

DELMORE

EARTHWORKS

REPORT

Vineway Ltd

DOCUMENT CONTROL RECORD

PROJECT: Delmore

CLIENT: Vineway Ltd

PROJECT LOCATION: 53A, 53B & 55 Russell Road and 88, 130 & 132 Upper Ōrewa Road

Revision	Date	Originator	Checker	Approver	Description
A	06/12/24				DRAFT
B	17/01/2025				Updated with comments
C	07/02/2025				Substantive Application
D	11/02/2025				Substantive Application
E	02/07/2025				Substantive Application
F	15/12/2025				Substantive Application

TABLE OF CONTENTS

1. Executive Summary	5
2. Introduction	5
3. Site description.....	5
4. Site Constraints.....	7
4.1. Streams.....	7
4.2. Wetlands.....	8
4.3. Bush Areas Subject to Consent Notice	8
5. Earthworks	8
5.1. Geotechnical Appraisal Report.....	8
5.2. Proposed Earthworks	9
5.3. Stream Reclamation.....	11
5.4. Stream Margins.....	11
5.5. Works Within Wetland Extent.....	11
5.6. Wetland Setback Area	14
5.7. Sediment Control Protection Area	14
5.8. Stream Works and Temporary Stream Crossing.....	14
5.9. 10 Degree Slope	15
5.10. 1% AEP Floodplain	15
5.11. Stage 1 Contour PPlan	16
5.12.Stage 2 A, B, C, D & E Contour Plan	17
6. Erosion and Sediment Control	17
7. Sediment Control methodology	18
7.1. Non-Structural Approaches.....	18
8. Water Management Controls	19
8.1. Soil and Surface Stabilisation	20
8.2. Sediment Control	20
8.3. Order of Works	20
8.4. Inspections and Maintenance	21
8.5. Overland Flow Paths.....	21
8.6. Catchments.....	21
9. Recommended Conditions of Consent.....	24

10. Conclusion.....	27
APPENDIX A - ENGINEERING PLANS.....	28
APPENDIX B - GEOTECHNICAL INTERPRETIVE REPORT.....	29
APPENDIX C - SEDIMENT RETENTION POND CALCULATIONS	30

1. EXECUTIVE SUMMARY

This report provides an analysis of the proposed earthworks to be conducted as part of the Delmore Development to support the consenting process. The primary objective of this report is to address the earthworks required to facilitate the development and sediment controls required to prepare the site for construction, ensuring compliance with relevant environmental and safety regulations.

Specific aspects of the design which are discussed in this report include:

- Site information – details about the project site and constraints, including existing streams, wetlands, and bush covenants.
- Earthworks – the proposed earthworks of the project, including design strategies, cut/fill volumes, areas of impact on environmental protection areas, and stream works.
- Erosion and sediment control – a discussion about managing the expected risks, establishing control measures, monitoring and maintenance, and reporting.
- Sediment control methodology – a discussion about the philosophies to be implemented about sediment control, including minimising disturbance, staging/timing of earthworks, and protecting environmentally sensitive areas.
- Water management controls – management of clean/dirty water, surface stabilisation, order of works, overland flow paths, and catchment specific control detail.

The proposed earthworks are in accordance with Erosion and Sediment Control Guide for Land Disturbing Activities in the Auckland Region, June 2016. The design has taken into consideration the potential impact of the proposed development and has minimised impacts on the receiving environment using accepted engineering practices.

2. INTRODUCTION

McKenzie & Co. Consultants have been engaged by Vineway Limited to provide an Earthworks Report in support of the proposed 109Ha development located at 53A, 53B & 55 Russell Road and 88, 130 & 132 Upper Ōrewa Road. The proposed development is a residential development for approximately 1250 residential lots, delivered across two stages (Stages 1 & 2).

This report is prepared to support Vineway Ltd's application for approvals under the Fast-track Approvals Act 2024, in particular its approvals for resource consents that would otherwise be sought under the Resource Management Act 1991, by addressing the earthworks and related erosion and sediment control measures. It is important to note that this report exclusively covers earthworks and erosion & sediment control, while other infrastructure matters, including roading and access, stormwater, flooding, wastewater, water supply, and utility servicing works are addressed in separate infrastructure reports.

3. SITE DESCRIPTION

The proposed development site is situated between Grand Drive and Russell Road, and is legally described as Lot 1 DP 336616, Lot 1 DP 497022 & Lot 2 DP 497022, Lot 2 DP 418770, Lot 1 DP 153477 & Lot 2 DP 153477, as illustrated in Figure 2 below. The site is zoned as Future Urban and is immediately adjacent to the consented Ara Hills Development. The road network within the Ara Hills

Development provides the connection between Delmore and the Grand Drive interchange. The general site location is shown below in Figure 1.

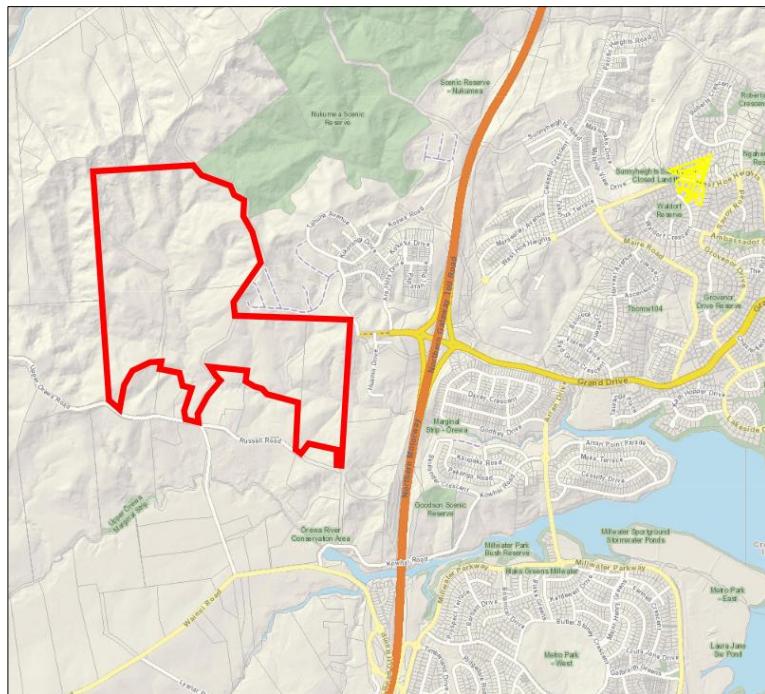


Figure 1 – Project site location

Currently, the site is used for agricultural purposes with livestock roaming across a significant portion of the site.

The site contains a pine tree plantation, and three covenanted bush areas. The site is bounded by a Significant Ecological Area identified in the Auckland Unitary Plan to the northwest which also extends into the site. The pine tree stand will be removed for development. The covenanted bush areas are proposed to remain, however some small areas are required to be removed to enable critical infrastructure. This is covered in more detail in Section 4.3.

Existing dwellings, farm access tracks, and some farm sheds are located in the southern portion of the site and will be removed prior to development.

All the properties included in this proposal are contained within one watershed catchment, which generally drains towards the East, and into the Ōrewa upper estuary. Numerous sub-catchments drain into a main stream that runs down the middle of the site.

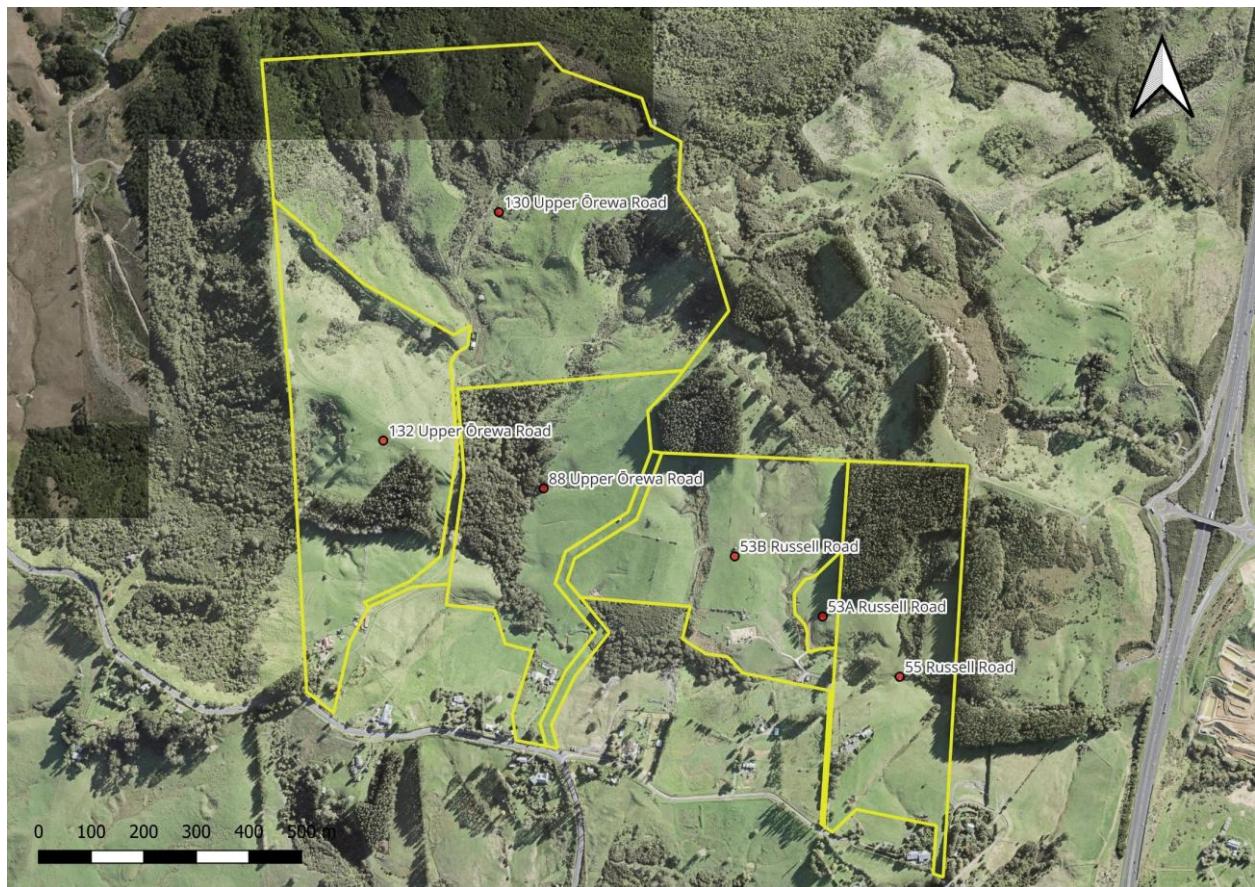


Figure 2 - Properties included in proposal

4. SITE CONSTRAINTS

4.1. STREAMS

Ephemeral and intermittent streams are present on the site and have been mapped by Viridis¹ Consultants. These are shown in Figure 3. A 20m wide riparian margin has been identified along the length of the streams, that are proposed to be planted with appropriate species. Earthworks will extend into this margin to facilitate the formation of batters, however these batters will be topped with 300mm minimum topsoil to facilitate landscaping. This is discussed in more detail in Section 5.2.

¹ Viridis 2024.

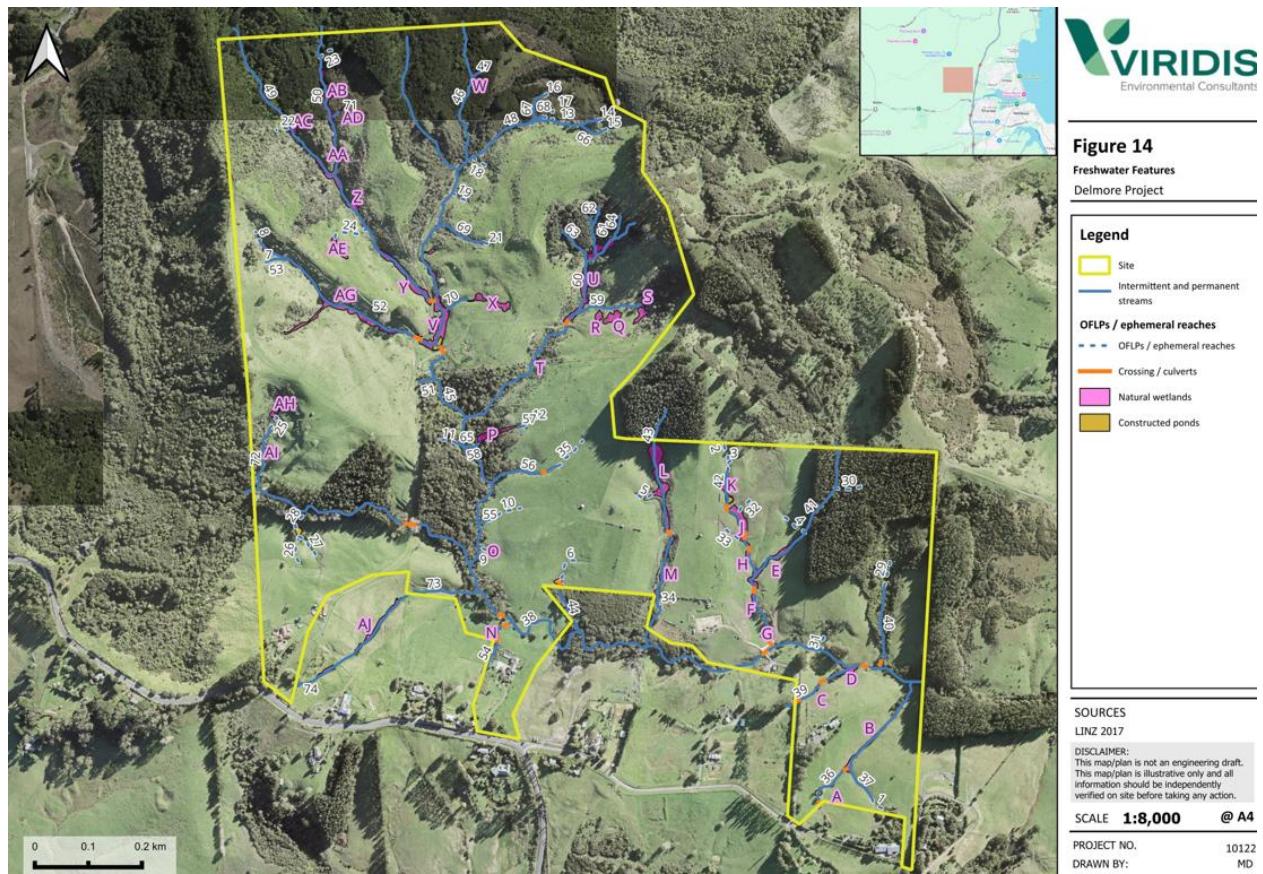


Figure 3 - Mapped Streams & Wetlands

4.2. WETLANDS

The site contains numerous natural wetlands, which have been identified and mapped by Viridis Consultants also shown in Figure 3. Earthworks adjacent to these wetlands have remained outside of the 10m wetland margin where possible. Some natural wetlands are located within the proposed road alignments. This is only the case in locations where re-aligning the roads is not possible to avoid the natural wetland. This is discussed in further detail within Section 5.5 below.

4.3. BUSH AREAS SUBJECT TO CONSENT NOTICE

The site contains three bush areas subject to consent notices issued under s221 of the Resource Management Act 1991. Clearance of some of the vegetation in these areas is required for culvert and infrastructure crossings. Any clearing within these areas are shown in the clearing plans (2200 series drawings). Earthworks up to the consent notice area boundary are required in some locations, however where possible earthworks are set back from this boundary.

5. EARTHWORKS

5.1. GEOTECHNICAL APPRAISAL REPORT

A geotechnical appraisal report for the site has been prepared by Riley Consultants².

² Riley 2024

The report concluded that the study area is suitable for comprehensive development.

The matters contained in the geotechnical assessment will be addressed through the construction works. All geotechnical related construction works shall be undertaken in accordance with the recommendations in the geotechnical report, and under the supervision of geotechnical engineer.

A geotechnical completion report will be prepared at the completion of all civil works pertaining to this earthwork's application by a suitably qualified Geotechnical Engineer.

5.2. PROPOSED EARTHWORKS

The proposed earthworks for this application include general bulk earthworks for establishing roads, treatment ponds, and building platforms.

To minimize the extent of earthworks as far as practicable, the design approach incorporates the following measures:

Road Geometries Aligned with Existing Landforms: Road geometries have been carefully designed to align with the existing landform wherever feasible. This reduces the need for excessive cutting or filling while maintaining the necessary maximum grades for safe and functional roading.

Cut/Fill Balancing: Within the proposed two stages of development (and substages), efforts have been made to achieve a cut/fill balance. This minimizes the need to transport materials across the site, thereby reducing construction movements and associated environmental and logistical impacts.

Lot Formation: Flat building lots have been formed to accommodate future development needs while minimizing the impact on surrounding topography.

Re-profiling and Material Relocation: The design focuses on re-profiling the existing ground primarily along the spines of the proposed sub-catchments. The cut material from these areas will be relocated for engineered filling along the periphery of stream zones, minimizing waste and optimizing resource use.

Stream-Adjoining Batters: The final earthworks design incorporates steeper batters adjacent to stream areas to reduce the overall footprint of the works while maintaining stable and sustainable site conditions.

By implementing these design strategies, the extent of earthworks has been minimized to the greatest extent practicable, balancing environmental, functional, and construction considerations. The detailed earthworks extent is illustrated in Figure 4 and Figure 5.

The earthworks balance has been achieved by the following actions:

Bulk Cut – Fill

The amount of bulk cut material taken and final shaping from the site has been informed by the

amount of fill material needed (including compaction factors) to fill along the stream banks to facilitate flat lot platforms.

The earthworks' philosophy within the fill areas is to undertake reshaping to maintain flat lots and increase the developable lot areas.

Topsoil Strip and Respread Philosophy

As identified by Riley Consultants, the average topsoil depth across the site is approximately 200mm. The topsoil strip and respread philosophy is to minimise topsoil removal off site after the respreading process is complete, and to place topsoil in thicker layers in landscaping areas to facilitate revegetation. Topsoil respread depths are proposed to be varied based on proposed land use at various locations within the site to maximise topsoil respread volumes on site.

A summary of the earthworks is included in Table 1 below.

Table 1: Earthworks

Area	Unit	Stage 1	Stage 2AB	Stage 2CDE	Site Wide	Assumptions
Earthworks area	m ²	270,000	165,000	175,000	610,000	
Net Cut Volume	m ³	420,000	330,000	470,000	1,220,000	Design Subgrade to existing subgrade, solid measure
Topsoil Strip Volume	m ³	54,000	33,000	35,000	122,000	Assumed 200mm deep topsoil across earthworks area
Maximum Cut Depth	m				15	
Net Fill Volume	m ³	420,000	330,000	470,000	1,220,000	Design Subgrade to existing subgrade, solid measure + 10% compaction factor
Topsoil Respread Volume	m ³	54,000	33,000	35,000	122,000	Assumed 200mm deep across earthworks area
Maximum Fill depth	m				15	
Clay Deficit/(surplus)	m ³	Balance anticipated	Balance anticipated	Balance anticipated	Balance anticipated	
Topsoil Deficit/(surplus)	m ³	0	0	0	0	There are a number of locations throughout site for excess topsoil to be disposed safely
Total Earthworks Volume	m ³	840,000	660,000	861,000	2,361,000	

(Cut + Fill)						
--------------	--	--	--	--	--	--

5.3. STREAM RECLAMATION

The design has been developed to ensure that there is no stream removal, thus there are no permanent streams being reclaimed as part of earthworks operations in any stage of the project.

5.4. STREAM MARGINS

Some filling is required in stream margins, to form the batters. The margins have been defined as a 20m from the stream bank.

The total earthworks area and volumes are shown below in Table 2.

Table 2: Stream margin encroachment areas / volumes

	Area (m ²)	Volume (m ³)
Stage 1	37,400	126,400
Stage 2	26,600	127,700
Total	64,000	254,100

5.5. WORKS WITHIN WETLAND EXTENT

The below table show the extent of works that will occur within wetlands as part of the earthworks operation.

Table 3: Works within wetland extent

Wetland	Reason	Temp works (m ²)	Overall reduction (m ²)	Alternatives considered
B	Construction of culvert crossing 1, in Stage 1	46	0	<p>Realignment of the road was considered, however as the natural wetland extends the full length of the gully, this does not result in avoiding the wetland.</p> <p>A bridge structure was considered, however was decided against as a box culvert can span the full wetland width, be embedded into the stream bed, and reinstated to pre-development conditions.</p> <p>The road batter has been steepened to</p>

				<p>vertical walls to minimise the length of encroachment into the wetland.</p> <p>Whilst there is an existing culvert crossing located further south, it is not practicable to use this as there are two culverts located at the confluence of two streams, however due to the confluence, two wetlands would be affected instead of only one. It is more practical to construct a new culvert at the proposed location and to return the existing culvert crossings further south to a natural flow state rather than extend the culverts.</p>
G	Construction of culvert crossing 5 in Stage 1	151	0	<p>Realignment of the road was considered, however the existing wetland has formed upstream of an existing farm culvert. A different alignment would require the full removal of the existing culvert, resulting in the wetland potentially being drained and drying out.</p> <p>The road needed to be located as low in the catchment as possible to provide sufficient space for the wastewater system to meet minimum pipe grade requirements outlined in the Auckland Wastewater Code of Practice.</p> <p>By aligning the road at the bottom of the catchment it allows significant areas of reinstatement and replanting of uninterrupted wetland upstream.</p>
L	Construction of culvert crossing 7 in Stage 1	369	245	<p>Realignment of the road is not possible, as it is contained within the NOR boundary.</p> <p>A bridge was considered, however it would need to span approximately 30m and as such was considered not financially viable. The cost of such a structure is expected to be in excess of \$10M.</p> <p>The road batter has been steepened to near vertical earth reinforced walls to minimise the length of encroachment into the wetland.</p>

V	Construction of culvert crossing 9 in Stage 2	162	50	<p>Realigning this road was considered, however the road is constrained for several reasons. There is an existing bush covenant to the south and there are two raingardens proposed at the low point of the catchment between the road and the covenant to meet the stormwater treatment requirements outlined in the Auckland Stormwater Code of Practice. Moving the road further north would require the removal of a greater area of wetland.</p> <p>A different alignment would also require the full removal of an existing farm culvert, potentially resulting in the wetland being drained and drying out, losing the whole wetland area.</p> <p>As the proposed road is located at the same place as the existing farm culvert, the invert of the proposed culvert is raised to maintain the current standing water level in the wetland.</p>
AG	Construction of culvert crossing 10 in Stage 2	135	0	<p>Realignment of the road was considered, however as the natural wetland extends the full length of the gully, this does not result in avoiding the wetland. The narrowest point of the wetland was chosen as the crossing point.</p> <p>A bridge was considered however a culvert was the best solution for this as it results in faster construction method and enables the wetland to be reinstated within the structure sooner for re-establishment.</p> <p>There is no practicable alternative location as the wetland extends the full length of the gully. Whilst an alternative alignment along the western boundary and looping at the top was considered, this was rejected as a result of the potential adverse effects on the SEA to the west and to the north. In addition, this part of the site contains challenging topography resulting in significant additional earthworks and risks of instability.</p>

5.6. WETLAND SETBACK AREA

The below table shows the extent of earthworks within the 10m wetland setback area.

Table 4: Wetland setback area encroachment areas / volumes

Stage	Area (m ²)	Volume (m ³)
1	12,600	38,250
2	2,400	11,350
Total	15,000	49,600

5.7. SEDIMENT CONTROL PROTECTION AREA

The below table shows the extent of earthworks within the sediment control protection area (50m setback from stream).

Table 5: Earthworks within sediment control protection area

Stage	Area (m ²)	Volume (m ³)
1	111,000	221,000
2	132,000	288,000
Total	243,000	509,000

5.8. STREAM WORKS AND TEMPORARY STREAM CROSSING

Earthworks within streams will be avoided where possible. Earthworks within streams will be only for the following purposes –

1. Removal of existing farm access culverts, to reinstate and daylight the stream
2. Installation of culverts to facilitate road crossings
3. Installation of riprap from drainage network and culverts.

A number of existing culverts may be retained during construction to facilitate stream crossing until permanent culverts are constructed. These would be strengthened to care for construction loads to ensure the culverts do not fail.

The culverts proposed to support the road network stream crossings are to be box culverts embedded a minimum of 350mm into the underlying stream subgrade or circular culverts embedded by a minimum of 25% of the height of the culvert, to enable a natural stream bed to be re-constructed within the culvert (with addition of riprap). The location of the natural stream

bed within the culvert will align with the existing location where possible. It is expected this riprap will eventually be filled with sediment with a stream bed naturally forming through the culvert base — refer to the Hydrology Assessment provided by Williamson Water & Land Advisory (Appendix 22) for further details. This design will minimize the ecological impact of proposed development on the stream. Stream crossings have been designed following consultation with Viridis.

Temporary stream crossings may be provided as part of haul roads to transport cut material between earthworks areas for filling. Details on the construction of any crossings will be provided by the earthwork's contractor to Council for approval prior to commencement of works. The existing or proposed culverts will also be used as construction accesses during construction. New culverts are designed to meet permitted activity requirements in the NES-FW, except for culvert crossings 7, 9, and 10. These exceptions are addressed in the stormwater infrastructure report.

A memo for methodology for culvert works within the streams has been included in Appendix D for further detail.

5.9. 10 DEGREE SLOPE

The area of earthworks across the project with slope above and below 10 degrees is shown in the table below.

Table 6 - Area of earthworks with varied slopes

	Slope above 10 degrees	Slope below 10 degrees
Area of earthworks	17.7ha	48.0ha

5.10. 1% AEP FLOODPLAIN

The total volume of earthworks within the 1% AEP floodplain is shown in the table below. Note this is the taken from existing surface, to design surface. The volume of displaced water within the flood plain is not included in the below.

Table 7 - Volume of earthworks within 1% AEP floodplain

	Cut	Fill	Total
Volume of earthworks (m ³)	1,250	28,400	29,650

5.11. STAGE 1 CONTOUR PLAN

Refer to plans 3725-1-2000 to 2007 for final contours.

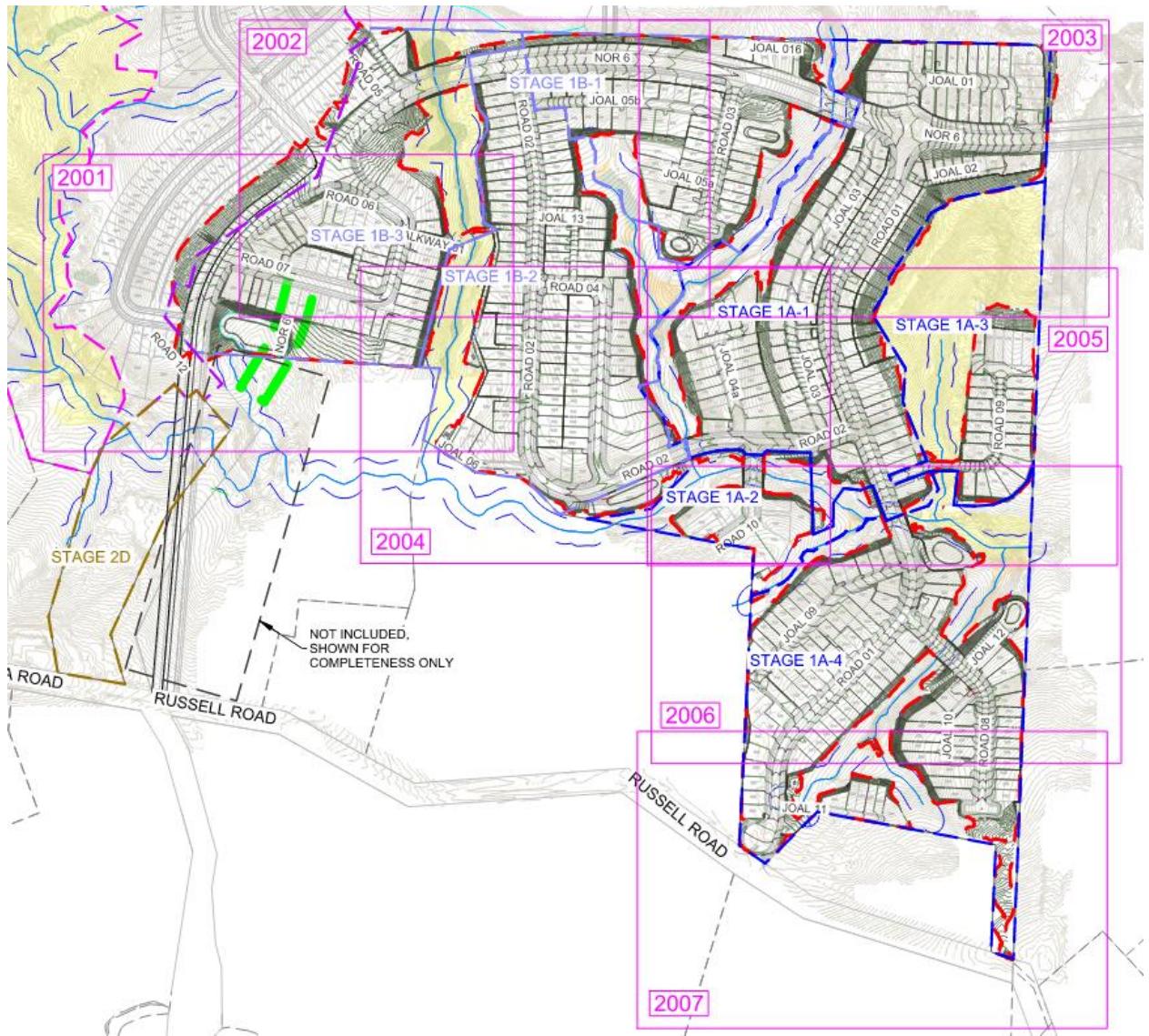


Figure 4 - Stage 1 Earthworks contour plan

5.12. STAGE 2 A, B, C, D & E CONTOUR PLAN

Refer to plans 3725-2AB-2000 to 2005 & 3725-2CDE-2000-2005 for final contours.

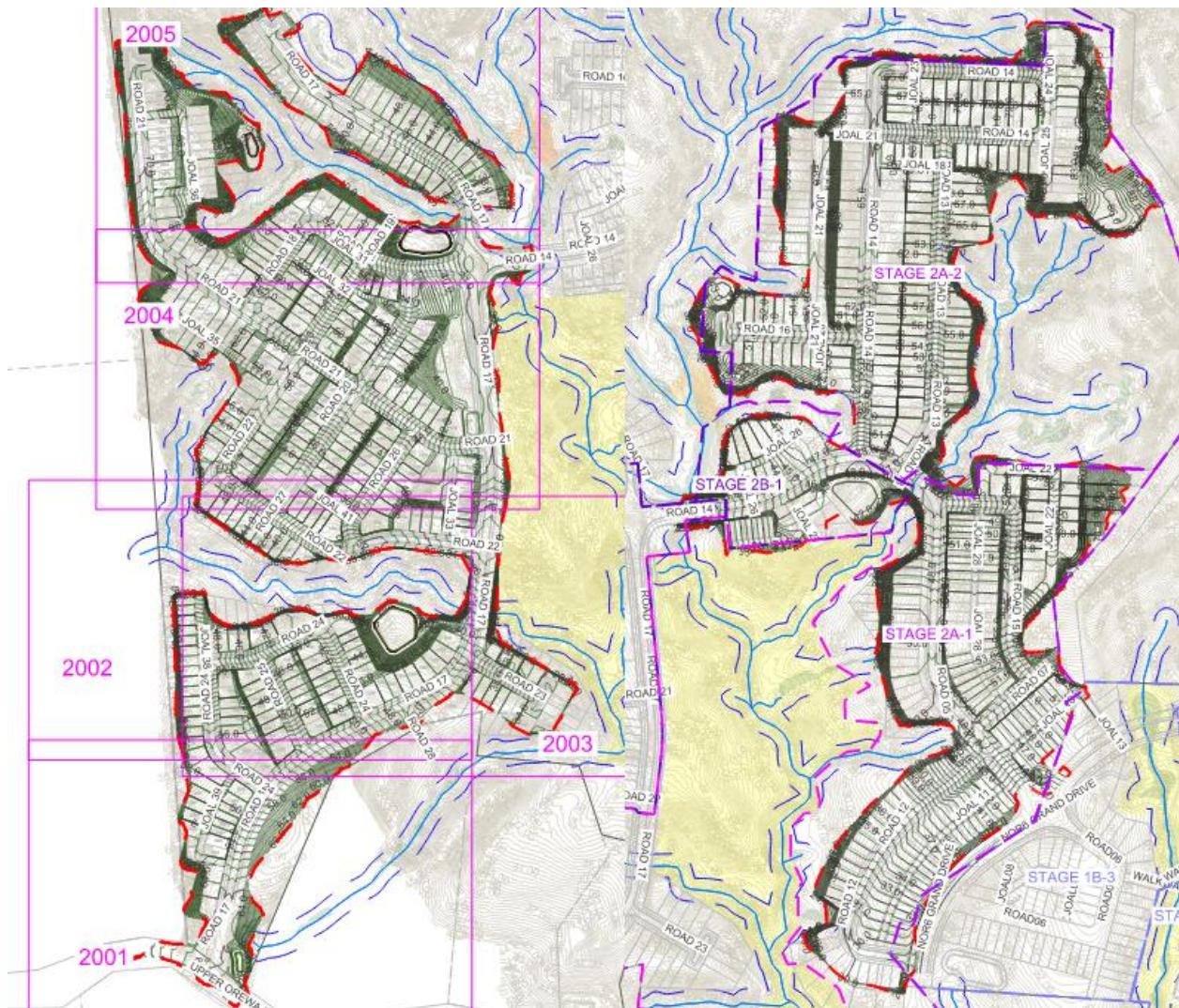


Figure 5 - Stage 2 Earthworks Contour plan

6. EROSION AND SEDIMENT CONTROL

There are several key elements to the erosion and sediment control methodology as stipulated in GD-005. These include identifying the erosion and sediment risks, establishing control measures, monitoring and maintenance, and reporting.

The first step is to identify the erosion and sediment risks associated with the earthwork's activities. This includes assessing –

- the nature of the site (refer Section 3 above),
 - the soil types (refer Section 5 above and the geotechnical report),
 - the topography, (refer Section 3 above),
 - proximity to waterways, refer to Figure 3

Based on the factors identified above, the following control measures can be established to manage the risks:

- Employ sediment retention devices
 - A detailed description of the devices proposed for this site given its specific features are outlined within Section 8.6.
- Engage a contractor with proven experience with E&S control practices.
- Adjust the ESC Plan as needed. Work with Auckland Council to approve the final ESC plan.
 - It is anticipated that regular site visits, weekly contractor meetings, and meetings with the council officers will ensure that the measures planned on site are robust, and up to date with the works program.
- Assess and adjust the ESC measures
 - In conjunction with the controls above, ESC measures need to be inspected, monitored and maintained. E&S control will be an item on the contractors weekly site meeting agenda for discussion. Weather patterns will also be monitored during the earthworks period, and any urgent preparations will be implemented prior to incoming inclement weather.

7. SEDIMENT CONTROL METHODOLOGY

The Erosion and Sediment Control methodology per GD-005 is discussed below.

7.1. NON-STRUCTURAL APPROACHES

The following principles have been considered with respect to the site, in the preparation of this report and plans.

- **Minimise disturbance** – only the areas necessary to be earth worked to support the land use application, are proposed. The proposed earthworks utilise the existing contour as far as practical, and the cut/fill areas are planned to occur as close as possible to transport material the shortest distance possible. The earthworks are anticipated to occur during the earthworks season only, unless the consent holder applies for approval from Council to undertake certain earthworks outside the earthworks season and approval is given.
- **Stage construction** – The proposal has been split into different sub-catchments, in accordance with the stages proposed. Refer to section 8.6 for catchment details. Some catchments will take longer to complete the enabling works, and as such, these are separated out where possible to enable areas to be stabilised earlier.
- **Protect slopes** – The exiting topography of the site has extensive slopes. It is expected that the perimeter of earth-worked areas where batters tie into existing slopes and stream

edges will require stabilization measures beyond simple vegetative covers such as topsoiling and seeding. In these areas additional stabilization methods will be implemented as necessary under the direction of the geotechnical engineer and in compliance with GD05 standards. Wherever possible, disturbance to existing slopes will be minimised to reduce the risk of instability. Clean water runoff from above the site will be carefully managed and diverted away from exposed slopes to prevent erosion. The Erosion and Sediment Control Plan (ESC Plan) will clearly delineate slopes, limits of disturbance, and areas requiring specific protection to ensure effective implementation of slope protection measures throughout the site.

- **Protect Watercourses** – All watercourses are shown on the ESC plans, series 2300 plans. The plans show that streams and wetlands will be protected through the water management controls.
- **Rapidly stabilise exposed areas** – Vegetation, mulch, grassing, or other stabilizing techniques will be used to progressively stabilize the disturbed soils after each stage of earthworks and at certain milestones during each stage. Milestones at which point these stabilizing techniques will be used will be specified in the ESC Plan. They are typically points like completion of topsoiling on lots and berms.
- **Timing of Earthworks** – Works are proposed to be substantially undertaken between October and April. Where earthworks outside of this period are required, this will be provisional on gaining winter works approval from Auckland Council.

Further, it is noted that regular audits with Auckland Council officers will be undertaken every 7–14 days to confirm that all erosion-and-sediment controls remain effective. Earthworks under the consent are restricted to the earthworks season. During the winter period, when there is a heightened risk of sediment discharge, earthwork activities must be approved through a winter works application, as required under the proposed conditions. This condition mandates the submission of a formal "Request for Winter Works," which is subject to Council approval based on an assessment of potential environmental effects. If winter works are approved, erosion and sediment controls are further enhanced through increased monitoring requirements, including post-rainfall event reporting and monthly reviews of open areas, in accordance with the specific conditions imposed with each winter works approval.

Even during the summer period when earthworks are expressly enabled under the proposed conditions, contractors are also required to monitor weather conditions on a daily basis and adjust site practices accordingly to mitigate environmental risks. These measures are supported by regular inspections from Council and oversight by the project's environmental consultants.

8. WATER MANAGEMENT CONTROLS

Clean water and dirty water diversion bunds will be installed as per the 2300 series plans.

Clean water from outside of the site will be excluded from the earthworks area by clean water diversion bunds to ensure water remains outside of the earthworks area.

Dirty water diversion bunds will be sized to convey flows from the 5% AEP storm event with a freeboard of 300mm and will be established prior to earthworks commencing.

Regular monitoring of the bunds will be undertaken to identify any areas of actual/potential erosion.

A standard 4m x 10m x 150mm thick stabilised entrance will be maintained for the duration of the works to the earthworking areas.

Where required, upgrading of the existing farm tracks, or construction of new stabilised haul roads (100mm of GAP65 on a layer of geofabric) is also proposed between the stabilised entrance and the earthworking areas.

8.1. SOIL AND SURFACE STABILISATION

All areas will be topsoiled and grassed after bulk earthworks operations to ensure that sediment cannot be easily mobilised, and minimise erosion.

Future lot and berm areas will be progressively topsoiled, and grass seeded as they are completed.

Future road areas will be left with a v-channel cut 200mm above finished levels to protect the future subgrade. The area can be stabilised with straw mulch (or a shallow layer of aggregate where inspects show channels form/erosion occurring) until road construction commences.

Straw mulching will be utilised as short/medium term. E.g. for stabilisation of partially complete earthworks over the winter period.

Future building sites, where pre-loading is required, will be left stabilised with topsoil and grass, for future removal.

Stream works surfaces may be left with erosion matting, where required.

8.2. SEDIMENT CONTROL

It is proposed to divide the site into the sub-catchments as outlined in Section 8.6 below.

Each sub-catchment is proposed to be served by a single SRP. Any areas where grades do not enable flows into the SRP, can be treated with a silt fence. All SRPs have been modelled in 12d, to ensure they can be discharged properly.

All treatment devices will be flocculent treated. Calculations will be provided within a Flocculation Management Plan prepared prior to the pre-start meeting.

Earthworks areas shall be enclosed by a silt fence prior to commencing work.

8.3. ORDER OF WORKS

Works are proposed to be undertaken, generally, in the following order:

1. Pre-start meeting held with Auckland Council, the Contractor and Consultant to confirm

the ESC Plan as proposed, the consent conditions and identify any areas for improvements and agreement to commence works.

2. Stabilised entranceway is established for machinery entry and exit the site, including a haul road into the northern part of the site.
3. Super silt fences constructed on the stream boundary.
4. Site perimeter clean water and dirty water diversion bunds are constructed.
5. New SRPs are constructed as required for their respective catchment areas.
6. As-builts of the physical erosion and sediment controls and forwarded to Auckland Council for approval.
7. Once approved, topsoil from the site will be stripped and stockpiled for future re-spreading.
8. Cut to fill operations will commence.
9. As finished levels are achieved the site will be progressively stabilised. Straw mulching may be applied as a short/medium term measure.
10. Removal of ESC controls will only be undertaken upon agreement from the Auckland Council monitoring officer.

8.4. INSPECTIONS AND MAINTENANCE

1. Once the ESC controls have been established and approved, daily inspections will be undertaken to assess their performance and areas for potential improvement.
2. ESC will form part of weekly contractor/consultant meetings to assess performance and areas for improvement.
3. Auckland Councils monitoring officer will also undertake routine monitoring of the site.
4. On completion of the earthworks, a final inspection will be held with an Auckland Council Natural Resources field officer, the contractor, client, and consultant to confirm that all works were carried out in accordance with the consent conditions and GD005 guidelines.

8.5. OVERLAND FLOW PATHS

Overland flow paths will be required to be protected and maintained during construction. Where velocities are calculated to be greater than 2m/s, the surface shall be stabilised with cloth and riprap protection.

OLFP matters for the completed design surface, have been addressed in the stormwater report.

8.6. CATCHMENTS

The earthworks cover a working area of approximately 109Ha hectares. The site can be divided into a number of sub-catchment areas, depending on typology, the nature of the works, and the timing of the works. These catchment areas are shown on drawings 2300-2307.

For Stage 1, the sub-catchments are:

- Pond Catchment 1 – (16,900 m²) which flows into Sediment Retention Pond 1 (SRP#1). This is less than the 5ha maximum for SRP.
- Pond Catchment 2 – (26,600 m²) flows into Sediment Retention Pond #2 (SRP#2). This is less than the 5ha maximum for SRP.
- Pond Catchment 3 – (11,100 m²) flows into Sediment Retention Pond #3 (SRP#3). This is less than the 5ha maximum for SRP.
- Pond Catchment 4 – (21,400 m²) flows into Sediment Retention Pond #3 (SRP#4). This is less than the 5ha maximum for SRP.
- Pond Catchment 5 – (36,400 m²) flows into Sediment Retention Pond #3 (SRP#5). This is less than the 5ha maximum for SRP.
- Pond Catchment 6 – (23,300 m²) flows into Sediment Retention Pond #3 (SRP#6). This is less than the 5ha maximum for SRP.
- Pond Catchment 7 – (21,700 m²) flows into Sediment Retention Pond #3 (SRP#7). This is less than the 5ha maximum for SRP.
- Pond Catchment 8 – (23,700 m²) flows into Sediment Retention Pond #3 (SRP#8). This is less than the 5ha maximum for SRP.
- Pond Catchment 9 – (15,200 m²) flows into Sediment Retention Pond #3 (SRP#9). This is less than the 5ha maximum for SRP.
- Pond Catchment 10 – (22,500 m²) flows into Sediment Retention Pond #3 (SRP#10). This is less than the 5ha maximum for SRP.
- Super silt fence catchments are all less than the 0.5ha maximum for super silt fence.

For Stage 2AB, the sub catchments are:

- Pond Catchment 1 – (37,500 m²) which flows into Sediment Retention Control Pond 1 (SRP#1). This is less than the 5ha maximum for SRP.
- Pond Catchment 2 – (23,600 m²) which flows into Sediment Retention Control Pond 2 (SRP#2). This is less than the 5ha maximum for SRP.
- Pond Catchment 3 - (10,300 m²) which flows into Sediment Retention Control Pond 3

(SRP#3). This is less than the 5ha maximum for SRP.

- Pond Catchment 4 – (26,700 m²) which flows into Sediment Retention Control Pond 4 (SRP#4). This is less than the 5ha maximum for SRP.
- Pond Catchment 5 – (14,600 m²) which flows into Sediment Retention Control Pond 5 (SRP#5). This is less than the 5ha maximum for SRP.
- Pond Catchment 6 – (41,000 m²) which flows into Sediment Retention Control Pond 6 (SRP#6). This is less than the 5ha maximum for SRP.
- Super silt fence catchments are all less than the 0.5ha maximum for super silt fence.

For Stage 2CDE, the sub catchments are:

- Pond Catchment 1 – (9,900 m²) which flows into Sediment Retention Control Pond 1 (SRP#1). This is less than the 5ha maximum for SRP.
- Pond Catchment 2 – (21,600 m²) which flows into Sediment Retention Control Pond 2 (SRP#2). This is less than the 5ha maximum for SRP.
- Pond Catchment 3 – (17,200 m²) which flows into Sediment Retention Control Pond 3 (SRP#3). This is less than the 5ha maximum for SRP.
- Pond Catchment 4 – (7,300 m²) which flows into Sediment Retention Control Pond 4 (SRP#4). This is less than the 5ha maximum for SRP.
- Pond Catchment 5 – (13,800 m²) which flows into Sediment Retention Control Pond 5 (SRP#5). This is less than the 5ha maximum for SRP.
- Pond Catchment 6 – (24,700 m²) which flows into Sediment Retention Control Pond 6 (SRP#6). This is less than the 5ha maximum for SRP.
- Pond Catchment 7 – (45,800 m²) which flows into Sediment Retention Control Pond 7 (SRP#7). This is less than the 5ha maximum for SRP.
- Pond Catchment 8 – (16,300 m²) which flows into Sediment Retention Control Pond 8 (SRP#8). This is less than the 5ha maximum for SRP.
- Pond Catchment 9 – (20,900 m²) which flows into Sediment Retention Control Pond 9 (SRP#9). This is less than the 5ha maximum for SRP.
- Super silt fence catchments are all less than the 0.5ha maximum for super silt fence.

All sediment retention ponds have been placed outside of the extent of wetland and stream margin areas (as shown on drawings 2300-2307). Earth diversion bunds will divert flows to proposed super silt fences, where SRPs cannot cater for flows.

To control erosion and sediment, the typical sediment and erosion control measures stipulated in the Erosion and Sediment Control Guide for Land Disturbing Activities in the Auckland Region – Guideline Document 2016-005 (GD005) will be put in place.

9. RECOMMENDED CONDITIONS OF CONSENT

Pre-Construction Conditions

Erosion and Sediment Control Plan

1. At least 20 working days prior to the commencement of earthworks activity for any stage or sub-stage of the development, a finalised Erosion and Sediment Control Plan (ESCP) prepared in accordance with the draft ESCP submitted with the application, and in accordance with Auckland Council Erosion and Sediment Control Guide for Land Disturbing Activities in the Auckland Region, June 2016, Incorporating Amendment 2 (GD05), must be submitted to the Council for written certification. Auckland Council must respond to the request within 20 working days, or the management plan is deemed to be certified.
2. The ESCP must be prepared in general accordance with the draft ESCP submitted with the application and referenced under Condition 1 and must contain sufficient details to address the following matters:
 - (a) Specific erosion and sediment control measures for the earthworks (location dimensions, capacity), including the location of any sediment retention ponds (SRPs), decanting earth bunds, super silt fences, silt fence clean and dirty water diversion bunds and stabilized construction entrances;
 - (b) Supporting calculations and design drawings as necessary, including confirmation of 2% vs 3% SRPs where required;
 - (c) Details of construction methods;
 - (d) Monitoring, maintenance and inspection requirements;
 - (e) Catchment boundaries and contour information as necessary;
 - (f) Identify location of stabilised construction entrances; and
 - (g) Details relating to the management of exposed areas (e.g. grassing, mulching).

Advice note: The above ESCP requirement relates to bulk earthworks stages. Additional ESCPs are required at subdivision stage for civil works.

3. Within 10 working days following implementation and completion of the specific erosion and sediment controls required by the ESCP (referred to in Conditions 16 and 17) and prior to the commencement of the earthworks activity, the consent holder must provide to Auckland Council written certification prepared by a SQEP confirming that the erosion and sediment control measures have been constructed in accordance with GD05.

Advice Notes: Certification of the sediment and erosion control structure should contain sufficient details to address the following matters:

- *Details on the contributing catchment area;*
- *Retention volume of structure (dead storage and live storage measured to the top of the primary spillway);*
- *Dimensions and shape of structure;*
- *Position of inlets/outlets; and*
- *Details regarding the stabilisation of the structure.*

During Construction Conditions

4. All earthworks and construction works associated with the implementation of this resource consent shall be carried out:

- (a) Between the hours of 7:30am and 18:00pm, Monday to Saturday; and
- (b) Shall not occur on Sunday's and public holidays; but

The restriction on hours of works shall not apply to low noise generating activities, such as site set up or staff meetings, which may occur outside of these hours.

5. No earthworks on the site can be undertaken between 01 May and 30 September in any year, without a 'Request for winter works' approved by Council. All requests must be renewed annually prior to the approval expiring. All winterworks will be re-assessed by the consent holder, as required to ensure that adverse effects are not occurring in the receiving environment and approval may be revoked by Council upon written notice to the consent holder.

6. No storage of machinery, hazardous substances, rubbish, construction stockpiling, or any refilling activity shall occur within the area demarcated in accordance with Condition 37, unless authorised by this consent.

7. The maximum area of exposed earth at any one time throughout the duration of the project when exercising this consent must be no greater than 30 hectares.

Advice note: The 30ha limit applies to "bulk" earthworks only and not to "post construction" subdivision earthworks.

8. Earthworks at the site must be progressively stabilised against erosion throughout the earthworks phases of the project and must be sequenced to minimise the discharge of contaminants to surface water in accordance with the certified ESCP.

Advice Note: Stabilisation measures may include:

- The use of waterproof covers, geotextiles, or mulching;
- Top-soiling and grassing of otherwise bare areas of earth;
- Aggregate or vegetative cover that has obtained a density of more than 80% of a normal pasture sward

9. The operational effectiveness and efficiency of all erosion and sediment control measures shown on the Erosion and Sediment Control Plans required under Conditions 16, must be maintained throughout the duration of earthworks activity, or until the site is permanently stabilised against erosion. A record of any maintenance work must be kept and be supplied to the Council on request.

10. Earthworks must be managed to avoid deposition of earth, mud, dirt or other debris on any public road or footpath resulting from earthworks activity on the subject site. In the event that such deposition does occur, it must immediately be removed. In no instance must roads or footpaths be washed down with water without appropriate erosion and sediment control measures in place to prevent contamination of the stormwater drainage system, watercourses or receiving waters.

Advice Note: In order to prevent sediment laden water entering waterways from the road, the following methods may be adopted to prevent or address discharges should they occur:

- Provision of a stabilised entry and exit(s) point for vehicles
- Provision of wheel wash facilities
- Ceasing of vehicle movement until materials are removed
- Cleaning of road surfaces using street-sweepers
- Silt and sediment traps
- Catchpit protection

11. Immediately upon abandonment or completion of earthworks on the subject site all areas of bare earth associated with the works must be permanently stabilised against erosion to the satisfaction of the Council.

Advice Note: Should any earthworks be completed or abandoned, bare areas of earth associated with the works must be permanently stabilised against erosion. Measures may include:

- The use of mulching or natural fibre matting.
- Top-soiling, grassing and mulching of otherwise bare areas of earth.

- Aggregate or vegetative cover that has obtained a density of more than 80% of a normal pasture sward.

Archaeology

12. Should any Māori archaeological sites be encountered during earthworks and construction works Te Kawarau a Māki, Ngāti Manuhiri, Ngaati Whanaunga, te Runanga o Ngāti Whatua must be contacted by the consent holder no later than 15 working days after the discovery.

13. If an Authority from Heritage New Zealand Pouhere Taonga is not yet in place the protocol set out in standards E11.6.1 and E12.6.1 of the Auckland Unitary Plan (Operative in Part, being the version as at the date of this decision) must be followed.

10. CONCLUSION

The proposed earthworks for this proposal have been designed to facilitate the required infrastructure necessary for use and enjoyment of the development, and are in accordance with Erosion and Sediment Control Guide for Land Disturbing Activities in the Auckland Region, June 2016.

The design has taken into consideration the possible impact of the proposed development and has minimised impacts to the receiving environment using accepted engineering practices.

APPENDIX A - ENGINEERING PLANS

BOUND SEPARATELY

APPENDIX B - GEOTECHNICAL INTERPRETIVE REPORT

SEE APPENDIX TO THE AEE

APPENDIX C – SEDIMENT RETENTION POND CALCULATIONS

SEDIMENT RETENTION POND 1 (SRP 1) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	16,900 sq.m.	
Volume	507 cu.m.	3% of Contributing Catchment
SRP Width	15.00 m	excluding embankment width
SRP Length	43.50 m	excluding embankment width
Bottom Width	7.00 m	
Bottom Length	33.50 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	12.60 m	
Length at Primary Spillway	40.50 m	
Length to Width ratio	3.21	at Primary Spillway RL
Volume at Primary Spillway	512 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	19.20 m	
Emergency Spillway RL	18.90 m	300mm below Embankment RL
Primary Spillway RL	18.60 m	300mm below Emergency Spillway RL
Dead Storage RL	17.75 m	level at 30% volume of Primary Spillway
Invert level	17.20 m	Bottom RL
Number of Decant Arms	2 units	
Primary Spillway (upstand MH)	1050 mm Ø	
Outlet Pipe	300 mm Ø	(for 20y ARI event)
Emergency Spillway width	6 m	(for 100y ARI event)

SEDIMENT RETENTION POND 2 (SRP 2) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	26,600 sq.m.	
Volume	798 cu.m.	3% of Contributing Catchment
SRP Width	18.00 m	excluding embankment width
SRP Length	51.00 m	excluding embankment width
Bottom Width	10.00 m	
Bottom Length	41.00 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	15.60 m	
Length at Primary Spillway	48.00 m	
Length to Width ratio	3.08	at Primary Spillway RL
Volume at Primary Spillway	802 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	14.70 m	
Emergency Spillway RL	14.40 m	300mm below Embankment RL
Primary Spillway RL	14.10 m	300mm below Emergency Spillway RL
Dead Storage RL	13.22 m	level at 30% volume of Primary Spillway
Invert level	12.70 m	Bottom RL
Number of Decant Arms	2 units	
Primary Spillway (upstand MH)	1050 mm Ø	
Outlet Pipe	300 mm Ø	(for 20y ARI event)
Emergency Spillway width	10 m	(for 100y ARI event)

SEDIMENT RETENTION POND 3 (SRP 3) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	11,100 sq.m.	
Volume	333 cu.m.	3% of Contributing Catchment
SRP Width	13.00 m	excluding embankment width
SRP Length	37.00 m	excluding embankment width
Bottom Width	5.00 m	
Bottom Length	27.00 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	10.60 m	
Length at Primary Spillway	34.00 m	
Length to Width ratio	3.21	at Primary Spillway RL
Volume at Primary Spillway	338 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	18.50 m	
Emergency Spillway RL	18.20 m	300mm below Embankment RL
Primary Spillway RL	17.90 m	300mm below Emergency Spillway RL
Dead Storage RL	17.08 m	level at 30% volume of Primary Spillway
Invert level	16.50 m	Bottom RL
Number of Decant Arms	1 unit	
Primary Spillway (upstand MH)	1050 mm Ø	
Outlet Pipe	300 mm Ø	(for 20y ARI event)
Emergency Spillway width	6 m	(for 100y ARI event)

SEDIMENT RETENTION POND 4 (SRP 4) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	21,400 sq.m.	
Volume	642 cu.m.	3% of Contributing Catchment
SRP Width	16.50 m	excluding embankment width
SRP Length	47.00 m	excluding embankment width
Bottom Width	8.50 m	
Bottom Length	37.00 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	14.10 m	
Length at Primary Spillway	44.00 m	
Length to Width ratio	3.12	at Primary Spillway RL
Volume at Primary Spillway	645 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	15.50 m	
Emergency Spillway RL	15.20 m	300mm below Embankment RL
Primary Spillway RL	14.90 m	300mm below Emergency Spillway RL
Dead Storage RL	14.03 m	level at 30% volume of Primary Spillway
Invert level	13.50 m	Bottom RL
Number of Decant Arms	2 units	
Primary Spillway (upstand MH)	1050 mm Ø	
Outlet Pipe	300 mm Ø	(for 20y ARI event)
Emergency Spillway width	8 m	(for 100y ARI event)

SEDIMENT RETENTION POND 5 (SRP 5) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	36,400 sq.m.	
Volume	1,092 cu.m.	3% of Contributing Catchment
SRP Width	20.50 m	excluding embankment width
SRP Length	57.50 m	excluding embankment width
Bottom Width	12.50 m	
Bottom Length	47.50 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	18.10 m	
Length at Primary Spillway	54.50 m	
Length to Width ratio	3.01	at Primary Spillway RL
Volume at Primary Spillway	1,097 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	21.50 m	
Emergency Spillway RL	21.20 m	300mm below Embankment RL
Primary Spillway RL	20.90 m	300mm below Emergency Spillway RL
Dead Storage RL	20.00 m	level at 30% volume of Primary Spillway
Invert level	19.50 m	Bottom RL
Number of Decant Arms	3 units	
Primary Spillway (upstand MH)	1050 mm Ø	
Outlet Pipe	300 mm Ø	(for 20y ARI event)
Emergency Spillway width	12 m	(for 100y ARI event)

SEDIMENT RETENTION POND 6 (SRP 6) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	23,300 sq.m.	
Volume	699 cu.m.	3% of Contributing Catchment
SRP Width	17.00 m	excluding embankment width
SRP Length	49.00 m	excluding embankment width
Bottom Width	9.00 m	
Bottom Length	39.00 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	14.60 m	
Length at Primary Spillway	46.00 m	
Length to Width ratio	3.15	at Primary Spillway RL
Volume at Primary Spillway	707 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	25.00 m	
Emergency Spillway RL	24.70 m	300mm below Embankment RL
Primary Spillway RL	24.40 m	300mm below Emergency Spillway RL
Dead Storage RL	23.53 m	level at 30% volume of Primary Spillway
Invert level	23.00 m	Bottom RL
Number of Decant Arms	2 units	
Primary Spillway (upstand MH)	mm Ø	
Outlet Pipe	mm Ø	(for 20y ARI event)
Emergency Spillway width	8 m	(for 100y ARI event)

SEDIMENT RETENTION POND 7 (SRP 7) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	21,700 sq.m.	
Volume	651 cu.m.	3% of Contributing Catchment
SRP Width	16.50 m	excluding embankment width
SRP Length	47.50 m	excluding embankment width
Bottom Width	8.50 m	
Bottom Length	37.50 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	14.10 m	
Length at Primary Spillway	44.50 m	
Length to Width ratio	3.16	at Primary Spillway RL
Volume at Primary Spillway	653 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	16.13 m	
Emergency Spillway RL	15.83 m	300mm below Embankment RL
Primary Spillway RL	15.53 m	300mm below Emergency Spillway RL
Dead Storage RL	14.66 m	level at 30% volume of Primary Spillway
Invert level	14.13 m	Bottom RL
Number of Decant Arms	2 units	
Primary Spillway (upstand MH)	mm Ø	
Outlet Pipe	mm Ø	(for 20y ARI event)
Emergency Spillway width	8 m	(for 100y ARI event)

SEDIMENT RETENTION POND 8 (SRP 8) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	23,700 sq.m.	
Volume	711 cu.m.	3% of Contributing Catchment
SRP Width	17.00 m	excluding embankment width
SRP Length	49.50 m	excluding embankment width
Bottom Width	9.00 m	
Bottom Length	39.50 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	14.60 m	
Length at Primary Spillway	46.50 m	
Length to Width ratio	3.18	at Primary Spillway RL
Volume at Primary Spillway	715 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	19.00 m	
Emergency Spillway RL	18.70 m	300mm below Embankment RL
Primary Spillway RL	18.40 m	300mm below Emergency Spillway RL
Dead Storage RL	17.53 m	level at 30% volume of Primary Spillway
Invert level	17.00 m	Bottom RL
Number of Decant Arms	2 units	
Primary Spillway (upstand MH)	mm Ø	
Outlet Pipe	mm Ø	(for 20y ARI event)
Emergency Spillway width	8 m	(for 100y ARI event)

SEDIMENT RETENTION POND 9 (SRP 9) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	15,200 sq.m.	
Volume	456 cu.m.	3% of Contributing Catchment
SRP Width	14.50 m	excluding embankment width
SRP Length	41.50 m	excluding embankment width
Bottom Width	6.50 m	
Bottom Length	31.50 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	12.10 m	
Length at Primary Spillway	38.50 m	
Length to Width ratio	3.18	at Primary Spillway RL
Volume at Primary Spillway	460 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	26.00 m	
Emergency Spillway RL	25.70 m	300mm below Embankment RL
Primary Spillway RL	25.40 m	300mm below Emergency Spillway RL
Dead Storage RL	24.56 m	level at 30% volume of Primary Spillway
Invert level	24.00 m	Bottom RL
Number of Decant Arms	2 units	
Primary Spillway (upstand MH)	mm Ø	
Outlet Pipe	mm Ø	(for 20y ARI event)
Emergency Spillway width	6 m	(for 100y ARI event)

SEDIMENT RETENTION POND 10 (SRP 10) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	22,500 sq.m.	
Volume	675 cu.m.	3% of Contributing Catchment
SRP Width	17.00 m	excluding embankment width
SRP Length	47.50 m	excluding embankment width
Bottom Width	9.00 m	
Bottom Length	37.50 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	14.60 m	
Length at Primary Spillway	44.50 m	
Length to Width ratio	3.05	at Primary Spillway RL
Volume at Primary Spillway	682 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	24.00 m	
Emergency Spillway RL	23.70 m	300mm below Embankment RL
Primary Spillway RL	23.40 m	300mm below Emergency Spillway RL
Dead Storage RL	22.53 m	level at 30% volume of Primary Spillway
Invert level	22.00 m	Bottom RL
Number of Decant Arms	2 units	
Primary Spillway (upstand MH)	1050 mm Ø	
Outlet Pipe	300 mm Ø	(for 20y ARI event)
Emergency Spillway width	8 m	(for 100y ARI event)

SEDIMENT RETENTION POND 1 (SRP 1) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	37,500 sq.m.	
Volume	1,125 cu.m.	3% of Contributing Catchment
SRP Width	20.50 m	excluding embankment width
SRP Length	59.00 m	excluding embankment width
Bottom Width	12.50 m	
Bottom Length	49.00 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	18.10 m	
Length at Primary Spillway	56.00 m	
Length to Width ratio	3.09	at Primary Spillway RL
Volume at Primary Spillway	1,129 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	25.00 m	
Emergency Spillway RL	24.70 m	300mm below Embankment RL
Primary Spillway RL	24.40 m	300mm below Emergency Spillway RL
Dead Storage RL	23.50 m	level at 30% volume of Primary Spillway
Invert level	23.00 m	Bottom RL
Number of Decant Arms	3 units	
Primary Spillway (upstand MH)	1050 mm Ø	
Outlet Pipe	300 mm Ø	(for 20y ARI event)
Emergency Spillway width	15 m	(for 100y ARI event)

SEDIMENT RETENTION POND 2 (SRP 2) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	23,600 sq.m.	
Volume	708 cu.m.	3% of Contributing Catchment
SRP Width	17.00 m	excluding embankment width
SRP Length	49.50 m	excluding embankment width
Bottom Width	9.00 m	
Bottom Length	39.50 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	14.60 m	
Length at Primary Spillway	46.50 m	
Length to Width ratio	3.18	at Primary Spillway RL
Volume at Primary Spillway	715 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	39.50 m	
Emergency Spillway RL	39.20 m	300mm below Embankment RL
Primary Spillway RL	38.90 m	300mm below Emergency Spillway RL
Dead Storage RL	38.03 m	level at 30% volume of Primary Spillway
Invert level	37.50 m	Bottom RL
Number of Decant Arms	2 units	
Primary Spillway (upstand MH)	mm Ø	
Outlet Pipe	mm Ø	(for 20y ARI event)
Emergency Spillway width	8 m	(for 100y ARI event)

SEDIMENT RETENTION POND 3 (SRP 3) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	10,300 sq.m.	
Volume	206 cu.m.	2% of Contributing Catchment
SRP Width	11.00 m	excluding embankment width
SRP Length	31.50 m	excluding embankment width
Bottom Width	3.00 m	
Bottom Length	21.50 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	8.60 m	
Length at Primary Spillway	28.50 m	
Length to Width ratio	3.31	at Primary Spillway RL
Volume at Primary Spillway	208 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	33.00 m	
Emergency Spillway RL	32.70 m	300mm below Embankment RL
Primary Spillway RL	32.40 m	300mm below Emergency Spillway RL
Dead Storage RL	31.63 m	level at 30% volume of Primary Spillway
Invert level	31.00 m	Bottom RL
Number of Decant Arms	1 unit	
Primary Spillway (upstand MH)	mm Ø	
Outlet Pipe	mm Ø	(for 20y ARI event)
Emergency Spillway width	6 m	(for 100y ARI event)

SEDIMENT RETENTION POND 4 (SRP 4) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	26,700 sq.m.	
Volume	801 cu.m.	3% of Contributing Catchment
SRP Width	18.00 m	excluding embankment width
SRP Length	51.00 m	excluding embankment width
Bottom Width	10.00 m	
Bottom Length	41.00 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	15.60 m	
Length at Primary Spillway	48.00 m	
Length to Width ratio	3.08	at Primary Spillway RL
Volume at Primary Spillway	802 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	45.50 m	
Emergency Spillway RL	45.20 m	300mm below Embankment RL
Primary Spillway RL	44.90 m	300mm below Emergency Spillway RL
Dead Storage RL	44.02 m	level at 30% volume of Primary Spillway
Invert level	43.50 m	Bottom RL
Number of Decant Arms	2 units	
Primary Spillway (upstand MH)	1050 mm Ø	
Outlet Pipe	300 mm Ø	(for 20y ARI event)
Emergency Spillway width	10 m	(for 100y ARI event)

SEDIMENT RETENTION POND 5 (SRP 5) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	14,600 sq.m.	
Volume	438 cu.m.	3% of Contributing Catchment
SRP Width	14.00 m	excluding embankment width
SRP Length	42.00 m	excluding embankment width
Bottom Width	6.00 m	
Bottom Length	32.00 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	11.60 m	
Length at Primary Spillway	39.00 m	
Length to Width ratio	3.36	at Primary Spillway RL
Volume at Primary Spillway	442 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	42.50 m	
Emergency Spillway RL	42.20 m	300mm below Embankment RL
Primary Spillway RL	41.90 m	300mm below Emergency Spillway RL
Dead Storage RL	41.06 m	level at 30% volume of Primary Spillway
Invert level	40.50 m	Bottom RL
Number of Decant Arms	1 unit	
Primary Spillway (upstand MH)	mm Ø	
Outlet Pipe	mm Ø	(for 20y ARI event)
Emergency Spillway width	6 m	(for 100y ARI event)

SEDIMENT RETENTION POND 6 (SRP 6) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	41,000 sq.m.	
Volume	1,230 cu.m.	3% of Contributing Catchment
SRP Width	21.00 m	excluding embankment width
SRP Length	62.00 m	excluding embankment width
Bottom Width	13.00 m	
Bottom Length	52.00 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	18.60 m	
Length at Primary Spillway	59.00 m	
Length to Width ratio	3.17	at Primary Spillway RL
Volume at Primary Spillway	1,232 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	47.00 m	
Emergency Spillway RL	46.70 m	300mm below Embankment RL
Primary Spillway RL	46.40 m	300mm below Emergency Spillway RL
Dead Storage RL	45.50 m	level at 30% volume of Primary Spillway
Invert level	45.00 m	Bottom RL
Number of Decant Arms	3 units	
Primary Spillway (upstand MH)	mm Ø	
Outlet Pipe	mm Ø	(for 20y ARI event)
Emergency Spillway width	15 m	(for 100y ARI event)

SEDIMENT RETENTION POND (SRP) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	9,900 sq.m.	
Volume	297 cu.m.	3% of Contributing Catchment
SRP Width	12.50 m	excluding embankment width
SRP Length	35.50 m	excluding embankment width
Bottom Width	4.50 m	
Bottom Length	25.50 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	10.10 m	
Length at Primary Spillway	32.50 m	
Length to Width ratio	3.22	at Primary Spillway RL
Volume at Primary Spillway	301 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	56.00 m	
Emergency Spillway RL	55.70 m	300mm below Embankment RL
Primary Spillway RL	55.40 m	300mm below Emergency Spillway RL
Dead Storage RL	54.59 m	level at 30% volume of Primary Spillway
Invert level	54.00 m	Bottom RL
Number of Decant Arms	1 unit	
Primary Spillway (upstand MH)	mm Ø	
Outlet Pipe	mm Ø	(for 20y ARI event)
Emergency Spillway width	3 m	(for 100y ARI event)

SEDIMENT RETENTION POND 2 (SRP 2) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	21,600 sq.m.	
Volume	648 cu.m.	3% of Contributing Catchment
SRP Width	16.50 m	excluding embankment width
SRP Length	47.50 m	excluding embankment width
Bottom Width	8.50 m	
Bottom Length	37.50 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	14.10 m	
Length at Primary Spillway	44.50 m	
Length to Width ratio	3.16	at Primary Spillway RL
Volume at Primary Spillway	653 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	31.00 m	
Emergency Spillway RL	30.70 m	300mm below Embankment RL
Primary Spillway RL	30.40 m	300mm below Emergency Spillway RL
Dead Storage RL	29.53 m	level at 30% volume of Primary Spillway
Invert level	29.00 m	Bottom RL
Number of Decant Arms	2 units	
Primary Spillway (upstand MH)	1050 mm Ø	
Outlet Pipe	300 mm Ø	(for 20y ARI event)
Emergency Spillway width	8 m	(for 100y ARI event)

SEDIMENT RETENTION POND 3 (SRP 3) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	17,200 sq.m.	
Volume	516 cu.m.	3% of Contributing Catchment
SRP Width	15.50 m	excluding embankment width
SRP Length	42.50 m	excluding embankment width
Bottom Width	7.50 m	
Bottom Length	32.50 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	13.10 m	
Length at Primary Spillway	39.50 m	
Length to Width ratio	3.02	at Primary Spillway RL
Volume at Primary Spillway	524 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	26.00 m	
Emergency Spillway RL	25.70 m	300mm below Embankment RL
Primary Spillway RL	25.40 m	300mm below Emergency Spillway RL
Dead Storage RL	24.55 m	level at 30% volume of Primary Spillway
Invert level	24.00 m	Bottom RL
Number of Decant Arms	2 units	
Primary Spillway (upstand MH)	1050 mm Ø	
Outlet Pipe	300 mm Ø	(for 20y ARI event)
Emergency Spillway width	6 m	(for 100y ARI event)

SEDIMENT RETENTION POND 4 (SRP 4) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	7,300 sq.m.	
Volume	146 cu.m.	2% of Contributing Catchment
SRP Width	10.00 m	excluding embankment width
SRP Length	28.00 m	excluding embankment width
Bottom Width	2.00 m	
Bottom Length	18.00 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	7.60 m	
Length at Primary Spillway	25.00 m	
Length to Width ratio	3.29	at Primary Spillway RL
Volume at Primary Spillway	149 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	19.00 m	
Emergency Spillway RL	18.70 m	300mm below Embankment RL
Primary Spillway RL	18.40 m	300mm below Emergency Spillway RL
Dead Storage RL	17.68 m	level at 30% volume of Primary Spillway
Invert level	17.00 m	Bottom RL
Number of Decant Arms	1 unit	
Primary Spillway (upstand MH)	1050 mm Ø	
Outlet Pipe	300 mm Ø	(for 20y ARI event)
Emergency Spillway width	3 m	(for 100y ARI event)

SEDIMENT RETENTION POND 5 (SRP 5) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	13,799 sq.m.	
Volume	414 cu.m.	3% of Contributing Catchment
SRP Width	14.00 m	excluding embankment width
SRP Length	40.00 m	excluding embankment width
Bottom Width	6.00 m	
Bottom Length	30.00 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	11.60 m	
Length at Primary Spillway	37.00 m	
Length to Width ratio	3.19	at Primary Spillway RL
Volume at Primary Spillway	417 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	25.00 m	
Emergency Spillway RL	24.70 m	300mm below Embankment RL
Primary Spillway RL	24.40 m	300mm below Emergency Spillway RL
Dead Storage RL	23.56 m	level at 30% volume of Primary Spillway
Invert level	23.00 m	Bottom RL
Number of Decant Arms	1 unit	
Primary Spillway (upstand MH)	1050 mm Ø	
Outlet Pipe	300 mm Ø	(for 20y ARI event)
Emergency Spillway width	6 m	(for 100y ARI event)

SEDIMENT RETENTION POND 6 (SRP 6) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	24,700 sq.m.	
Volume	741 cu.m.	3% of Contributing Catchment
SRP Width	17.50 m	excluding embankment width
SRP Length	49.50 m	excluding embankment width
Bottom Width	9.50 m	
Bottom Length	39.50 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	15.10 m	
Length at Primary Spillway	46.50 m	
Length to Width ratio	3.08	at Primary Spillway RL
Volume at Primary Spillway	745 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	35.00 m	
Emergency Spillway RL	34.70 m	300mm below Embankment RL
Primary Spillway RL	34.40 m	300mm below Emergency Spillway RL
Dead Storage RL	33.52 m	level at 30% volume of Primary Spillway
Invert level	33.00 m	Bottom RL
Number of Decant Arms	2 units	
Primary Spillway (upstand MH)	mm Ø	
Outlet Pipe	mm Ø	(for 20y ARI event)
Emergency Spillway width	8 m	(for 100y ARI event)

SEDIMENT RETENTION POND 7 (SRP 7) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	45,800 sq.m.	
Volume	1,374 cu.m.	3% of Contributing Catchment
SRP Width	22.00 m	excluding embankment width
SRP Length	65.00 m	excluding embankment width
Bottom Width	14.00 m	
Bottom Length	55.00 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	19.60 m	
Length at Primary Spillway	62.00 m	
Length to Width ratio	3.16	at Primary Spillway RL
Volume at Primary Spillway	1,380 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	36.00 m	
Emergency Spillway RL	35.70 m	300mm below Embankment RL
Primary Spillway RL	35.40 m	300mm below Emergency Spillway RL
Dead Storage RL	34.50 m	level at 30% volume of Primary Spillway
Invert level	34.00 m	Bottom RL
Number of Decant Arms	3 units	
Primary Spillway (upstand MH)	1050 mm Ø	
Outlet Pipe	300 mm Ø	(for 20y ARI event)
Emergency Spillway width	15 m	(for 100y ARI event)

SEDIMENT RETENTION POND 8 (SRP 8) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	16,299 sq.m.	
Volume	326 cu.m.	2% of Contributing Catchment
SRP Width	13.00 m	excluding embankment width
SRP Length	36.00 m	excluding embankment width
Bottom Width	5.00 m	
Bottom Length	26.00 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	10.60 m	
Length at Primary Spillway	33.00 m	
Length to Width ratio	3.11	at Primary Spillway RL
Volume at Primary Spillway	327 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	48.00 m	
Emergency Spillway RL	47.70 m	300mm below Embankment RL
Primary Spillway RL	47.40 m	300mm below Emergency Spillway RL
Dead Storage RL	46.58 m	level at 30% volume of Primary Spillway
Invert level	46.00 m	Bottom RL
Number of Decant Arms	2 units	
Primary Spillway (upstand MH)	1050 mm Ø	
Outlet Pipe	300 mm Ø	(for 20y ARI event)
Emergency Spillway width	6 m	(for 100y ARI event)

SEDIMENT RETENTION POND 9 (SRP 9) CALCULATION OUTPUT

Description	Value	Note
Contributing Catchment	20,900 sq.m.	
Volume	627 cu.m.	3% of Contributing Catchment
SRP Width	16.50 m	excluding embankment width
SRP Length	46.00 m	excluding embankment width
Bottom Width	8.50 m	
Bottom Length	36.00 m	
Depth	2.00 m	Top of SRP (Embankment level) to bottom
Width at Primary Spillway	14.10 m	
Length at Primary Spillway	43.00 m	
Length to Width ratio	3.05	at Primary Spillway RL
Volume at Primary Spillway	629 cu.m.	Top of upstand MH to bottom RL
Depth at Primary Spillway	1.40 m	
SRP Embankment RL	34.00 m	
Emergency Spillway RL	33.70 m	300mm below Embankment RL
Primary Spillway RL	33.40 m	300mm below Emergency Spillway RL
Dead Storage RL	32.53 m	level at 30% volume of Primary Spillway
Invert level	32.00 m	Bottom RL
Number of Decant Arms	2 units	
Primary Spillway (upstand MH)	1050 mm Ø	
Outlet Pipe	300 mm Ø	(for 20y ARI event)
Emergency Spillway width	8 m	(for 100y ARI event)

APPENDIX D – METHODOLOGY FOR CULVERT WORKS WITHIN THE STREAMS

MEMO**Project : Delmore**

To: [REDACTED], Auckland Council

Date: 12/06/25

Re: Delmore - Methodology for Culvert Works within stream**1. Overview**

The Delmore Project involves the removal and/or construction of culverts in or near existing watercourses. All works in a watercourse are to follow GD05 guidelines in section G4.0 Works in a Watercourse and good construction practices.

Refer to Appendix A for culvert works and diversion locations.

Three distinct construction methodologies apply based on the presence or absence of stream flow at the time of works:

2. Dry Weather Methodology (No Flow Present) – Culvert Removal

This method applies to existing culverts to be removed and only when stream flow is absent, typically during dry summer months and on smaller contributing catchments.

Key Conditions:

- Stream channel is completely dry.
- Forecast confirms no imminent rainfall or flow events.
- Work is limited to 3 days.

Methodology:

- Monitor weather conditions and stream baseflow leading up to construction.
- Schedule work during verified periods of dry weather and no forecast rain.
- Consult with project Ecologist prior to works on any specific requirements (eg fish recovery and relocation) plus final channel form and shape.
- Ensure stabilisation materials for bed or banks as applicable are on site (eg Biojute).
- Remove culvert in accordance with engineering plans and GD01 Section G4.0 Works in Watercourse .
- Follow standard sediment control and safety practices.

- Ensure any residual water or dampness is contained and not discharged.
- On completion, restore ground conditions and apply erosion protection (e.g., Biojute) where required.

3. Dry Weather Methodology (No Flow Present) – Culvert Installation

This method applies to new culverts to be installed and only when stream flow is absent, typically during dry summer months and on smaller contributing catchments.

Key Conditions:

- Stream channel is completely dry.
- Forecast confirms no imminent rainfall or flow events.
- Work is limited to 5 days for primary culvert install.

Methodology:

- Monitor weather conditions and stream baseflow leading up to construction.
- Schedule work during verified periods of dry weather and no forecast rain.
- Consult with project Ecologist prior to works on any specific requirements (eg fish recovery and relocation).
- Have all materials and equipment on site at location before commencing any works to minimise duration of works.
- Ensure stabilisation materials for bed or banks as applicable are on site (eg Biojute).
- Excavate and remove culvert in accordance with engineering plans and GD01 Section G4.0 Works in Watercourse.
- Follow standard sediment control and safety practices.
- Ensure any residual water or dampness is contained and not discharged.
- On completion, restore ground conditions and apply erosion protection (e.g., Biojute) where required.

4. Diversion Channel Methodology (Flow Present) – Culvert Installation

This method is used when flow is present or expected, and a temporary diversion is necessary to isolate the work area.

Estimated Duration:

- Temporary diversion may remain active for up to 1 month, depending on construction requirements but where possible, duration of works is to be minimised

Key Conditions:

- Schedule works for a period when stream flows are low.
- Monitor stream in lead up to works to establish typical channel flows and levels
- Plan diversion works when forecast confirms no imminent rainfall or flow events.
- Liaise with ecologist on required ecological requirements of temporary channel (eg fish passage etc)
- Have all materials and equipment on site at location before commencing any works to minimise duration of works.

Diversion Setup:

1. Temporary channel:
 - Install a temporary channel to the required dimensions
 - Line the channel with geofabric to avoid erosion. Place temporary rip rap at channel outlet to reduce velocities and erosion.
 - Install outlet into existing channel and stabilise
2. Channel Isolation:
 - For low flows: Construct a sandbag wall across the channel (up to 500mm high)
 - For moderate/high flows: Install a steel plate or sheet pile sealed with sandbags.
 - For larger/wide streams where a steel plate isn't practical, construct an earth bund with erosion protection.
 - Breach flow into diversion channel
 - Isolate Downstream section of channel to be culverted with sandbags/steel plates
3. Ecological Management:
 - Ensure ecologist monitor works.
 - Salvage and relocate aquatic species if required from isolated channel before excavation.
 - Ensure dewatering of the site is controlled and sediment is captured.
4. Culvert Installation:
 - Proceed with excavation and culvert construction in accordance with approved engineering plans.
 - Ensure all spoil is stored away from the watercourse above stream bank
 - Implement standard safety and contamination prevention measures.
5. Culvert Redirection
 - Once culvert, wingwalls and approaches completed to sufficient standard to accept flows identify period of low flow.

- Open downstream end of culvert to existing channel while maintaining temp diversion channel.
- Divert inlet end of channel into upstream end of culvert and simultaneously isolate temporary diversion channel at upstream end then downstream end once majority of water has exited temporary channel.
- Have ecologist review temporary channel and action as required (eg de-fish)

6. Site Rehabilitation

- Removed temp channel material sand commence backfill progressively as directed leaving site in stable condition at end of each day.
- Stabilise embankments or similar erosion control materials.

5. Environmental and Regulatory Compliance

All works must comply with the following:

- Auckland Unitary Plan – Earthworks and Watercourse Modification (Chapters E11 & E12)
- National Environmental Standards for Freshwater (NES-FW) 2020
- Auckland Council Guidelines:
 - GD05 – Erosion and Sediment control Guide for Land Disturbing Activities in the Auckland Region –
- Resource Management Act 1991

6. Maintenance of Existing Flow Characteristics and Effects Assessment

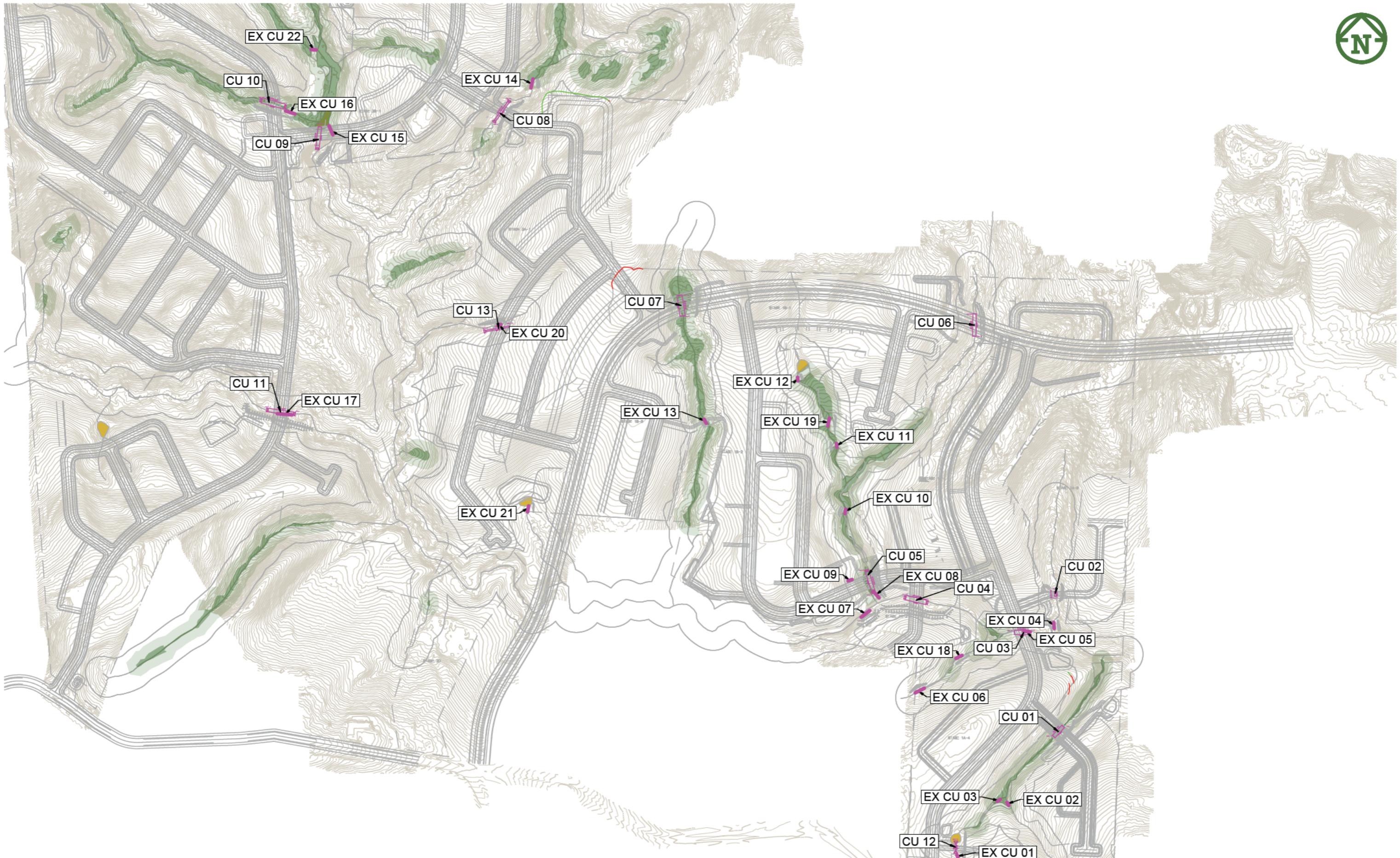
The temporary diversion channels have been designed to replicate the existing flow conditions as closely as practicable. Its alignment, cross-section, and base profile are intended to maintain flow continuity, velocity, and depth similar to current stream conditions to avoid introducing additional hydraulic or ecological effects.

Diversion flows will be managed in a controlled manner, with flow conveyance through the temporary channel matching existing low-flow regimes observed during pre-construction monitoring. These measures, along with planned erosion and sediment controls and ecological oversight, are expected to ensure that the effects of diversion remain consistent with those assessed in the AEE and associated technical reports.

Accordingly, the methodology avoids generating additional adverse effects beyond those already identified, and the diversion strategy is considered appropriate in advance of the final Streamworks Management Plan (SMP) to be submitted under proposed Condition 86.

7. Erosion Risk and Site-Specific Measures – Culvert 9

Site observations have identified a significant drop in stream bed elevation downstream of existing Culvert 9, making this location particularly susceptible to erosion and scour, and making fish passage impossible through the culvert.


It is noted that the full embankment may breach if the existing culvert is not replaced, and the wetland may be compromised if the culvert fails. The proposed culvert design sets the culvert and diversion channel inlet levels at the same level as the existing failing culvert, to mimic the natural standing water level in the wetland. The proposed culvert has a gentle grade, and does not have a drop at the end, as the existing culvert does, which enables fish passage. So the new culvert arrangement will stabilise the wetland and enable fish passage. The proposed diversion channel will also will not drop at the end, which will also facilitate fish passage and minimise erosion.

To address erosion risk, the following site-specific erosion mitigation measures will be implemented:

- Ensuring channel grade does not result in a drop at the end.
- Setting the diversion channel inlet at a similar level to the existing culvert.
- Temporary energy dissipation structures such as rip rap aprons or rock-lined basins will be installed downstream of the temporary diversion outlet and future culvert outlet to control flow velocities and reduce the risk of scour.
- Where feasible, grade control measures (e.g. stepped rock chutes or geotextile-reinforced pads) will be incorporated into the channel profile to stabilise bed levels in this sensitive reach, likely at the exit of the channel.
- The temporary diversion channel will be lined with geofabric and include rip rap armouring at inlet and outlet points to prevent undercutting and lateral erosion.
- Upon completion of culvert installation, the receiving bed will be stabilised with permanent erosion control measures as outlined in the engineering plans, including Riprap, Biojute matting, topsoiling, and revegetation as appropriate.

These additional erosion control measures are intended to ensure that the temporary diversion does not exacerbate erosion downstream of Culvert 9 and that the site remains stable both during and after construction.

Appendix A – Culvert diversion locations

CLIENT:

PROJECT:

TITLE:

PURPOSE OF ISSUE:

MCKENZIE & CO.

VINEWAY LIMITED

DELMORE
STAGE 1 & 2
53A, 53B & 55 RUSSELL ROAD
OREWA

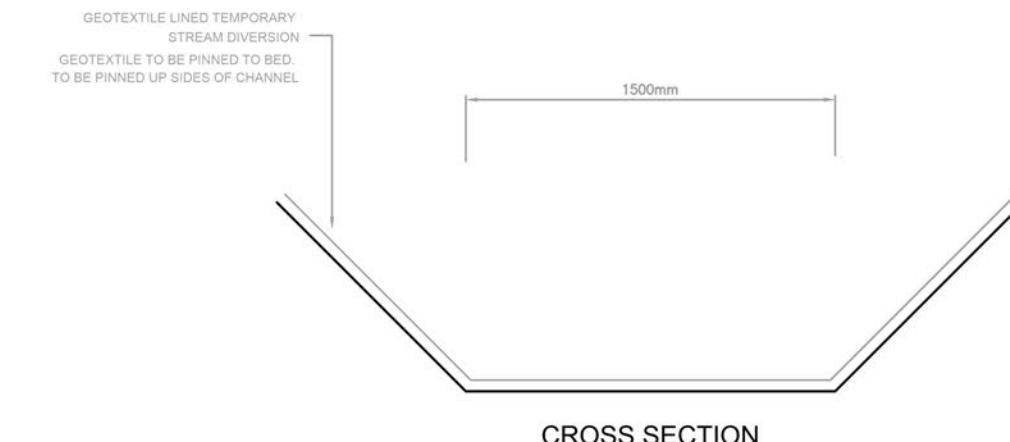
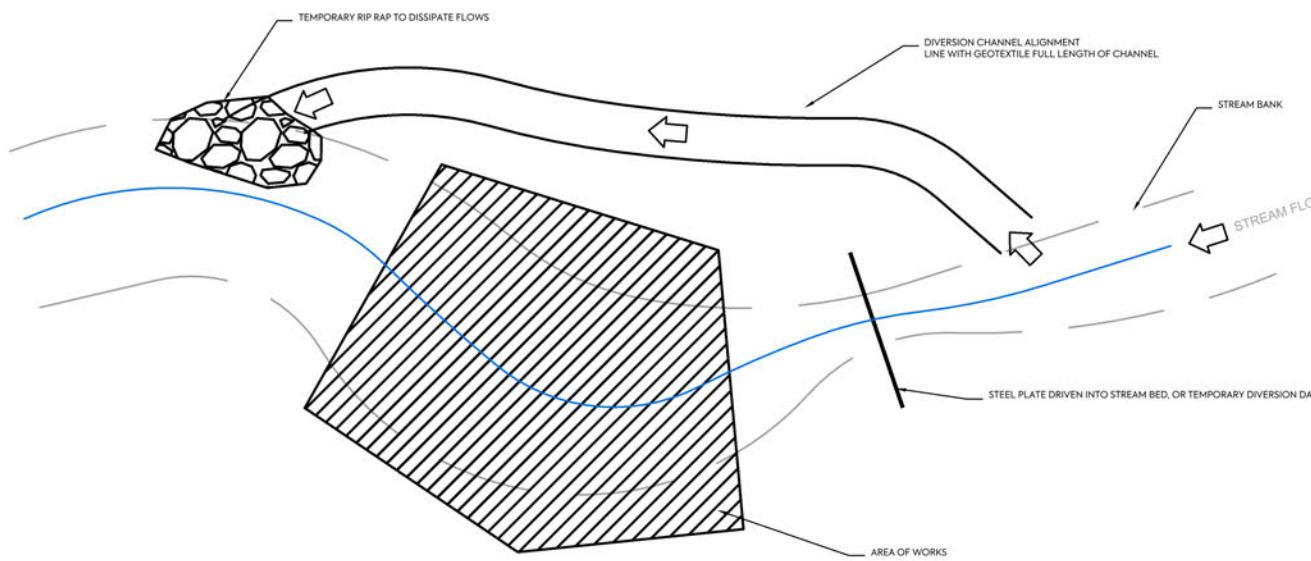
STORMWATER
TEMPORARY STREAM DIVERSION
PLAN

FOR CONSENT

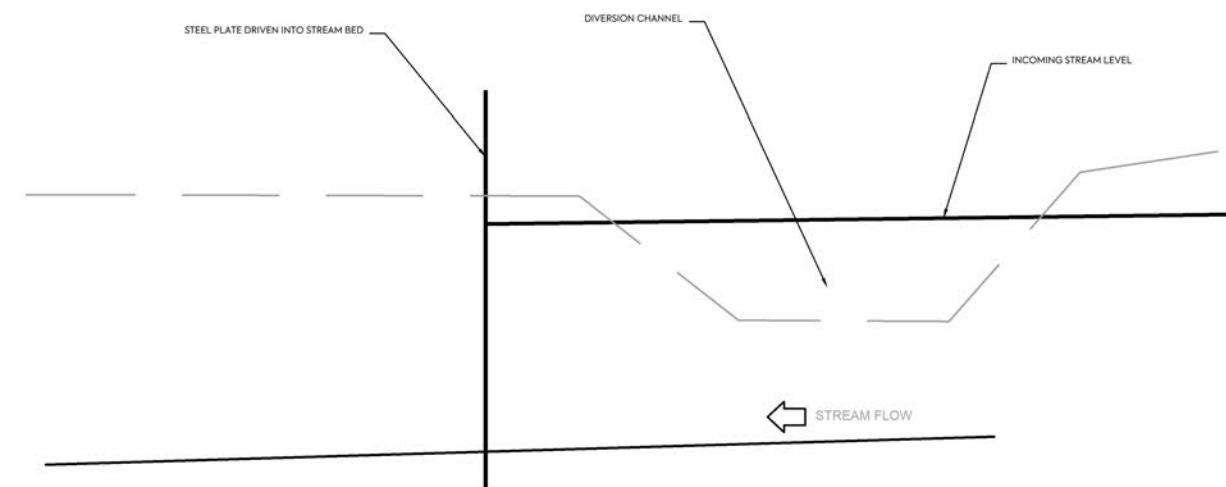
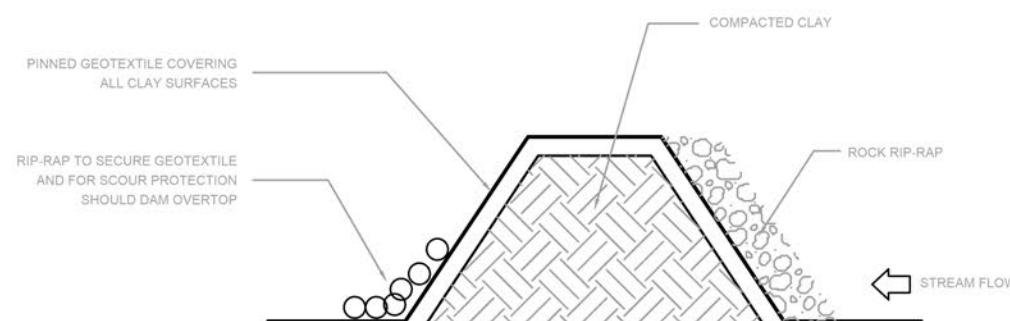
SCALE:

1:4000 @A3

DO NOT SCALE



DRAWING NO:

3725-0-4950



REV:

A

A	FIRST ISSUE	SH	JK	JK	29/05/2025
REV	DESCRIPTION	DRN BY	CHK BY	APP BY	DATE

TEMPORARY STREAM DIVERSION DETAIL

TEMPORARY WATERCOURSE DIVERSION DAM DETAIL
TEMPORARY WATERCOURSE DIVERSION DAM DETAIL

TEMPORARY WATERCOURSE DIVERSION STEEL PLATE DETAIL

CLIENT:

VINEWAY LTD

PROJECT:

DELMORE
53A, 53B & 55 RUSSELL ROAD
OREWA

TITLE:

EARTHWORKS
EROSION AND SEDIMENT
CONTROL DETAILS
SHEET 4

PURPOSE OF ISSUE:

FOR INFORMATION

SCALE:

NTS

DO NOT SCALE

DRAWING NO.:

3725-2903

REV:

A

MCKENZIE & CO.

A FIRST ISSUE

REV DESCRIPTION

DRN BY CHK BY APP BY DATE