
9	D_MPD38CC001AEPTWBBASE_PDT	19.26	2.05	2.23	0.28
10	MPD21CC050AEPTWABASE_PDT	19.21	1.57	0.73	0.31
11	MPD21CC010AEPTWABASE_PDT	19.30	1.82	1.36	0.31
12	MPD21CC020AEPTWABASE_PDT	19.72	1.72	1.13	0.32
13	EXD21CC050AEPTWABASE_EXT	19.37	0.79	0.45	0.23
14	EXD21CC010AEPTWABASE_EXT	19.21	1.00	1.10	0.23
15	EXD21CC020AEPTWABASE_EXT	19.36	0.91	0.82	0.40
16	D_MPD21CC050AEPTWABASE_PDT	19.26	1.44	0.45	0.32
17	D_MPD21CC020AEPTWABASE_PDT	19.19	1.62	0.83	0.79
18	D_MPD21CC010AEPTWABASE_PDT	19.24	1.72	1.11	0.79