

- +64 9 486 2546
 info@egl.co.nz
 Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
 www.egl.co.nz

Project:

Bendigo Ophir Gold Project

September 2024 Date: 9702 EGL Job No:

TESTPIT No: MTP031

Testpit at completion. Max depth 2.5m

Spoil pile at end of excavation

→ 1 +64 9 486 2546
info@egl.co.nz

Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
www.egl.co.nz

Project:

Bendigo Ophir Gold Project

September 2024 Date: 9702 EGL Job No:

Testpit at completion. Max depth 1m

Spoil pile at end of excavation

→ 1 +64 9 486 2546
info@egl.co.nz

Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
www.egl.co.nz

Project:

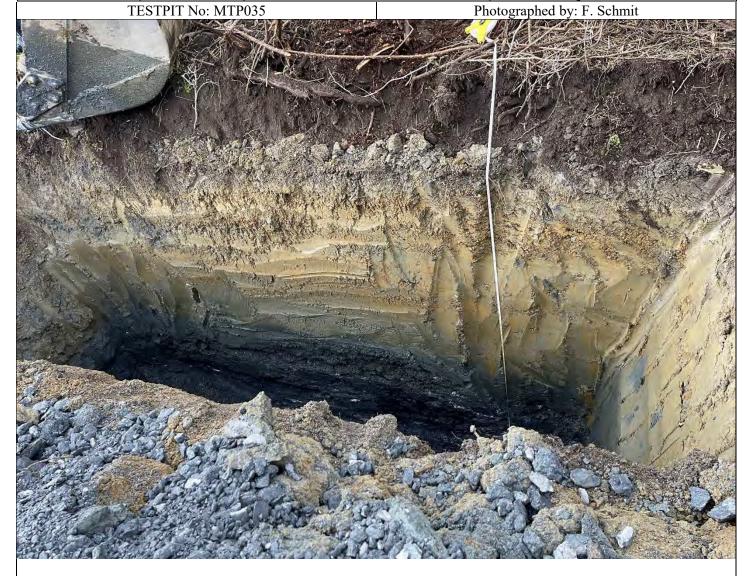
Bendigo Ophir Gold Project

September 2024 Date: 9702 EGL Job No:

TESTPIT No: MTP034 Photographed by: F. Schmit

Testpit at completion. Max depth 5m

Spoil pile at end of excavation


- +64 9 486 2546
 info@egl.co.nz
 Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752

www.egl.co.nz

Project:

Bendigo Ophir Gold Project

September 2024 Date: 9702 EGL Job No:

Testpit at completion. Max depth 3m

- → 1 +64 9 486 2546
 info@egl.co.nz

 Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
 www.egl.co.nz

Project:

Bendigo Ophir Gold Project

September 2024 Date: 9702 EGL Job No:

TESTPIT No: MTP036

Testpit at completion. Max depth 3.2m

- → 1 +64 9 486 2546
 info@egl.co.nz

 Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
 www.egl.co.nz

Project:

Bendigo Ophir Gold Project

September 2024 Date: EGL Job No: 9702

Spoil pile at end of excavation

TESTPIT No: MTP037 Photographed by: F. Schmit

Testpit at completion. Max depth 4.4m

Spoil pile at end of excavation

Engineering Geology Ltd

- → 1 +64 9 486 2546
 info@egl.co.nz

 Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
 www.egl.co.nz

Project:

Bendigo Ophir Gold Project

September 2024 Date: 9702

TESTPIT No: MTP038 Photographed by: F. Schmit

Testpit at completion. Max depth 5m

- → 1 +64 9 486 2546
 info@egl.co.nz

 Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
 www.egl.co.nz

Project:

Bendigo Ophir Gold Project

September 2024 Date: EGL Job No: 9702

Spoil pile at end of excavation

Photographed by: F. Schmit TESTPIT No: MTP039

Testpit at completion. Max depth 3m

Engineering Geology Ltd

9702

→ 1 +64 9 486 2546
info@egl.co.nz

Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
www.egl.co.nz

Project:

Bendigo Ophir Gold Project

September 2024

Date: Spoil pile at end of excavation

Photographed by: F. Schmit TESTPIT No: MTP040

Testpit at completion. Max depth 2.5m

→ 1 +64 9 486 2546
info@egl.co.nz

Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
www.egl.co.nz

Project:

Bendigo Ophir Gold Project

September 2024 Date: EGL Job No: 9702

Spoil pile at end of excavation

TESTPIT No: MTP041 Photographed by: F. Schmit

Testpit at completion. Max depth 7m

Engineering Geology Ltd

9702

+64 9 486 2546
 info@egl.co.nz
 Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752

www.egl.co.nz

Project:

Bendigo Ophir Gold Project

Date: September 2024

Spoil pile at end of excavation

Testpit at completion. Max depth 7.5m

- → 1 +64 9 486 2546
 info@egl.co.nz

 Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
 www.egl.co.nz

Project:

Bendigo Ophir Gold Project

September 2024 Date: EGL Job No: 9702

Spoil pile at end of excavation

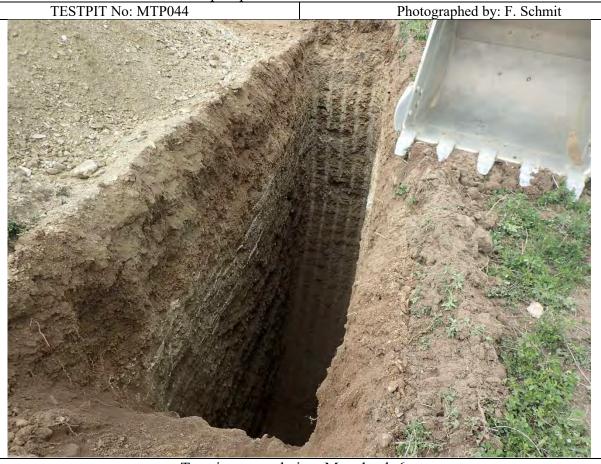
TESTPIT No: MTP043 Photographed by: F. Schmit

Testpit at completion. Max depth 7m

Engineering Geology Ltd

9702

→ 1 +64 9 486 2546
info@egl.co.nz


Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
www.egl.co.nz

Project:

Bendigo Ophir Gold Project

September 2024 Date:

Spoil pile at end of excavation

Testpit at completion. Max depth 6m

Engineering Geology Ltd

9702

→ 1 +64 9 486 2546
info@egl.co.nz

Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
www.egl.co.nz

Project:

Bendigo Ophir Gold Project

September 2024 Date:

Spoil pile at end of excavation

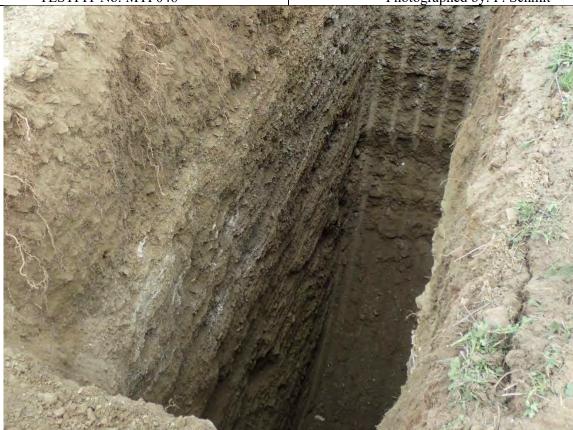
Testpit at completion. Max depth 7m

→ 1 +64 9 486 2546

info@egl.co.nz

Unit 7C, 331 Rosedale Road, Albany, Auckland
PO Box 301054, Albany, Auckland 0752

www.egl.co.nz


Project:

Bendigo Ophir Gold Project

September 2024 Date: EGL Job No: 9702

Spoil pile at end of excavation

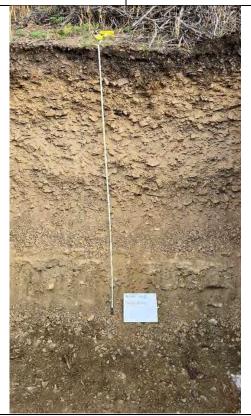
TESTPIT No: MTP046 Photographed by: F. Schmit

Testpit at completion. Max depth 6m

Spoil pile at end of excavation

- +64 9 486 2546
 info@egl.co.nz
 Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752

www.egl.co.nz


Project:

Bendigo Ophir Gold Project

February 2025 Date: 9702 EGL Job No:

TESTPIT MTP047

Photographed by:

Testpit at completion. Max depth 2.8m

- Held 9 486 2546
 info@egl.co.nz
 Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
 www.egl.co.nz

Project:

Bendigo Ophir Gold Project

February 2025 Date: 9702 EGL Job No: TESTPIT MTP048 Photographed by

Testpit at completion. Max depth 3.1m

- Held 9 486 2546
 info@egl.co.nz
 Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
 www.egl.co.nz

Project:

Bendigo Ophir Gold Project

February 2025 9702 Date: EGL Job No: TESTPIT MTP049 Photographed by:

Testpit at completion. Max depth 3.1m

Engineering Geology Ltd

- Held 9 486 2546
 info@egl.co.nz
 Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
 www.egl.co.nz

Project:

Bendigo Ophir Gold Project

February 2025 9702 Date:

TESTPIT MTP050

Photographed by:

Testpit at completion. Max depth 4.12m

Engineering Geology Ltd

- → 1 +64 9 486 2546
 info@egl.co.nz
 Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
 www.egl.co.nz

Project:

Bendigo Ophir Gold Project

February 2025 Date: 9702

TESTPIT MTP051

Photographed by:

Testpit at completion. Max depth 6.9m

Spoil pile at end of excavation.

- Held 9 486 2546
 info@egl.co.nz
 Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
 www.egl.co.nz

Project:

Bendigo Ophir Gold Project

February 2025 Date: EGL Job No: 9702

TESTPIT MTP052

Photographed by:

Testpit at completion. Max depth 3.2m

- Held 9 486 2546
 info@egl.co.nz
 Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
 www.egl.co.nz

Project:

Bendigo Ophir Gold Project

February 2025 Date: 9702 EGL Job No:

TESTPIT MTP053

Photographed by:

Testpit at completion. Max depth 3.8m

- → 44 9 486 2546
 info@egl.co.nz
 Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
 www.egl.co.nz

Project:

Bendigo Ophir Gold Project

February 2025 9702 Date: EGL Job No: TESTPIT MTP054 Photographed by:

- → 1 +64 9 486 2546
 info@egl.co.nz
 Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
 www.egl.co.nz

Project:

Bendigo Ophir Gold Project

February 2025 Date: EGL Job No: 9702

TESTPIT MTP055

Photographed by:

Testpit at completion. Max depth 3.5m

- → 1 +64 9 486 2546

 info@egl.co.nz

 Unit 7C, 331 Rosedale Road, Albany, Auckland
 PO Box 301054, Albany, Auckland 0752
- www.egl.co.nz

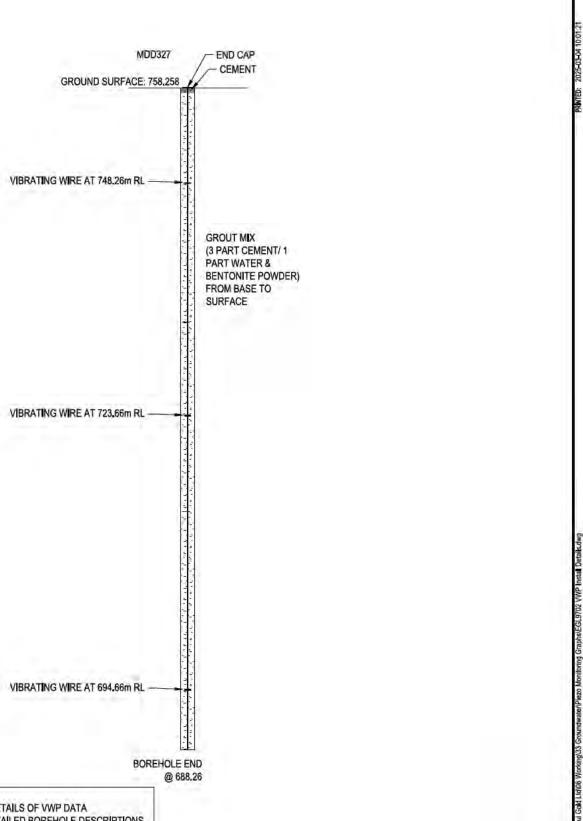
Project:

Bendigo Ophir Gold Project

February 2025 Date: EGL Job No: 9702

TESTPIT MTP056

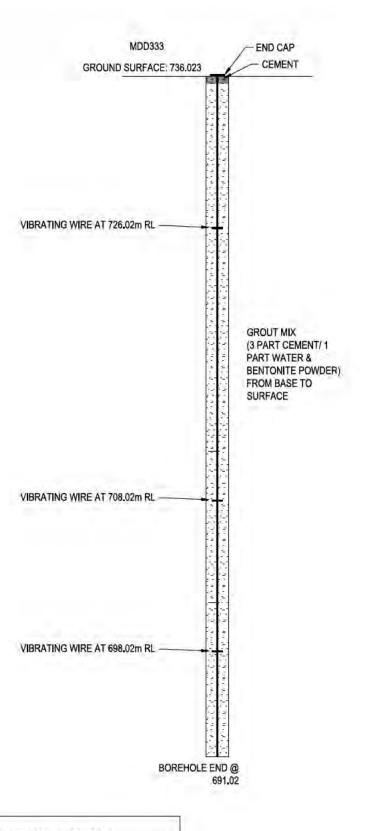
Photographed by:


Testpit at completion. Max depth 4.2m

Spoil pile at end of excavation.

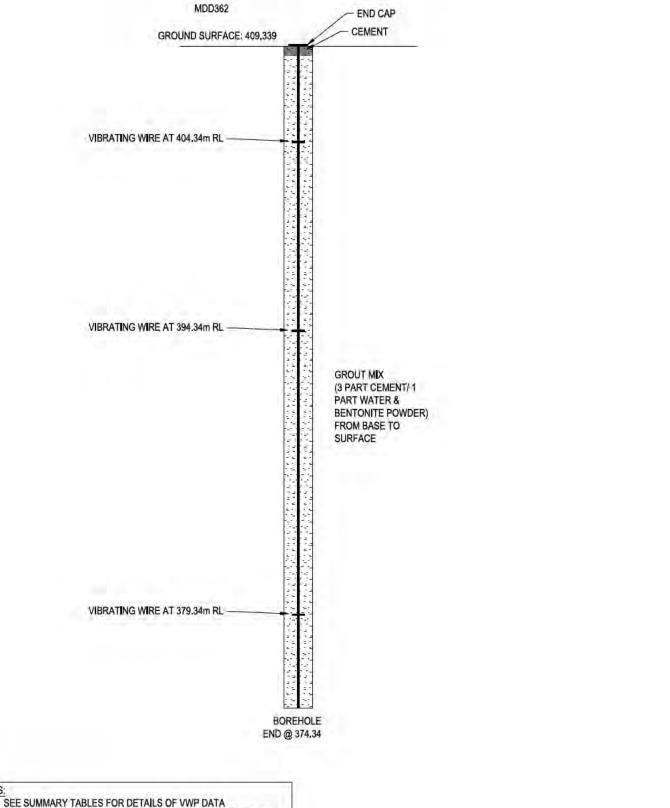
APPENDIX D

Piezometer Installation Details


- 1. SEE SUMMARY TABLES FOR DETAILS OF VWP DATA
- 2. SEE BOREHOLE LOGS FOR DETAILED BOREHOLE DESCRIPTIONS
- 3. VALUES ARE RL ELEVATIONS BASED ON THE NZVD2016
- 4. NOT TO SCALE HORIZONTALLY

MDD327 VWP INSTALLATIONS BENDIGO-OPHIR BOREHOLES RISE AND SHINE CREEK

DRAWN	JF .	DATE	03/03/2025	JOB No	REV.
CHECKED	PC	SCALE (A4)	1:400	9702	A


- 1. SEE SUMMARY TABLES FOR DETAILS OF VWP DATA
- 2. SEE BOREHOLE LOGS FOR DETAILED BOREHOLE DESCRIPTIONS
- 3. VALUES ARE RL ELEVATIONS BASED ON THE NZVD2016
- 4. NOT TO SCALE HORIZONTALLY

MDD333 VWP INSTALLATIONS BENDIGO-OPHIR BOREHOLES RISE AND SHINE CREEK

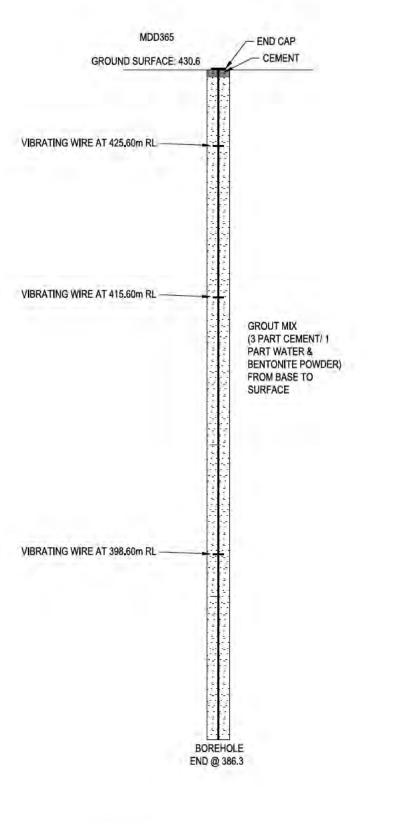
DRAWN	非	DATE	03/03/2025	JOB No	REV.
CHECKED	PC	SCALE (A4)	1:250	9702	A

NOT TO SCALE HORIZONTALLY

SEE BOREHOLE LOGS FOR DETAILED BOREHOLE DESCRIPTIONS

VALUES ARE RL ELEVATIONS BASED ON THE NZVD2016

NOTES:

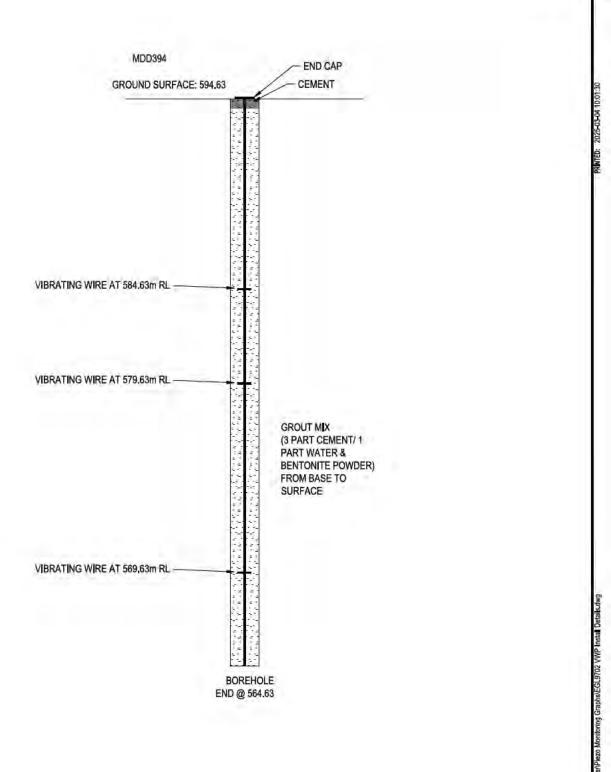

2.

4.

MATAKANUI

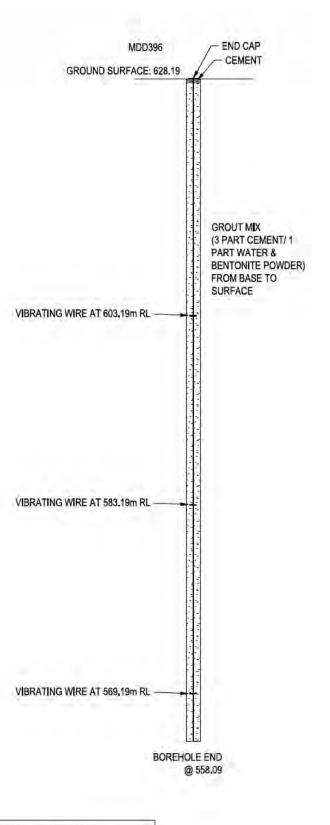
MDD362 VWP INSTALLATIONS BENDIGO-OPHIR BOREHOLES SHEPHERDS INFRASTRUCTURE

DRAWN	JF	DATE	03/03/2025	JOB No	REV.
CHECKED	PC	SCALE (A4)	1:200	9702	A


- 1. SEE SUMMARY TABLES FOR DETAILS OF VWP DATA
- 2. SEE BOREHOLE LOGS FOR DETAILED BOREHOLE DESCRIPTIONS
- 3. VALUES ARE RL ELEVATIONS BASED ON THE NZVD2016
- 4. NOT TO SCALE HORIZONTALLY

MDD365 VWP INSTALLATIONS BENDIGO-OPHIR BOREHOLES SHEPHERDS INFRASTRUCTURE

DRAWN	非	DATE	03/03/2025	JOB No	REV.
CHECKED	PC	SCALE (A4)	1:250	9702	A


- 1. SEE SUMMARY TABLES FOR DETAILS OF VWP DATA
- 2. SEE BOREHOLE LOGS FOR DETAILED BOREHOLE DESCRIPTIONS
- 3. VALUES ARE RL ELEVATIONS BASED ON THE NZVD2016
- 4. NOT TO SCALE HORIZONTALLY

MDD394 VWP INSTALLATIONS BENDIGO-OPHIR BOREHOLES SHEPHERDS CREEK TSF

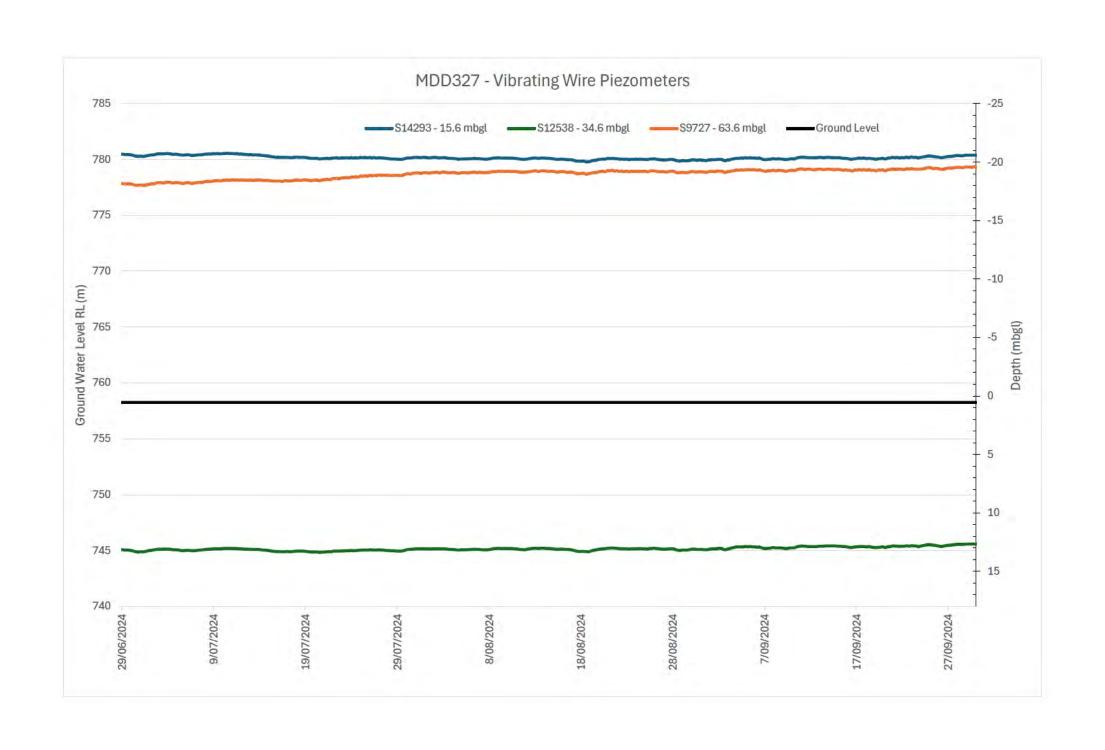
DRAWN	JF .	DATE		JOB No	REV.
CHECKED	PC	SCALE (A4)	1:200	9702	Α

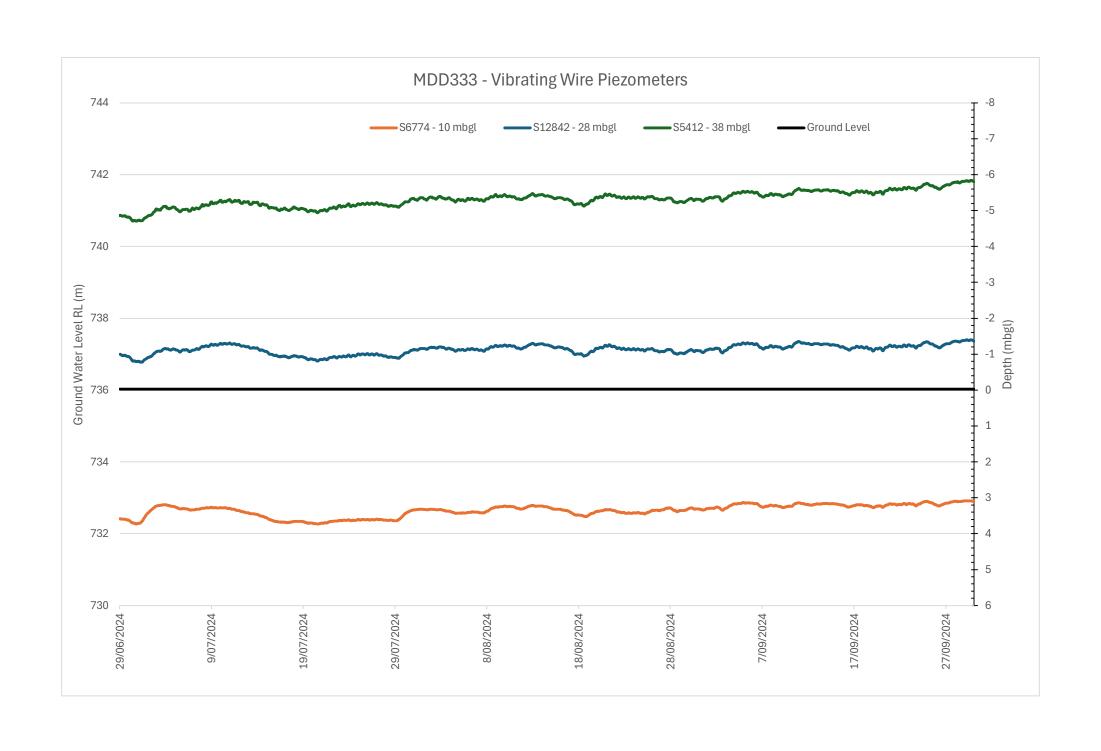
- SEE SUMMARY TABLES FOR DETAILS OF VWP DATA
- SEE BOREHOLE LOGS FOR DETAILED BOREHOLE DESCRIPTIONS 2.
- 3. VALUES ARE RL ELEVATIONS BASED ON THE NZVD2016
- 4. NOT TO SCALE HORIZONTALLY

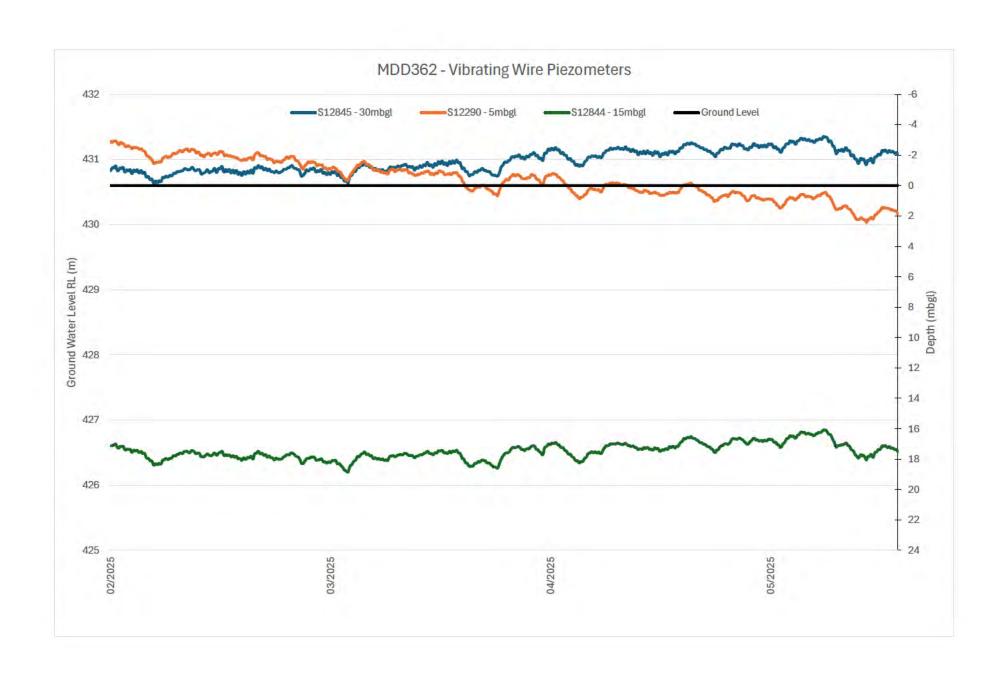
MDD396 VWP INSTALLATIONS BENDIGO-OPHIR BOREHOLES SHEPHERDS CREEK TSF

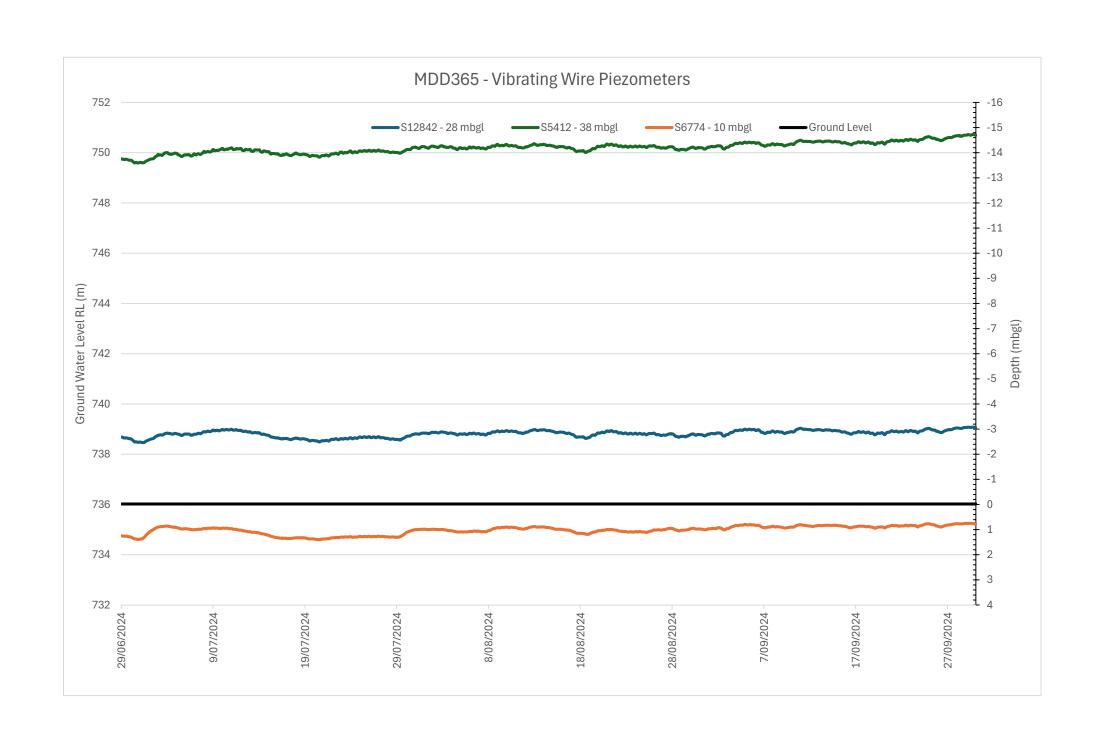
DRAWN	JF .	DATE	03/03/2025 JOB No	22277	REV.
CHECKED	PC	SCALE (A4)	1:400	9702	A

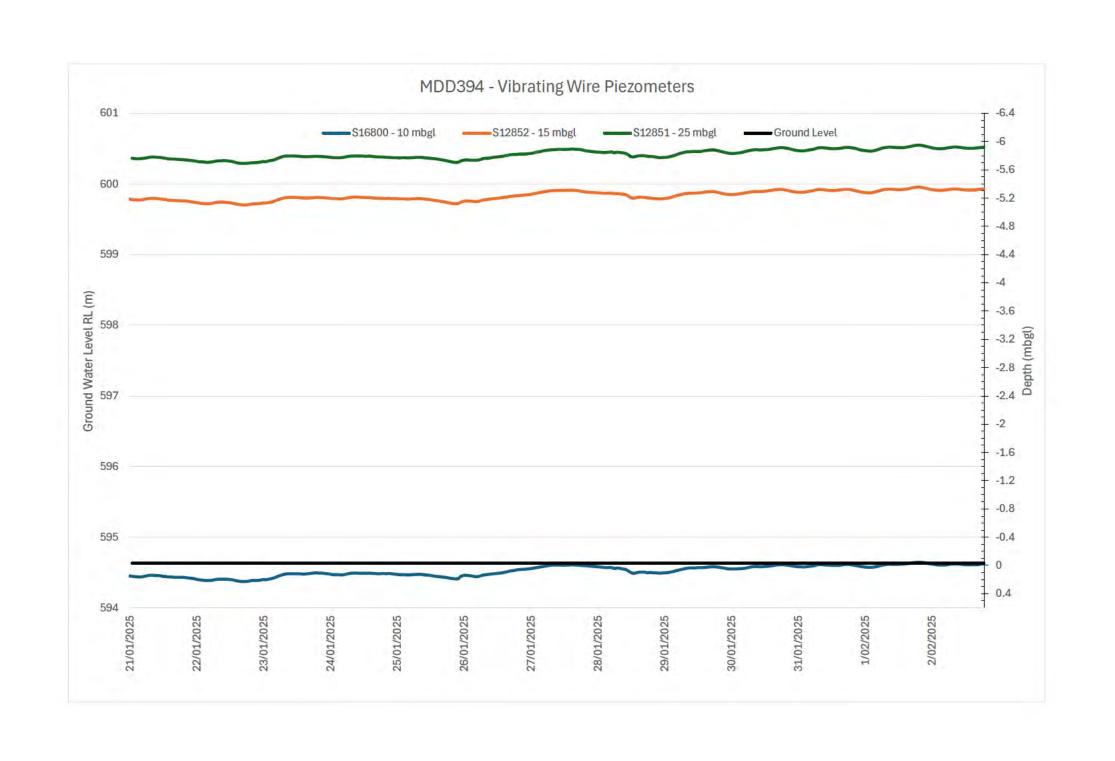
- SEE SUMMARY TABLES FOR DETAILS OF VWP DATA
- SEE BOREHOLE LOGS FOR DETAILED BOREHOLE DESCRIPTIONS 2.
- 3. VALUES ARE RL ELEVATIONS BASED ON THE NZVD2016
- 4. NOT TO SCALE HORIZONTALLY

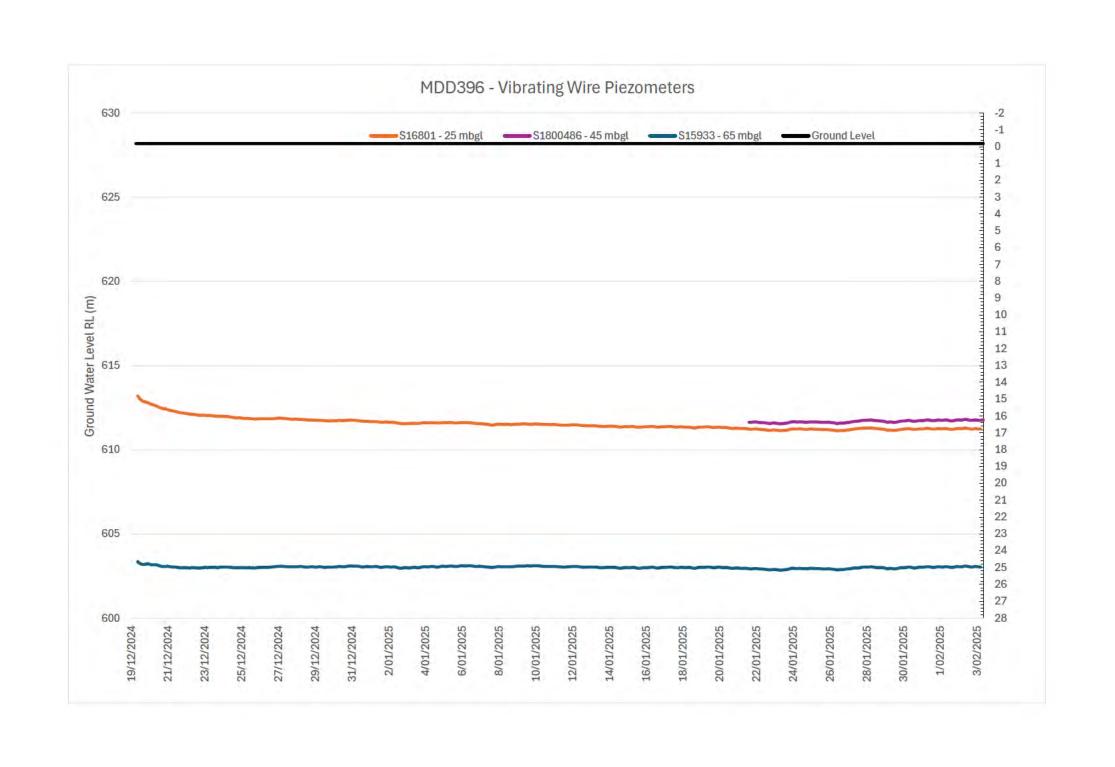


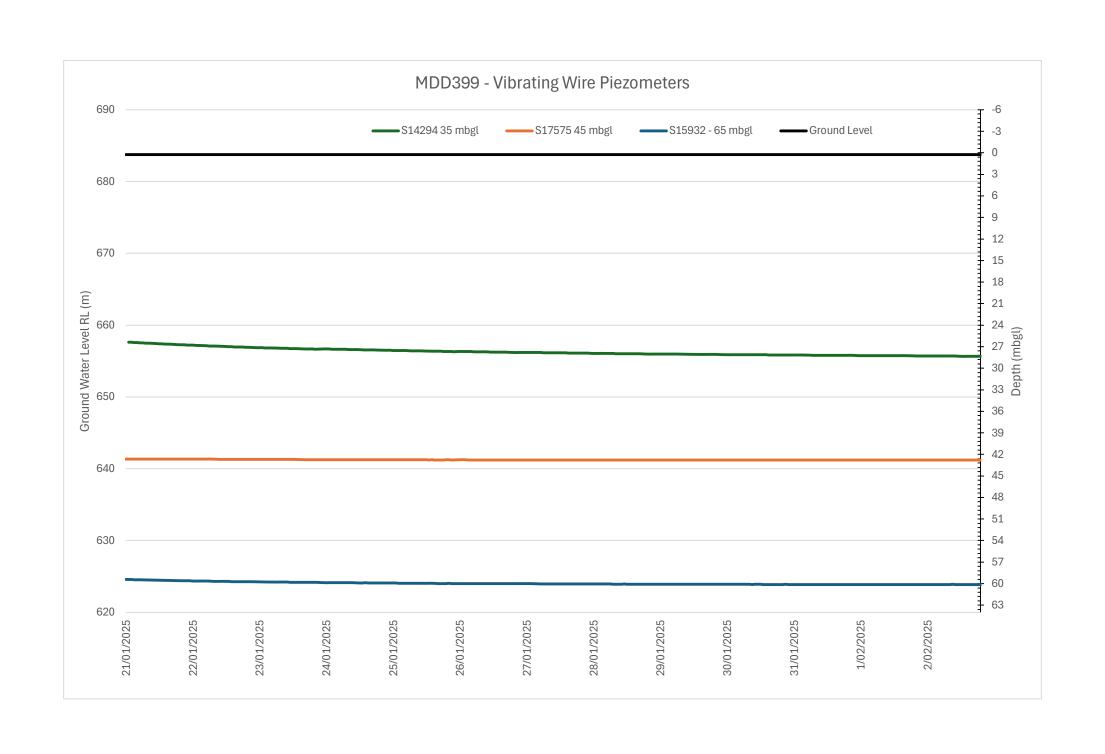



MDD399 VWP INSTALLATIONS BENDIGO-OPHIR BOREHOLES SHEPHERDS CREEK TSF

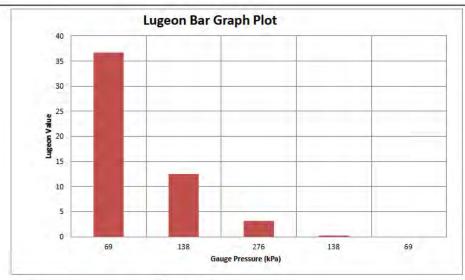

DRAWN	F	DATE	03/03/2025	JOB No 9702	REV.
CHECKED	PC	SCALE (A4)	1:400		


APPENDIX EGroundwater Monitoring Data





APPENDIX FPacker Test Results



J +64 9 486 2546 info@egl.co.nz Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752

@ www.egi.co.nz

RECORDE	R:	DATE: 7/06/2024		SITE: Bendigo						JOB I	No: 9702	
OREHOLE	No: MDD327	C++	Drill Bit Size HQ:	3	Hole Diamete	er (m)	0.096	BI	I DEPTH:		70	Notes
B.W. DEPT		0.00		bove GL (m) (hg):		1000			Single Wa	ater Pa		140100
est Top(m) 49.4	Base(m)	54.9	TEST LENGTH(m):		5.5		MID POINT (m)	(hm):		52.15	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average	10.11		
Pressure	Flowmeter	560368.0	560466.0	560505.0	560548.0			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		98.00	39.00	43.00			(PL)	(L/min)		100	
	Flow (L/min)		19.60	7.80	8.60			1	14	68	36.7	
69	WL (L/min/m)		3.56	1.42	1.56				14	06	30.7	
Gauge	Time (min)	0.00	5.00	10.00	15.00	Jr		Head	Average	100		
Pressure	Flowmeter	560548.0	560617.0	560646.0	560686.0			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		69.00	29.00	40.00			(PL)	(L/min)			
	Flow (L/min)		13.80	5.80	8.00					424	42.5	
138	WL (L/min/m)		2.51	1.05	1.45			4	9	134	12.5	
Gauge	Time (min)	0.00	5.00	10.00	15.00	1		Head	Average	100		
Pressure	Flowmeter	560686.0	560738.0	560756.0	560758.0			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		52.00	18.00	2.00			(PL)	(L/min)			
, 3,	Flow (L/min)		10.40	3.60	0.40				5	275	3.2	
276	WL (L/min/m)		1.89	0.65	0.07		1	1	2	2/5	3.2	
Gauge	Time (min)	0.00	5.00	10.00	15.00		-	Head	Average			
Pressure	Flowmeter	560758.0	560756.0	560759.0	560761.0			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		-2.00	3.00	2.00			(PL)	(L/min)	(-)	55.24%	
	Flow (L/min)	1	-0.40	0.60	0.40		14 1		1000 10	427	0.0	
138	WL (L/min/m)		-0.07	0.11	0.07				0	137	0.3	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average			
Pressure	Flowmeter	560761.0			560761.0	v -		Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		-4.00	1.00	3.00			(PL)	(L/min)	17.7	100	
, 3,	Flow (L/min)		112151.40	112151.60	112152.20					en l	0.0	
69	WL (L/min/m)		20391.16	20391.20	20391.31			1	0	68	0.0	
test section b	elow G.W. P. = P.+	9.81(hg+hw)-PL				Lugeon Valu	e			0.3		
	bove G.W. P. = P.					Flow Type			V	oid Fil	ling	

Lugeon Value = (Flow rate/Stage length)x(1000 kPa/Pe) (P in kPa, h in metres)

1 lugeon unit (m/s)

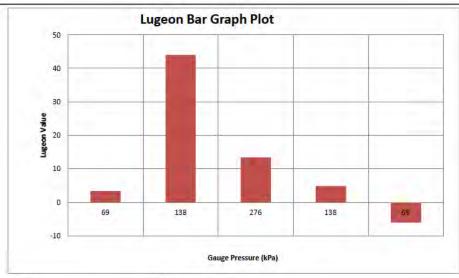
0.0000001

Lugeon

k (m/s) 0.3

2.7E-08

9.2E-07



J +64 9 486 2546 info@egl.co.nz Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752

@ www.egi.co.nz

RECORDE	R:	DATE: 7/06/2024		SITE: Bendigo						JOB	No: 9702	
OREHOLE	No: MDD327		Drill Bit Size HQ:	3	Hole Diameter	(m)	0.096		BH DEPTH	ł:	70	Notes
3.W. DEPT		0.00		bove GL (m) (hg):		177.6				Water P		14010
Test Top(m) 63.1	Base(m)		TEST LENGTH(m):		1.3		MID POINT (I			63.75	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Hea	d Averag		1.00	
Pressure	Flowmeter	562054.0	562056.0	562057.0	562057.0			Los		Pe	Lugeon	
(Pg)	Flow (L)		2.00	1.00	0.00			(PL) (L/mir)		
	Flow (L/min)		0.40	0.20	0.00			1	0	68	3.4	
69	WL (L/min/m)		0.31	0.15	0.00				v	00	3.4	
Gauge	Time (min)	0.00	5.00	10.00	15.00		1	Hea	d Averag	e	The same	
Pressure	Flowmeter	562057.0	562095.0	562133.0	562172.0			Los			Lugeon	
(Pg)	Flow (L)		38.00	38.00	39.00			(PL) (L/mir)	7.	
	Flow (L/min)		7.60	7.60	7.80		1	4	8	134	44.0	
138	WL (L/min/m)		5.85	5.85	6.00				۰	134	44.0	
Gauge	Time (min)	0.00	5.00	10.00	15.00		1	Hea	d Averag	e		
Pressure	Flowmeter	562172.0	562223.0	562235.0	562244.0			Los	s Flow	Pe	Lugeon	
(Pg)	Flow (L)		51.00	12.00	9.00			(PL) (L/mir)	11.0	
	Flow (L/min)		10.20	2.40	1.80			1	5	275	13.4	
276	WL (L/min/m)	2	7.85	1.85	1.38				3	213	13.4	
Gauge	Time (min)	0.00	5.00	10.00	15.00		2	Hea	d Averag	e	1.00	
Pressure	Flowmeter	562244.0	562235.0	562236.0	562257.0		-	Los	s Flow	Pe	Lugeon	
(Pg)	Flow (L)		-9.00	1.00	21.00			(PL) (L/mir)	12.3.3	
	Flow (L/min)		-1.80	0.20	4.20		1		1	137	4.9	
138	WL (L/min/m)		-1.38	0.15	3.23					137	4.5	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Hea	d Averag	e		
Pressure	Flowmeter	562257.0	562249.0	562249.0	562249.0			Los	s Flow	Pe	Lugeon	
(Pg)	Flow (L)		-8.00	0.00	0.00			(PL) (L/mir)	1.4.4	
4.5	Flow (L/min)		112449.80	112449.80	112449.80			1	-1	68	-6.0	
69	WL (L/min/m)		86499.85	86499.85	86499.85				-1	08	-0.0	
test section b	elow G.W. Pa = Pa+	9.81(hg+hw)-P _L				Lugeon Val	ue			3.4		
	bove G.W. P. = P.					Flow Type				Dilata	ant	

Lugeon Value = (Flow rate/Stage length)x(1000 kPa/Pe) (P in kPa, h in metres)

1 lugeon unit (m/s)

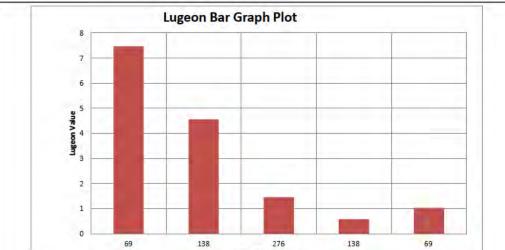
0.0000001

Lugeon

k (m/s)

3.4E-07

1.3E-06



J +64 9 486 2546 info@egl.co.nz Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752

@ www.egi.co.nz

RECORDE		DATE:		SITE: Bendigo						JOB I	No: 9702	
BOREHOLE	No: MDD362		Drill Bit Size PQ	-0	Hole Diamete	r (m)	0.1226		BH DEPTH:		35	Note
3.W. DEPT		0.00	Gauge height a	bove GL (m) (hg):					Water Pa	cker		Note
est Top(m)) 20.7	Base(m)	28.2	TEST LENGTH(m):		7.5		MID POINT (m) (hm):		24.45	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average	100	15	
Pressure	Flowmeter	56268.8	56299.0	56306.8	56321.4			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		30.20	7.80	14.60			(PL)	(L/min)	100	100000	
	Flow (L/min)		6.04		2.92			1	4	68	7.5	
69	WL (L/min/m)		0.81	0,21	0.39				4	00	1.5	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average	100	Transfer !	
Pressure	Flowmeter	56321.4	56331.3	56337.7	56390.0			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		9.90	6.40	52.30			(PL)	(L/min)			
	Flow (L/min)		1.98	1.28	10.46				5	134	4.6	
138	WL (L/min/m)		0.26	0.17	1.39			4	9	134	4.0	
Gauge	Time (min)	0.00	5.00	10.00	15.00		1	Head	Average	100.1		
Pressure	Flowmeter	56344.9	56363.4	56377.5	56390.0			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		18.50	14.10	12.50			(PL)	(L/min)		20.00	
	Flow (L/min)		3.70	2.82	2.50			1	3	275	1.5	
276	WL (L/min/m)		0.49	0.38	0.33				3	2/5	1.5	
Gauge	Time (min)	0.00	5.00	10.00	15.00		-	Head	Average		1	
Pressure	Flowmeter	56390.0	56393.8	56396.5	56399.0		-	Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		3,80	2.70	2.50			(PL)	(L/min)	100	1,12,131	
	Flow (L/min)		0.76	0.54	0.50				1	137	0.6	
138	WL (L/min/m)		0.10	0.07	0.07					137	0.0	
Gauge	Time (min)	0.00	5,00	10.00	15.00			Head	Average			
Pressure	Flowmeter	56399.0	56401.4	56404.0	56406.9			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		2,40	2.60	2.90			(PL)	(L/min)		100	
	Flow (L/min)		11280.28	11280.80	11281.38	-				60	1.0	
69	WL (L/min/m)		1504.04	1504.11	1504.18				1	68	1.0	
test section b	elow G.W. Pe = Pg+	9.81(hg+hw)-P _i				Lugeon Valu	je			1.0		
	bove G.W. P. = P.+				7	Flow Type			1	/oid Fi	lling	

If test section above G.W. $P_e = P_g+9.81(hg+hm)-P_L$ Lugeon Value = (Flow rate/Stage length)x(1000 kPa/Pe) (P in kPa, h in metres)

1 lugeon unit (m/s)

0.0000001

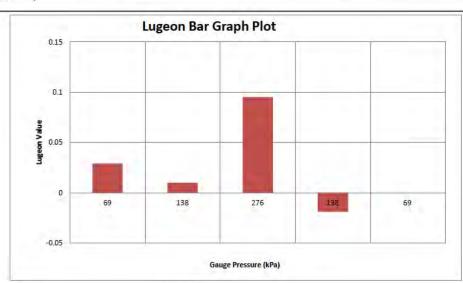
Lugeon

k (m/s) 1.0

1.0E-07

Gauge Pressure (kPa)

3.1E-07


J +64 9 486 2546
info@egl.co.nz
Unit 7C, 331 Rosedale Road, Albany, Auckland
PO Box 301054, Albany, Auckland 0752

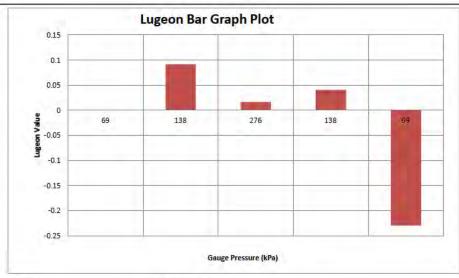
@ www.egi.co.nz

RECORDE	R:	DATE:		SITE: Bendigo						JOB	No: 9702	
OREHOLE	No: MDD362		Drill Bit Size PQ		Hole Diamete	r (m)	0.1226		3H DEPTH		35	Notes
B.W. DEPT		0.00		bove GL (m) (hg):					Water F	acker		14010
est Top(m)) 29.9	Base(m)		TEST LENGTH(m):		5.1	7	MID POINT (r			32.45	
Gauge	Time (min)	0.00	5.00	10.00	15.00		2	Hea	d Average		1.00	
Pressure	Flowmeter	56409.0	56409.1	56409.1	56409.1			Los		Pe	Lugeon	
(Pg)	Flow (L)		0.10	0.00	0.00			(PL	(L/min)		1000	
	Flow (L/min)		0.02	0.00	0.00			1	0	68	0.0	
69	WL (L/min/m)		0.00	0.00	0.00				U	00	0.0	
Gauge	Time (min)	0.00	5.00	10.00	15.00	11	1	Hea	d Average	2	Target and	
Pressure	Flowmeter	56409.4	56409.5	56409.5	56409.5	<i>y</i>		Los		Pe	Lugeon	
(Pg)	Flow (L)		0.10	0.00	0.00			(PL	(L/min)			
	Flow (L/min)		0.02	0.00	0.00		1	4	0	134	0.0	
138	WL (L/min/m)		0.00	0.00	0.00			- 4	U	134	0.0	
Gauge	Time (min)	0.00	5.00	10.00	15.00	1		Hea	d Average	9		
Pressure	Flowmeter	56409.5	56410.4	56410.8	56411.5			Los	s Flow	Pe	Lugeon	
(Pg)	Flow (L)		0.90	0.40	0.70			(PL	(L/min)	1		
	Flow (L/min)		0.18	0.08	0.14			1	0	275	0.1	
276	WL (L/min/m)	2	0.04	0.02	0.03				U	213	0.1	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Hea	d Average	2	1.5-	
Pressure	Flowmeter	56411.5	56411.3	56411.3	56411.3			Los	s Flow	Pe	Lugeon	
(Pg)	Flow (L)		-0.20	0.00	0.00			(PL) (L/min)	1	1.72	
	Flow (L/min)	4	-0.04	0.00	0.00)		1 1	0	137	0.0	
138	WL (L/min/m)		-0.01	0.00	0.00				u	131	0.0	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Hea	d Average	9		
Pressure	Flowmeter	56411.3	56411.3	56411.3	56411.3			Los	s Flow	Pe	Lugeon	
(Pg)	Flow (L)		0.00	0.00	0.00			(PL	(L/min)		7.36	
4.5	Flow (L/min)		11282.26	11282.26	11282.26	de la companya de la		1	0	68	0.0	
69	WL (L/min/m)		2212.21	2212.21	2212.21				U	08	0.0	
test section b	elow G.W. Pa = Pa+	9.81(hg+hw)-P _L				Lugeon Valu	Je		31	0.0		
	bove G.W. P. = P.					Flow Type				No FI	ow	

Lugeon Value = (Flow rate/Stage length)x(1000 kPa/Pe)

(P in kPa, h in metres)

1 lugeon unit (m/s) 0.0000001 Lugeon k (m/s) 0.0 2.3E-09



J +64 9 486 2546
info@egl.co.nz
Unit 7C, 331 Rosedale Road, Albany, Auckland
PO Box 301054, Albany, Auckland 0752

@ www.egi.co.nz

RECORDE	R:	DATE:		SITE: Bendigo						JOB I	No: 9702	
OREHOLE	No: MDD365		Drill Bit Size HQ	-0	Hole Diamete	r (m)	0.096	B	H DEPTH:		44.3	Notes
3.W. DEPT		0.00	Gauge height al	bove GL (m) (hg):					Water Pa	cker		THOTO
est Top(m)) 35.3	Base(m)	41.3	TEST LENGTH(m):		6		MID POINT (m) (hm):		38.3	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average		17.25	
Pressure	Flowmeter	56412.9	56412.9	56412.9	56412.9			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		0.00	0.00	0.00			(PL)	(L/min)		1000	
	Flow (L/min)		0.00	0.00	0.00	9.		1	0	68	0.0	
69	WL (L/min/m)		0.00	0.00	0.00				U	00	0.0	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average	100	The Revenue	
Pressure	Flowmeter	56412.9	56414.0	56414.0	56414.0			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		1.10	0.00	0.00			(PL)	(L/min)		1	
	Flow (L/min)		0.22	0.00	0.00			4	0	134	0.1	
138	WL (L/min/m)		0.04	0.00	0.00			4	, U	134	U.I	
Gauge	Time (min)	0.00	5.00	10.00	15.00	1		Head	Average			
Pressure	Flowmeter	56414.0	56414.4	56414.4	56414.4			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		0.40	0.00	0.00			(PL)	(L/min)			
	Flow (L/min)		0.08	0.00	0.00)		1	0	275	0.0	
276	WL (L/min/m)	2	0.01	0.00	0.00				U	213	0.0	
Gauge	Time (min)	0.00	5.00	10.00	15.00		-	Head	Average	100	Compared to	
Pressure	Flowmeter	56414.4	56414.9	56414.9	56414.9			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		0.50	0.00	0.00			(PL)	(L/min)		2.25	
	Flow (L/min)	4	0.10	0.00	0.00	7			0	137	0.0	
138	WL (L/min/m)		0.02	0.00	0.00				U	157	0.0	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average		U	
Pressure	Flowmeter	56414.9	56413.5	56413.5	56413.5			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		-1.40	0.00	0.00			(PL)	(L/min)		100	
4.2	Flow (L/min)		11282.70	11282.70	11282.70			1	0	68	-0.2	
69	WL (L/min/m)		1880.45	1880.45	1880.45	2 1 2 2 2 2	-		U	00	-0.2	
test section b	elow G.W. Pa = Pa+	9.81(hg+hw)-P _L				Lugeon Valu	ie			0.0		
	bove G.W. P. = P.					Flow Type				No Flo	w	

.ugeon Value = (Flow rate/Stage length)x(1000 kPa/Pe) P in kPa, h in metres)

1 lugeon unit (m/s)

0.0000001

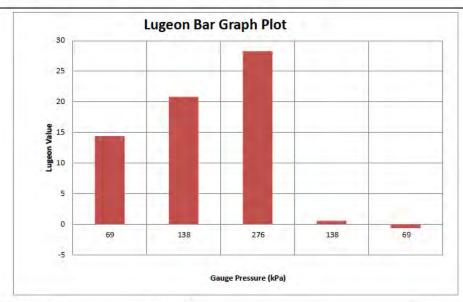
Lugeon

k (m/s) 0.0

0.0E+00

1.2E-09

K (m/s) method used k=(Ω/2πLH,) xLog₄[U/;] = Formula from Clayton C. R. I., Simons N.E., Matthews M.C., 1982, Site Investigation, pg 269 NOTE: Hole making water - bit at 34m



- →64 9 486 2546
 info@egl.co.nz
- Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
- www.egl.co.nz

RECORDER	No: MDD394	DATE:	Drill Bit Size HQ	E: Bendigo	lole Diamete	r (m)	0.096	1 B	DEPTH:	JOB	No: 9702 30	
S.W. DEPT		0.00	Gauge height above		iole Diamete	(m)	0.090	I Di	Water Pa	okor	Ju	Notes
est Top(m)	11.5	Base(m)		ST LENGTH(m):		4.5	1	MID POINT (m)		cker	13.75	
Gauge	Time (min)	0.00	5.00	10.001	15.00	4.5	-	Head			10.10	
Pressure	Flowmeter	564272	564313	564316	564317			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)	504212	41.00	3.00	1.00		1	(PL)	(L/min)		Lagouii	
(. 9)	Flow (L/min)		8.20	0.60	0.20			1 2	A-6. (1)	235	120	
69	WL (L/min/m)		1.82	0.13	0.20			1	4	68	14.4	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average			
Pressure	Flowmeter	564317	564396	564451	564505			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)	50.011	79.00	55.00	54.00		1	(PL)	(L/min)		J	
(- 3)	Flow (L/min)	- 1	15.80	11.00	10.80				Mary Company		00.0	
138	WL (L/min/m)		3.51	2.44	2.40			4	13	134	20.8	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average	11.11		
Pressure	Flowmeter	564505	564688	564853	565016			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)	1 200 91	183.00	165.00	163.00			(PL)	(L/min)	35		
(5)	Flow (L/min)		36.60	33.00	32.60			8	A	200	20.2	
276	WL (L/min/m)		8.13	7.33	7.24			0	34	268	28.3	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average			
Pressure	Flowmeter	565016	565017	565019	565021			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)	1 14	1.00	2.00	2.00			(PL)	(L/min)	1		
, ,,,	Flow (L/min)		0.20	0.40	0.40				0	137	0.5	
138	WL (L/min/m)		0.04	0.09	0.09				U	13/	0.5	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average	-		
Pressure	Flowmeter	565021	565018	565018	565018			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		-3.00	0.00	0.00			(PL)	(L/min)	100		
	Flow (L/min)		-0.60	0.00	0.00			1	0	68	-0.7	
69	WL (L/min/m)		-0.13	0.00	0.00				U	00	-0.7	
test section b	pelow G.W. Pe = Pg+9	9.81(hg+hw)-P				Lugeon Valu	ie	*		0.5		
test section a	above G.W. P. = Pa+	9.81(ha+hm)-F				Flow Type			11 - 11	Dilation	1	

Lugeon Value = (Flow rate/Stage length)x(1000 kPa/Pe)

(P in kPa, h in metres)

1 lugeon unit (m/s)

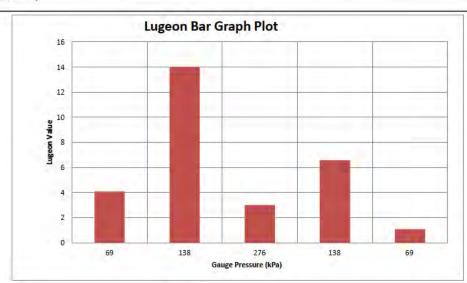
0.0000001

Lugeon 0.5

5.4E-08

K (m/s) method used $k=(Q/2\pi LH_t) \times Log_e(L/r) =$ Formula from Clayton C. R. I., Simons N.E., Matthews M.C., 1982, Site Investigation, pg 289
NOTE:

2.0E-06


J +64 9 486 2546 info@egl.co.nz Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752

@ www.egi.co.nz

RECORDE		DATE:		SITE: Bendigo						- 12	JOB I	No: 9702	
BOREHOLE	No: MDD394		Drill Bit Size HQ	-0	Hole Diamete	er (m)	0.096		BH DEF	TH:		30	Note
3.W. DEPT		0.00		bove GL (m) (hg):						er Pa	cker		Note
est Top(m) 23	Base(m)		TEST LENGTH(m):		5.4		MID POINT (m) (hm):			25.7	
Gauge	Time (min)	0.00	5.00	10.00	15.00		_	Hea	id Ave	rage	100	1	
Pressure	Flowmeter	565019	565033	565034	565034			Los	S FI	ow	Pe	Lugeon	
(Pg)	Flow (L)		14.00	1.00	0.00			(PI) (L/ı	min)		100	
	Flow (L/min)		2.80	0.20	0.00			1		2	68	4.1	
69	WL (L/min/m)		0.52		0.00					_	06	4.1	
Gauge	Time (min)	0.00	5.00	10.00	15.00	11		Hea	d Ave	rage	1	No. of the	
Pressure	Flowmeter	565034	565096	565140	565186	J		Los	s FI	ow	Pe	Lugeon	
(Pg)	Flow (L)		62.00	44.00	46.00			(PI) (L/ı	min)		7.0	
	Flow (L/min)		12.40	8.80	9.20		1			0	134	14.0	
138	WL (L/min/m)		2.30	1.63	1.70	J		4	1	U	134	14.0	
Gauge	Time (min)	0.00	5.00	10.00	15.00	1	4	Hea	d Ave	rage	1.5.1		
Pressure	Flowmeter	565186	565219	565247	565253			Los	s FI	ow	Pe	Lugeon	
(Pg)	Flow (L)		33.00	28.00	6.00		1	(PI) (L/ı	min)			
	Flow (L/min)		6.60	5.60	1.20	7	1	1		4	275	3.0	
276	WL (L/min/m)		1.22	1.04	0.22		4			4	2/5	3.0	
Gauge	Time (min)	0.00	5.00	10.00	15.00	U	1 2	He	d Ave	rage		The same	
Pressure	Flowmeter	565253	565270	565395	565326	1		Los	s FI	ow	Pe	Lugeon	
(Pg)	Flow (L)		17.00	125.00	-69.00	n .		(PI) (L/ı	min)	100	27.247	
	Flow (L/min)		3.40	25.00	-13.80) = -			3" 10	5	137	6.6	
138	WL (L/min/m)		0.63	4.63	-2.56	1				J	131	0.0	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Hea	d Ave	rage			
Pressure	Flowmeter	565326	565328	565331	565332	1		Los	s FI	ow	Pe	Lugeon	
(Pg)	Flow (L)		2.00	3.00	1.00			(PI) (L/ı	min)		100	
	Flow (L/min)		113065.60	113066.20	113066.40			- 0		2.0	co	4.4	
69	WL (L/min/m)		20938.07	20938.19	20938.22					0	68	1.1	
test section b	elow G.W. Pe = Pg+	9.81(hg+hw)-P _i				Lugeon Val	ue		- 1 E -		1.1		
	bove G.W. P. = P.+					Flow Type					Dilatio	on	

If test section above G.W. $P_e = P_g+9.81(hg+hm)-P_L$ Lugeon Value = (Flow rate/Stage length)x(1000 kPa/Pe)

(P in kPa, h in metres)

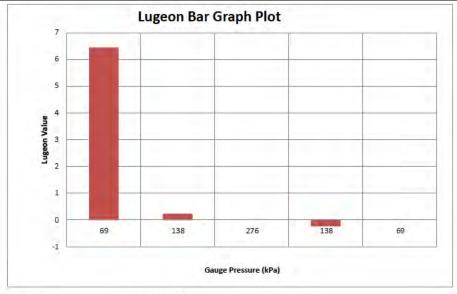
1 lugeon unit (m/s)

0.0000001

Lugeon

k (m/s) 1.1

1.1E-07


7.1E-07

- →64 9 486 2546
 info@egl.co.nz
- Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
- www.egl.co.nz

RECORDER	P*	DATE:		SITE: Bendigo							No: 9702	
	No: MDD396		Drill Bit Size HQ		Hole Diamete	r (m)	0.096	BH	DEPTH:		70.1	Notes
G.W. DEPT	H (hw):	5.10	Gauge height ab						Water Pa	cker		3.00.00
est Top(m)		Base(m)		TEST LENGTH(m):		3		MID POINT (m)	(hm):		20.5	
Gauge	Time (min)	0.00	5.00	10.00				Head	Average	13.	100	
Pressure	Flowmeter	565336		565359			+10-	Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		23.00	0.00				(PL)	(L/min)	PT.		
	Flow (L/min)		4.60	0.00					2	119	6.4	
69	WL (L/min/m)		1.53	0.00	0.00				- 4	113	0.4	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average	100	6	
Pressure	Flowmeter	565375		565377				Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)	100	2.00	0.00	0.00	_		(PL)	(L/min)	25		
	Flow (L/min)	1.0	0.40	0.00	0.00				0	188	0.2	
138	WL (L/min/m)		0.13	0.00	0.00		-		U	100	0.2	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average	-		
Pressure	Flowmeter	565391	565391	565391	565391			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)	1 3 4	0.00	0.00	0.00			(PL)	(L/min)	100		
, .,	Flow (L/min)		0.00	0.00	0.00			1.00	0	326	0.0	
276	WL (L/min/m)		0.00	0.00	0.00				U	320	0.0	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average	1		
Pressure	Flowmeter	565388	565386	565386	565386			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)	1 200	-2.00	0.00	0.00	t ==		(PL)	(L/min)			
,	Flow (L/min)		-0.40	0.00	0.00			111111111111111111111111111111111111111	0	400	-0.2	
138	WL (L/min/m)		-0.13	0.00	0.00				U	188	-0.2	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average	-		
Pressure	Flowmeter	565380	565380	565380	565380			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		0.00	0.00				(PL)	(L/min)	35		
. 3/	Flow (L/min)		0.00	0.00	0.00	, i		1158	The same of	440	0.0	
69	WL (L/min/m)		0.00	0.00					0	119	0.0	
test section b	pelow G.W. Pe = Pg+	9.81(hg+hw)-P				Lugeon Va	lue	· · · · · · · · ·		0.2		
test section a	above G.W. Pe = Po	+9.81(ha+hm)-F				Flow Type			Vo	oid Filli	ng	

Lugeon Value = (Flow rate/Stage length)x(1000 kPa/Pe) (P in kPa, h in metres)

1 lugeon unit (m/s)

0.0000001

Lugeon

k (m/s) 2.4E-08 0.2

K (m/s) method used $k=(Q/2\pi LH_t) \times Log_e(L/r) =$ Formula from Clayton C. R. I., Simons N.E., Matthews M.C., 1982, Site Investigation, pg 289
NOTE:

8.8E-08

- →64 9 486 2546
 info@egl.co.nz
- Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
- www.egl.co.nz

	No: 9702 70.1		DEPTH:	T DU	0.096	r (m)	ole Diamete	TE: Bendigo	Drill Bit Size HQ	DATE:	No: MDD396	RECORDER
Notes	70.1		Water Pag	DI	0.096	er (m)	bie Diamete					S.W. DEPT
	42.85	ker		POINT (m)	I MID DO	3.1		ST LENGTH(m):	Gauge height abov	Base(m)	11 (NW).	est Top(m)
	42.03	_		Head	IVIID	3.1	15.00	10.001	5.00	0.001	Time (min)	
	Lugeon	Pe	Average	Loss	+		565392	565392	565391	565372	Flowmeter	Gauge
	Lugeon	re	Flow	(PL)	+		0.00	1.00		505372		Pressure
	100	200	(L/min)	(FL)			0.00	0.20	19.00 3.80		Flow (L)	(Pg)
	9.4	69	2	-			0.00	0.20	1.23		Flow (L/min)	00
		-		Disad						0.00	WL (L/min/m)	69
	T. COLO	D-	Average	Head			15.00	10.00	5.00	0.00	Time (min)	Gauge
	Lugeon	Pe	Flow	Loss			565406	565406	565406	565392	Flowmeter	Pressure
		14.0	(L/min)	(PL)			0.00	0.00	14.00		Flow (L)	(Pg)
	2.2	138	1				0.00	0.00	2.80		Flow (L/min)	1.225
	A		, — 4 — U.	9	+		0.00	0.00	0.90		WL (L/min/m)	138
	75		Average	Head			15.00	10.00	5.00	0.00	Time (min)	Gauge
	Lugeon	Pe	Flow	Loss			565422	565414	565414	565406	Flowmeter	Pressure
		377	(L/min)	(PL)			8.00	0.00	8.00	1 1	Flow (L)	(Pg)
	1.2	276	4				1.60	0.00	1.60		Flow (L/min)	
	1.2	210					0.52	0.00	0.52		WL (L/min/m)	276
		100	Average	Head			15.00	10.00	5.00	0.00	Time (min)	Gauge
	Lugeon	Pe	Flow	Loss			565416	565416	565416	565422	Flowmeter	Pressure
		0.00	(L/min)	(PL)			0.00	0.00	-6.00	1	Flow (L)	(Pg)
	0.0	420	,	1100			0.00	0.00	-1.20	1	Flow (L/min)	, 3/
	-0.9	138	0				0.00	0.00	-0.39		WL (L/min/m)	138
			Average	Head			15.00	10.00	5.00	0.00	Time (min)	Gauge
	Lugeon	Pe	Flow	Loss			565416	565416	565416	565416	Flowmeter	Pressure
			(L/min)	(PL)			0.00	0.00	0.00		Flow (L)	(Pg)
			And the second	1 8 8			0.00	0.00	0.00		Flow (L/min)	(31
	0.0	69	0				0.00	0.00	0.00	-	WL (L/min/m)	69
		1.2			ie .	Lugeon Val				9.81(ha+hw)-P	pelow G.W. Pe = Pa+	
	001	id Fillir	Ve			Flow Type					bove G.W. Pe = Po+	

Lugeon Value = (Flow rate/Stage length)x(1000 kPa/Pe)

(P in kPa, h in metres)

1 lugeon unit (m/s)

0.0000001

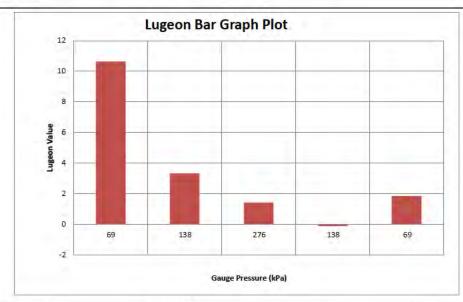
Lugeon

k (m/s) 1.2 1.2E-07

K (m/s) method used $k=(Q/2\pi LH_t) \times Log_e(L/r) =$

1.8E-07

Formula from Clayton C. R. I., Simons N.E., Matthews M.C., 1982, Site Investigation, pg 289
NOTE:



- →64 9 486 2546
 info@egl.co.nz
- Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
- www.egl.co.nz

RECORDE		DATE:		E: Bendigo	LL B: 1	7.5	0.000	1 5			No: 9702	
	No: MDD396		Drill Bit Size HQ		lole Diamete	r (m)	0.096	В	H DEPTH:		70.1	Notes
S.W. DEPT	H (hw):	0.16	Gauge height above			20		MD DON'T	Water Pa	cker	50.0	
Test Top(m)		Base(m)		T LENGTH(m):	-	3.6		MID POINT (m)			52.2	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head		3_1	. 7.73	
Pressure	Flowmeter	565398	565423	565425	565427		+111	Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		25.00	2.00	2.00		11	(PL)	(L/min)		100	
	Flow (L/min)	1	5.00	0.40	0.40				3	71	10.6	
69	WL (L/min/m)		1.39	0.11	0.11		1				10.0	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average	1	4.01	
Pressure	Flowmeter	565427	565440	565444	565452			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		13.00	4.00	8.00			(PL)	(L/min)	14.7		
	Flow (L/min)		2.60	0.80	1.60				2	139	3.3	
138	WL (L/min/m)		0.72	0.22	0.44		1	7	- 2	133	3.3	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average			
Pressure	Flowmeter	565452	565468	565472	565473			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)	1 50	16.00	4.00	1.00			(PL)	(L/min)	35		
	Flow (L/min)		3.20	0.80	0.20			1,23	4	277	1.4	
276	WL (L/min/m)	1 1-7	0.89	0.22	0.06				0	277	1.4	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average			
Pressure	Flowmeter	565473	565469	565469	565472			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)	1 200	-4.00	0.00	3.00			(PL)	(L/min)	0.7		
, 3/	Flow (L/min)	1	-0.80	0.00	0.60			1,50		420	0.4	
138	WL (L/min/m)		-0.22	0.00	0.17				0	139	-0.1	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average			
Pressure	Flowmeter	565472	565472	565475	565479			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		0.00	3.00	4.00			(PL)	(L/min)		2.0	
. 31	Flow (L/min)	- Y	0.00	0.60	0.80			1,633	The second second	74	4.0	
69	WL (L/min/m)		0.00	0.17	0.22				0	71	1.8	
	pelow G.W. Pe = Pa+	9.81(hg+hw)-P				Lugeon Va	ue	*		1.4		
	bove G.W. Pe = Po+					Flow Type			Ve	oid Filli	na	

Lugeon Value = (Flow rate/Stage length)x(1000 kPa/Pe)

(P in kPa, h in metres)

1 lugeon unit (m/s)

0.0000001

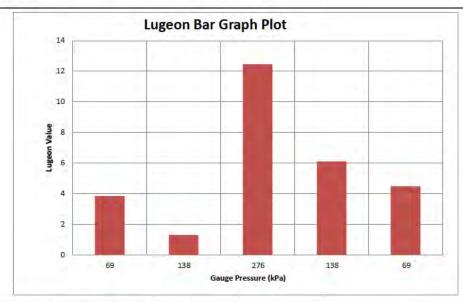
Lugeon

k (m/s) 1.4E-07

K (m/s) method used k=(Q/2 π LH_t) x Log_e(L/r) =

2.8E-07

Formula from Clayton C. R. I., Simons N.E., Matthews M.C., 1982, Site Investigation, pg 289
NOTE:



- →64 9 486 2546
 info@egl.co.nz
- Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
- www.egl.co.nz

RECORDER		DATE:		E: Bendigo							No: 9702	
	No: MDD396		Drill Bit Size HQ		Hole Diamete	er (m)	0.096	В	H DEPTH:		70.1	Notes
S.W. DEPTI		0.06	Gauge height above						Water Pa	cker		110100
Test Top(m)	61	Base(m)	64 TE	ST LENGTH(m):	700.00	3		MID POINT (m) (hm):		62.5	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average	15.1		
Pressure	Flowmeter	565530	565536	565538	565540		+1,1+	Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		6.00	2.00	2.00			(PL)	(L/min)	22		
	Flow (L/min)		1.20	0.40	0.40				4	70	3.8	
69	WL (L/min/m)		0.40	0.13	0.13		- 11			10	5.0	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average	14	5	
Pressure	Flowmeter	565550	565553	565556	565558	u		Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)	1 - 1	3.00	3.00	2.00			(PL)	(L/min)	2		
	Flow (L/min)	11	0.60	0.60	0.40				4	138	1.3	
138	WL (L/min/m)	1	0.20	0.20	0.13					130	1.3	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average	(F)	40.5	
Pressure	Flowmeter	565575	565628	565679	565730	, t		Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		53.00	51.00	51.00			(PL)	(L/min)	1		
	Flow (L/min)		10.60	10.20	10.20			1 2	10	276	12.5	
276	WL (L/min/m)		3.53	3.40	3.40				10	2/0	12.5	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average	100		
Pressure	Flowmeter	565732	565745	565759	565770			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)	4 - 4 - 4	13.00	14.00	11.00			(PL)	(L/min)	25		
	Flow (L/min)	1	2.60	2.80	2.20	1		11.00	3	138	6.1	
138	WL (L/min/m)		0.87	0.93	0.73				3	130	0.1	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average	-		
Pressure	Flowmeter	565770	565774	565778	565784			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		4.00	4.00	6.00			(PL)	(L/min)		W	
	Flow (L/min)		0.80	0.80	1.20				4	70	4.5	
69	WL (L/min/m)		0.27	0.27	0.40				1	10	4.5	
test section b	elow G.W. Pe = Pg+	9.81(hg+hw)-P				Lugeon Va	lue			1.3		
test section a	bove G.W. Pe = Po	+9.81(hg+hm)-P				Flow Type			0 = 0	Dilation	n	

Lugeon Value = (Flow rate/Stage length)x(1000 kPa/Pe)

(P in kPa, h in metres)

1 lugeon unit (m/s)

0.0000001

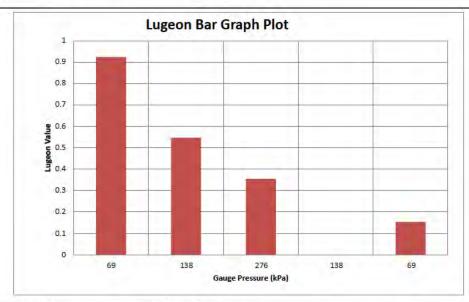
Lugeon

k (m/s) 1.3 1.3E-07

K (m/s) method used $k=(Q/2\pi LH_t) \times Log_e(L/r) =$

7.8E-07

Formula from Clayton C. R. I., Simons N.E., Matthews M.C., 1982, Site Investigation, pg 289
NOTE:



- 2 +64 9 486 2546
- info@egl.co.nz
- Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
- www.egl.co.nz

RECORDER	**	DATE:		SITE: Bendigo		- ()	0.096	1 0	I DEDTU-		No: 9702	
	No: MDD396	0.24	Drill Bit Size HQ	01/->//->	Hole Diamete	er (m)	0.096	Ы	1 DEPTH:		70.1	Note
S.W. DEPT		0.21	Gauge neight at	ove GL (m) (hg):		F 4		MID DOINT ()	Water Pa	cker	CZ DE	
Test Top(m		Base(m)		TEST LENGTH(m):	15.00	6.1		MID POINT (m)		_	67.05	
Gauge	Time (min)	0.00	5.00				-	Head		_	100000	
Pressure	Flowmeter	565861	565863	565865			-	Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		2.00	2.00				(PL)	(L/min)	0.3	-	
	Flow (L/min)		0.40				-		0	71	0.9	
69	WL (L/min/m)		0.07	0.07			1	-			0.0	
Gauge	Time (min)	0.00	5.00					Head	Average		(5. V.)	
Pressure	Flowmeter	565880	565884	565886				Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		4.00	2.00				(PL)	(L/min)	7.7	1	
	Flow (L/min)		0.80						0	140	0.5	
138	WL (L/min/m)		0.13	0.07	0.03	J.			U	140	0.3	
Gauge	Time (min)	0.00	5.00	10.00	15.00			. Head	Average			
Pressure	Flowmeter	565898	565902	565906	565907			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		4.00	4.00	1.00			(PL)	(L/min)	n n		
	Flow (L/min)		0.80	0.80	0.20					278	0.4	
276	WL (L/min/m)		0.13	0.13	0.03	U-			1	210	0.4	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average			
Pressure	Flowmeter	565902	565902	565902	565902			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)	1 1 1 1 1 1 1 1	0.00	0.00	0.00			(PL)	(L/min)	0.1		
, 5,	Flow (L/min)		0.00	0.00						440	0.0	
138	WL (L/min/m)		0.00	0.00	0.00				0	140	0.0	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average		7	
Pressure	Flowmeter	565896	565896	565896			14.	Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		0.00	0.00				(PL)	(L/min)			
. 3/	Flow (L/min)		0.00						,	7.		
69	WL (L/min/m)		0.00						0	71	0.2	
	pelow G.W. P. = Po+	9.81(hg+hw)-P				Lugeon Val	ue			0.2		
	bove G.W. Pe = Po	The second secon				Flow Type			V/	oid Fill	na	

Lugeon Value = (Flow rate/Stage length)x(1000 kPa/Pe)

(P in kPa, h in metres)

1 lugeon unit (m/s)

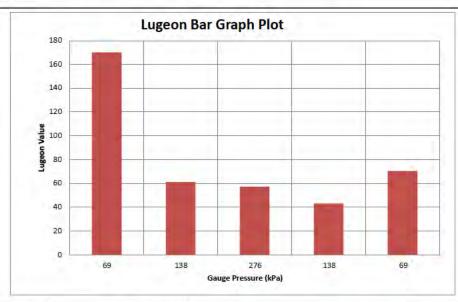
0.0000001

Lugeon 0.2

k (m/s) 1.5E-08

K(m/s) method used $k=(Q/2\pi LH_t) \times Log_e[L/r] =$

Formula from Clayton C. R. I., Simons N.E., Matthews M.C., 1982, Site Investigation, pg 269
NOTE:



- →64 9 486 2546
 info@egl.co.nz
- Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
- www.egl.co.nz

RECORDE	No: MDD399	DATE:	Drill Bit Size PQ	SITE: Bendigo	Hole Diamete	or (m)	0.1226	1 B	H DEPTH:		No: 9702 70.1	
S.W. DEPT		0.80	Gauge height ab	ovo Cl (m) (ha):		a (m)	0.1220		Water Pa		70.1	Notes
est Top(m	11 (liw).	Base(m)		TEST LENGTH(m):		3.1		MID POINT (m)		Chei	63.75	
Gauge	Time (min)	0.00			15.00		-	I Head			00.10	
Pressure	Flowmeter	566660	566941	567065			+	Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)	500000	281.00	124.00		-	+	(PL)	(L/min)		Lugoon	
(1.97	Flow (L/min)		56.20	24.80			-	()	The second		70.6%	
69	WL (L/min/m)		18.13	8.00					41	77	170.1	
Gauge	Time (min)	0.00		10.00				Head	Average			
Pressure	Flowmeter	567232	567386	567510				Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)	00.202	154.00	124.00			1	(PL)	(L/min)	35		
(. 9)	Flow (L/min)		30.80	24.80				1	A COLUMN			
138	WL (L/min/m)		9.94	8.00					28	146	61.1	
Gauge	Time (min)	0.00		10.00				Head	Average			
Pressure	Flowmeter	567707	568004	568243				Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		297.00	239.00				(PL)	(L/min)	1		
(5)	Flow (L/min)		59.40	47.80				1,3		204	F7.4	
276	WL (L/min/m)	1	19.16	15.42	14.00				50	284	57.1	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average	1	2 - 1	
Pressure	Flowmeter	568464	568561	568660	568756			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		97.00	99.00	96.00			(PL)	(L/min)			
	Flow (L/min)		19.40	19.80	19.20				19	146	43.1	
138	WL (L/min/m)		6.26	6.39	6.19				19	140	43.1	
Gauge	Time (min)	0.00	5.00	10.00	15.00			Head	Average	+		
Pressure	Flowmeter	568749	568817	568907	569000			Loss	Flow	Pe	Lugeon	
(Pg)	Flow (L)		68.00	90.00				(PL)	(L/min)	0.0	1	
	Flow (L/min)		13.60	18.00					17	77	70.3	
69	WL (L/min/m)		4.39	5.81	6.00				11		10.3	
test section b	below G.W. Pe = Pg+	9.81(hg+hw)-P	L.			Lugeon Val	ue			43.1		
test section a	above G.W. P. = Po	+9.81(hg+hm)-F	o _L			Flow Type	4.3		Vo	oid Filli	ing	

Lugeon Value = (Flow rate/Stage length)x(1000 kPa/Pe)

(P in kPa, h in metres)

1 lugeon unit (m/s)

0.0000001

Lugeon

k (m/s) 43.1 4.3E-06

K (m/s) method used $k=(Q/2\pi LH_t) \times Log_e(L/r) =$ Formula from Clayton C. R. I., Simons N.E., Matthews M.C., 1982, Site Investigation, pg 269 NOTE:

7.0E-06

meability Test Ro	esults Summary Table	e - Bendigo-Ophir G	old Project			Job Number	EGL9702
BHID	Test Type	Depth	Flow Type	Lugeon	k (m/s) 1	Corebox Photo	Geological Unit
MDD365	Packer	35.3 to 41.3	No Flow	0	1.20E-09	10: 22.5 07: 15 10: 22.5 07: 15 10: 22.5 07: 15 10: 22.5 07: 15 10: 22.5 07: 15 10: 22.5 10: 22	TZ4 Schist
MDD362	Packer	20.7 to 28.2m	Void Filling	1	3.10E-07	1020 1025 0.080 1020 1025 0.025 0.100 0.100 0.100	TZ3 Schist

- Engineering Geology Ltd

 J +64 9 486 2546

 info@egl.co.nz

 Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752

 www.egl.co.nz

neability Test Re	esults Summary Table	<u>e - Bendigo-Ophir G</u>	old Project			Job Number	EGL9702
BHID	Test Type	Depth	Flow Type	Lugeon	k (m/s) 1	Corebox Photo	Geological Uni
MDD362	Packer	29.9 to 35m	No Flow	0	4.50E-09	DO 155 Q. 155	TZ4 Schist
MDD327	Packer	48.1 to 49.4m	Void Filling	0.3	9.20E-07		TZ3 Schist
MDD327	Packer	63.1 to 64.4m	Dilation	3.4	1.30E-06		TZ4 Schist

J +64 9 486 2546
info@egl.co.nz
Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
www.egl.co.nz

meability Test R	esults Summary Table -	Benaigo-Opnir C	Joid Project			Job Number	EGL9702
BHID	Test Type	Depth	Flow Type	Lugeon	k (m/s) 1	Corebox Photo	Geological Uni
MDD394	Falling Head	5 to 7m			2.90E-07	HP. 6-6 D. O-7 R. I. P. O-E	TZ3 Schist
MDD394	Falling Head	8 to 10m			4.00E-08	HB, 10.0 E D, 114 E D C A B C	TZ3 Schist
MDD394	Falling Head	11 to 13m			-1.80E-08	10. 11.9 D. 15 R. 15 D. 10. 10.9 R. 15 D. 10.9 R. 10.9	TZ3 Schist

- → +64 9 486 2546
 info@egl.co.nz
 Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
 www.egl.co.nz

	Results Summary Table					Job Number	EGL9702
BHID	Test Type	Depth	Flow Type	Lugeon	k (m/s) 1	Corebox Photo	Geological Unit
MDD394	Falling Head	13.4 to 16m			8.20E-09	HP./6.0 E. S.	TZ3 Schist
MDD394	Packer	11.5 to 16m	Dilation	0.5	2.00E-06	RO. 11-9 D. 15-8 R. 15-5 D. 10-9 D. 10	TZ3 Schist
MDD394	Packer	23 to 28.4m	Dilation	1.1	7.10E-07		TZ3 Schist

- J +64 9 486 2546
 info@egl.co.nz
 Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
 www.egl.co.nz

	Results Summary Table -				1	Job Number	
BHID	Test Type	Depth	Flow Type	Lugeon	k (m/s) 1	Corebox Photo	Geological Unit
MDD396	Falling Head	5 to 7m			4.50E-06	HO S C C C C C C C C C C C C C C C C C C	Completely Weathered TZ3
MDD396	Falling Head	8 to 10m			4.30E-06		Highly Weathered TZ3
MDD396	Falling Head	19 to 22m			4.00E-06	10: 20.4 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5	TZ3 Schist

- → +64 9 486 2546
 info@eql.co.nz
 Unit 7C, 331 Rosedale Road, Albany, Auckland PO Box 301054, Albany, Auckland 0752
 www.egl.co.nz

MDD396 Packer 19 to 22m Void Filling 0.2 8.80E-08 Image: Control of the packer of the p	neability Test Re	esults Summary Table	<u> - Bendigo-Ophir G</u>	<u> Fold Project</u>			Job Number	EGL9702
MDD396 Packer 41.3 to 44m Void Filling 1.2 1.80E-07	BHID	Test Type	Depth	Flow Type	Lugeon	k (m/s) 1	Corebox Photo	Geological Unit
MDD396 Packer 41.3 to 44m Void Filling 1.2 1.80E-07	MDD396	Packer	19 to 22m	Void Filling	0.2	8.80E-08	10° 20° 6° 1° 6° 1° 6° 1° 6° 1° 6° 1° 6° 1° 6° 1° 6° 1° 6° 1° 1° 6° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1°	TZ3 Schist
	MDD396	Packer	41.3 to 44m	Void Filling	1.2	1.80E-07		TZ3 Schist
	MDD396	Packer	50.4 to 54m	Void Filling	1.4	2.80E-07	WSI-1 DITO LID LID LID LID LID LID LID LID LID LID	TZ3 Schist

^{###} dealing to the content of the c

ermeability Test Re	esults Summary Table	- Bendigo-Ophir (Gold Project			Job Number	EGL9702
BHID	Test Type	Depth	Flow Type	Lugeon	k (m/s) 1	Corebox Photo	Geological Unit
MDD396	Packer	61 to 64	Dilation	1.3	7.80E-07	H0.(2c 01-3 6:-13 6::1	TZ3 Schist
MDD396	Packer	64 to 70.1	Void Filling	0.2	4.50E-08		TZ3 Schist

- → +64 9 486 2546
 info@egl.co.nz

 Unit 7C, 331 Rosedale Road, Albany, Auckland
 PO Box 301054, Albany, Auckland 0752

 www.egl.co.nz

ermeability Test	Results Summary Table -	Bendigo-Ophir (Gold Project			Job Number	EGL9702
BHID	Test Type	Depth	Flow Type	Lugeon	k (m/s) 1	Corebox Photo	Geological Unit
MDD399	Falling Head	5 to 7m			3.30E-06		Completely Weathere TZ3
MDD399	Falling Head	8 to 10m			6.50E-06		Completely Weathere TZ3
				EG Geotechnical, Ed and Dam Engine	Engineering 0 J +64 9 48i info@egl Unit 7c, 3 PO Box 3 ers www.egl.	6 2546 .co.nz 331 Rosedale Road, Albany, Auckland 101054, Albany, Auckland 0752	

	Results Summary Table -					Job Number	
BHID	Test Type	Depth	Flow Type	Lugeon	k (m/s) 1	Corebox Photo	Geological Unit
MDD399	Falling Head	11 to 13m			6.20E-06		Highly Weathered Tz3
MDD399	Falling Head	15 to 17m			6.40E-06		Highly Weathered Tz3
MDD399	Falling Head	17 to 19m			6.40E-06		Highly Weathered Tz4
				EG Geotechnical, Et and Dam Engine	Engineering 0 J +64 9 48 info@egi Onit 7C,3 PO Box 3 www.egi.	Geology Ltd 6 2546 ,co.nz 331 Rosedale Road, Albany, Auckland 101054, Albany, Auckland	4

Results Summary Table	- Bendigo-Ophir G					
Test Type	Depth	Flow Type	Lugeon	k (m/s) 1	Corebox Photo	Geological Unit
Falling Head	20 to 22m			6.30E-06		TZ3 Schist
Falling Head	25 to 27m			7.30E-06		TZ3 Schist
Packer	62.2 to 65.3m	Void Filling	43.1	7.00E-06	10 (a) a (a)	TZ3 Schist
	Falling Head Falling Head	Falling Head 20 to 22m Falling Head 25 to 27m	Falling Head 25 to 27m	Falling Head 25 to 27m	Falling Head 20 to 22m Falling Head 25 to 27m Test Type Lugeon k (m/s) 6.30E-06	Falling Head 20 to 22m 6.30E-06 7.30E-06 Packer 62.2 to 65.3m Void Filling 43.1 7.00E-06

APPENDIX GLaboratory Test Results

Page 1 of 2 Pages

Reference No: CTS24W1705-1

Date: 7 October 2024

TEST REPORT - SANTANA MINERALS INVESTIGATIONS

Client Details:	Santana Minerals Limited, P.O. Box 11, Hokitika	Attention:	R. Redden
Job Description:	Santana Minerals Investigations		
Sample Description:	GRAVEL with minor sand & trace of silt	Client Order No:	N/A
Sample Source: (cs)	TZ4 PQ Material	Sample Label No:	N/A
Date & Time Sampled:	Unknown	Sampled By:	Unknown
Sample Method:	Unknown	Date Received:	30-Aug-24

	ZE ANALYSIS 986, Test 2.8.1)	100 -					0.075	0.30	1.18	52 5	13.2	16.5	63.0 75.0 1186 150	067
Test Sieve (mm)	% Passing (by mass)	90 -	T	Z4 PC	2									
26.5		80												
19.0	100													
13.2	63	70.	T	Ш							$\Box f$	Ш		
9.50	36	S 60		Н				1						
4.75	17	% Passing (6y mass)									Ш			
2.36	10	asstu												
2.00	9	2 40 2		Ш							1			
1.18	6	30		111							/			
0.60	4	20		-							/			
0.30	3	10								1				
0.212	2								-					
0.150	2	0.00	n		a.ni		A.I		r		10	-11.11.1	100	1 1 1 1 1 1
0.075	1		CIAP	Title	Medians.	Conse	Fine	Medina	Comm	Fitz	Mateurs	Comsa	COBBLES	BOULDERA
0.063	1	The	- xamp	le was i	received i	n n natm	al state.	The percer	ntage pass	ing the t	3µm test	siere was	obtained	by difference

DENSITY & ABSORPTION	N OF COARSE AGGREGATE - NZS 3111:1986, Test 12
Density SSD Basis:	2780 kg/m ³
Density Dry Basis:	2780 kg/m ³
Absorption:	0.3 %

Notes:

- Information contained in this report which is Not IANZ Accredited relates to the sample description based on NZ Geotechnical Society Guidelines 2005, the client supplied information (cs) and sampling.
- This report may not be reproduced except in full.

Tested By:

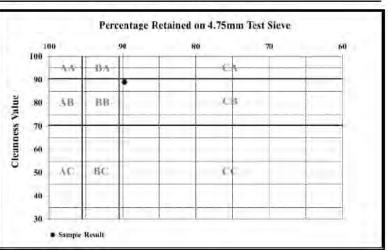
L.T. Smith

Date: 19-Sep-24 to 4-Oct-24

Checked By:

Page 2 of 2 Pages

Reference No: CTS24W1705-1


Date: 7 October 2024

TEST REPORT - SANTANA MINERALS INVESTIGATIONS

Client Details:	Santana Minerals Limited, P.O. Box 11, Hokitika	Attention:	R. Redden
Job Description:	Santana Minerals Investigations		
Sample Description:	GRAVEL with minor sand & trace of silt	Client Order No:	N/A
Sample Source: (cs)	TZ4 PQ Material	Sample Label No:	N/A
Date & Time Sampled:	Unknown	Sampled By:	Unknown
Sample Method:	Unknown	Date Received:	30-Aug-24

Specified Load:	130 kN
% Passing 2.36 mm Test Sieve:	5.2
Crushing Resistance Compliance:	Greater Than Specified Load
Estimated Crushing Resistance:	200 kN

WEATHERING RESISTANO (NZS 4407:2015, Test 3.11)	7.00
% Retained on 4.75 mm Test Sieve:	90
Cleanness Value:	89
Weathering Resistance Quality Index:	СВ

Additional Notes:

- Information contained in this report which is Not IANZ Accredited relates to the estimated crushing resistance, the sample description based on NZ Geotechnical Society Guidelines 2005, the client supplied information (cs) and sampling.
- This report may not be reproduced except in full.

Tested By:

L.T. Smith

Date:

19-Sep-24 to 4-Oct-24

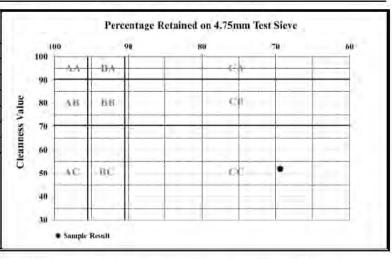
Checked By:

Approved Signatory

L.T. Smith Key Technical Personnel

Page 1of 1 Pages

Reference No: CTS24W1705-2


Date: 9 October 2024

TEST REPORT - SANTANA MINERALS INVESTIGATIONS

Client Details:	Santana Minerals Limited, P	O. Box 11, Hokitika	Attention:	R. Redden
Job Description:	Santana Minerals Investigati	ons		
Sample Description: (cs)	Scalp Cobbles / boulders from	n sample greater than 60mm dia	meter	
Sample Source: (cs)	Cherri Terrace	Sample Location:	(cs) 501	9008 (North) - 1314005 (East)
Date & Time Sampled:	Unknown	Sampled No: (cs)	MC	41762
Sample Method:	Unknown	Date Received:	30-	Aug-24

Specified Load:	130 kN
Specifica Losa.	130 K1
% Passing 2.36 mm Test Sieve:	12.9
Crushing Resistance Compliance:	Less Than Specified Load
Estimated Crushing Resistance:	110 kN

% Retained on 4.75 mm Test Sieve:	69
Cleanness Value:	52

Additional Notes:

- Information contained in this report which is Not IANZ Accredited relates to the estimated crushing resistance, the sample description based on NZ Geotechnical Society Guidelines 2005, the client supplied information (a) and sampling.
- This report may not be reproduced except in full.

Tested By:

L.T. Smith, V. Fawcett & C. Julius

Date:

25-Sep-24 to 9-Oct-24

Checked By:

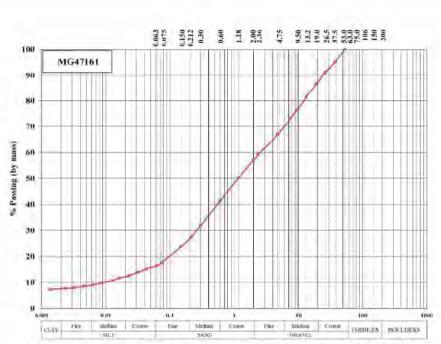
auto

Approved Signatory

C. Julius

Key Technical Personnel

Page 1 of 3 Pages


Reference No: CTS24W1705-3

Date: 11 November 2024

TEST REPORT – SANTANA MINERALS INVESTIGATIONS

Client Details:	Santana Minerals Limited, P.O. Box 11, Hokitika	Attention:	R. Redden
Job Description:	Santana Minerals Investigations		
Sample Description:	Sandy GRAVEL with minor silt & minor clay (CL)	Sample No: (cs)	MG41761
Sample Source: (cs)	Cherri Terrace	Sample Location: (cs)	5019008 - 1314005
Date & Time Sampled:	Unknown	Sampled By:	Unknown
Sample Method:	Unknown	Date Received:	30-Aug-24

	SIZE ANALYSIS 5, Test 2.8.1 & 2.8.4
Test Sieve (mm)	% Passing (by mass)
53.0	100
37.5	95
26.5	91
19.0	87
13.2	81
9.50	76
4.75	67
2.36	59
2.00	57
1.18	50
0.60	41
0.30	32
0.212	27
0.150	24
0.075	18
0.063	16
Fraction Size	Interpolated % Passing
60 µm	16
20 μm	13
6 µm	9
2 μm	8

The sample was received in a natural state. The percentage passing the 63µm test sieve was obtained by difference. The pH of the hydrometer suspension was 8.5. Sodium hexametaphosphate was used as a dispersant.

YSIS & HYDROMETER ANALYSIS RESULTS - NZS 4402:1986, Test 2.8.1 & 2.8.4 Fraction Range % Within Range % Within Range Description Description Fraction Range Coarse Gravel 60.0 mm to 20.0 mm Fine Sand 13 200 µm to 60 µm 11 Medium Gravel 20.0 mm to 6.0 mm 18 Coarse Silt 60 μm to 20 μm 3 12 Medium Silt 4 Fine Gravel 6.0 mm to 2.00 mm 20 μm to 6 μm Coarse Sand 16 Fine Silt 2.00 mm to 600 µm 6 μm to 2 μm Medium Sand 14 Clay 600 µm to 200 µm < 2 µm

Water Content: ("All In" As Received)	8.4 %
Liquid Limit; (LL)	30
Plastic Limit: (PL)	18
Plasticity Index: (PI)	12

Notes:

- USBR unified soil classification: figure 3-1
- Information contained in this report which is Not IANZ Accredited relates to the sample description based on NZ Geotechnical Society Guidelines 2005, the client supplied information (cs) and sampling.
- This report may not be reproduced except in full.

Tested By:

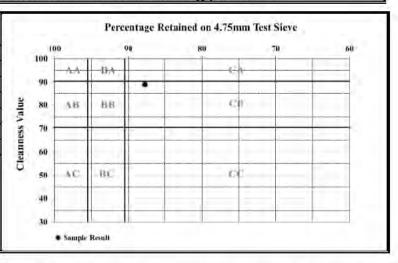
J. Smith & L.T. Smith

Date: 3 to 9-Oct-24

Checked By:

Page 1 of 1 Page

Reference No: CTS24W1705-4


Date: 21 October 2024

TEST REPORT - SANTANA MINERALS INVESTIGATIONS

Client Details:	Santana Minerals Limited, P.O. Box 11, Hokitika	Attention:	R. Redden
Job Description:	Santana Minerals Investigations		
Sample Description:	Scalp cobbles / boulders from sample greater than 60mm diameter		
Sample Source: (cs)	MG 41764 Material	Sample Label No:	N/A
Date & Time Sampled:	Unknown	Sampled By:	Unknown
Sample Method:	Unknown	Date Received:	30-Aug-24

CRUSHING RESISTANCE - NZS 4407:2015, Test 3.10							
Specified Load:	130 kN						
% Passing 2.36 mm Test Sieve:	6.5						
Crushing Resistance Compliance:	Greater Than Specified Load						
Estimated Crushing Resistance:	170 kN						

WEATHERING RESISTANCE (NZS 4407:2015, Test 3.11)						
% Retained on 4.75 mm Test Sieve:	88					
Cleanness Value:	89					
Weathering Resistance Quality Index:	СВ					

Additional Notes:

- Information contained in this report which is Not IANZ Accredited relates to the estimated crushing resistance, the sample description based on NZ Geotechnical Society Guidelines 2005, the client supplied information (a) and sampling.
- This report may not be reproduced except in full.

Tested By:

L.T. Smith, V. Fawcett & C. Julius

Date:

27-Sep to 14-Oct-24

Checked By:

LTSI

Approved Signatory

L.T. Smith Key Technical Personnel

Page 2 of 3 Pages

Reference No: CTS24W1705-3

Date: 11 November 2024

TEST REPORT – SANTANA MINERALS INVESTIGATIONS

Client Details:	Santana Minerals Limited, P.O. Box 11, Hokitika	R. Redden		
Job Description:	Santana Minerals Investigations			
Sample Description:	Sandy GRAVEL with minor silt & minor clay	Sample No: (cs)	MG41761	
Sample Source: (cs)	Cherri Terrace	Sample Location: (cs)	5019008 - 1314005	
Date & Time Sampled:	Unknown	Sampled By:	Unknown	
Sample Method:	Unknown	Date Received:	30-Aug-24	

	NZ STAI DRY DE													
% Retained (+19.0mm Fraction)	13.0 %	2				1076		5	*		0%	dr Voids	Line	
Dry Density: (+19.0mm Fraction)	2.53 t/m ³	, a.	-		1	c	1.		1		/			
Absorption (+19.0mm Fraction)	2.1 %				1		- 1		- 1	1		1		
Solid Density: (-19.0mm Fraction)	2.70 t/m ³	Density (t/m²)	140	1						1				
Maximum Dry Density: (-19.0mm Fraction)	2.01 t/m ³	Dry Densit	94	1				1		1	1		1	
Optimum Water Content: (-19.0mm Fraction)	7.5 %	ā	92	1							1		\ \ \	
Notes: The sample was receive state. The material tested in the Compaction test was the a 19.0mm test sieve. The air voids lines were the tested solid density a	he NZ Standard e fraction passing calculated from	1.20	90	,				Vater C	e a		1	1		\$ 16

Notes:

- Information contained in this report which is Not IANZ Accredited relates to the sample description based on NZ Geotechnical Society Guidelines 2005, the client supplied information (cs) and sampling.
- This report may not be reproduced except in full.

Tested By:

J. Smith & L.T. Smith

Date: 3 to 9-Oct-24

Checked By:

Reference No: CTS24W1705-3

Date: 11 November 2024

TEST REPORT – SANTANA MINERALS INVESTIGATIONS

Client Details:	Santana Minerals Limited, P.O. Box 11, Hokitika	Attention:	R. Redden
Job Description:	Santana Minerals Investigations		
Sample Description:	Sandy GRAVEL with minor silt & minor clay	Sample No: (cs)	MG41761
Sample Source: (cs)	Cherri Terrace	Sample Location: (cs)	5019008 - 1314005
Date & Time Sampled:	Unknown	Sampled By:	Unknown
Sample Method:	Unknown	Date Received:	30-Aug-24

				ZS 4402:1986, Tes - NZS 3111:1986,			
% Retained (+19.0mm Fraction)	13.0 %	2.17	10%	5%	0% Air Voids Lin	e	
Dry Density: (+19.0mm Fraction)	2.53 t/m ³	2.15		John	1 /		
Absorption (+19.0mm Fraction)	2.1 %	2.13	1	1	1		
Solid Density: (-19.0mm Fraction)	2.70 t/m ³	(n 2.11		de la companya della companya della companya de la companya della	100		
Maximum Dry Density: (-19.0mm Fraction)	2.15 t/m ³	Density 7:00	đ	1	1 1		
Optimum Water Content: (-19.0mm Fraction)	8.0 %	Q 2.09		1	1		
The sample was receive state. The material tested in to Compaction test was the a 19.0mm test sieve.	he NZ Heavy e fraction passing	2.05 2.04 2.00 2.02				1	
 The air voids lines were the tested solid density 		3	4 5	6 7 Water	Confest (%)	11 .12	n

Notes:

- Information contained in this report which is Not IANZ Accredited relates to the sample description based on NZ Geotechnical Society Guidelines 2005, the client supplied information (s) and sampling.
- · This report may not be reproduced except in full.

Tested By:

J. Smith & L.T. Smith

Date: 3 to 9-Oct-24

Checked By:

Approved Signatory

L.T. Smith

Key Technical Personnel

Page 1 of 1 Page

Reference No: CTS24W1705-5

Date: 11 November 2024

TEST REPORT – SANTANA MINERALS INVESTIGATIONS

Client Details:	Santana Minerals Limited, P.O. Box 11, Hokitika	Attention:	R. Redden
Job Description:	Santana Minerals Investigations		
Sample Description:	Sandy GRAVEL with trace of silt	Sample No: (cs)	MG41763
Sample Source: (cs)	Bendigo Borrow - Terrace Gravel Fines	Sample Location: (cs)	5019711 - 1310561
Date & Time Sampled:	Unknown	Sampled By:	Unknown
Sample Method:	Unknown	Date Received:	30-Aug-24

	ZE ANALYSIS 986, Test 2.8.1)						0.053	30 12	0 S	36 38	50	9 9 9 9	25.5	8	
Test Sieve (mm)	% Passing (by mass)		100	MG 41	763		33 3	ŭ 9.	6 4	44	32	- 22	W4E1		
53.0	100		90	П	HH	+++						1			Н
37.5	99		80												
26.5	95														
19.0	88		70								/	1771			Ħ
13.2	77	muss)	60											-1-14	
9.50	70	(by	50							/					
4.75	53	% Passing (by	30							/					
2.36	37	200	40	ĦĦ			Ш		Ш	1		ttt			H
2.00	34		30	+++					1	"					Н
1.18	28		20												
0.60	19							/							
0.30	9		10												Н
0.212	6		0.001		0.01		0.1				10		100		100
0.150	.5		CLA	Fye	Medono	Creams	Pioc	Medining	Contra	Fire	Medina	Corpl	COBBLES	BOUTDER	
0.075	3		The sai	nple wa	sur s received i	n a natur	alstate.	The perce	ntage pas	sing the	63µm tes	sieve wa	s obtained	by differe	nce
0.063	3	il"													

WATER CONTENT & PLASTICITY INDE	X RESULTS - NZS 4402:1986, Test 2.1, 2.2, 2.3 & 2.4
Water Content: ("All In" As Received)	3.4 %
Liquid Limit: (LL)	Not Applicable (NA)
Plastic Limit: (PL)	Non - Plastic (NP)
Plasticity Index: (PI)	Non - Plastic (NP)

Notes:

- Information contained in this report which is Not IANZ Accredited relates to the sample description based on NZ Geotechnical Society Guidelines 2005, the client supplied information (cs) and sampling.
- This report may not be reproduced except in full.

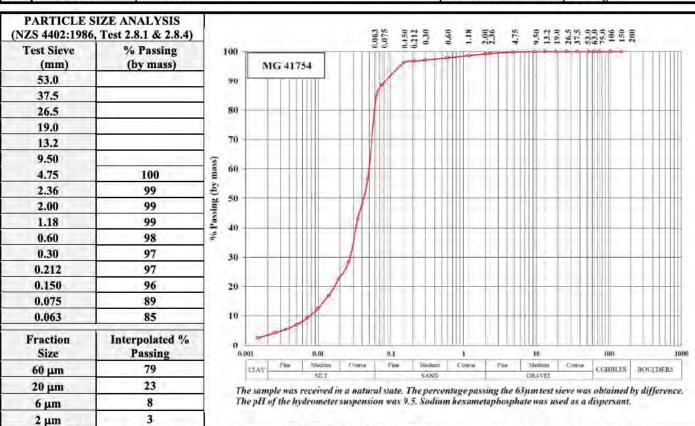
Tested By:

T. Shaw, K. Hedges & L.T. Smith Date: 24 to 31-Oct-24

Checked By:

Approved Signatory

L.T. Smith **Key Technical Personnel**



Reference No: CTS24W1705-6

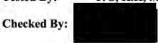
Date: 15 November 2024

TEST REPORT – SANTANA MINERALS INVESTIGATIONS

Client Details:	Santana Minerals Limited, P.O. Box 11, Hokitika	Attention:	R. Redden
Job Description:	Santana Minerals Investigations		
Sample Description:	SILT with some sand, trace of clay & trace of gravel	Sample No: (cs)	MG 41754
Sample Source: (cs)	Loess	Sample Location: (cs)	5016805 - 1317923
Date & Time Sampled:	Unknown	Sampled By:	Unknown
Sample Method:	Unknown	Date Received:	30-Aug-24

PARTICLE SIZE ANALYSIS & HYDROMETER ANALYSIS RESULTS - NZS 4402:1986, Test 2.8.1 & 2.8.4 % Within Range % Within Range Description Fraction Range Description Fraction Range Coarse Gravel 60.0 mm to 20.0 mm Fine Sand 200 µm to 60 µm 18 Medium Gravel 20.0 mm to 6.0 mm Coarse Silt 56 60 μm to 20 μm Fine Gravel 1 Medium Silt 15 6.0 mm to 2.00 mm 20 µm to 6 µm Coarse Sand 1 Fine Silt 5 2.00 mm to 600 µm 6 μm to 2 μm Medium Sand 1 Clay 3 600 µm to 200 µm < 2 µm

Water Content: ("All In" As Received)	2.0 %
Liquid Limit: (LL)	Not Applicable (NA)
Plastic Limit: (PL)	Non - Plastic (NP)
Plasticity Index: (PI)	Non - Plastic (NP)


Notes:

- Information contained in this report which is Not IANZ Accredited relates to the sample description based on NZ Geotechnical Society Guidelines 2005, the client supplied information (cs) and sampling.
- · This report may not be reproduced except in full.

Tested By:

T. S, K.H, M.D, V.F & L.T.S

Date: 24-Oct-24 to 14-Nov-24

Test results indicated as not accredited are outside the scope of the laboratory's accreditation

LABORA

Reference No: CTS24W1705-6

Date: 15 November 2024

TEST REPORT – SANTANA MINERALS INVESTIGATIONS

Client Details:	Santana Minerals Limited, P.O. Box 11, Hokitika	Attention:	R. Redden
Job Description:	Santana Minerals Investigations		
Sample Description:	SILT with some sand, trace of clay & trace of gravel	Sample No: (cs)	MG 41754
Sample Source: (cs)	Loess	Sample Location: (cs)	5016805 - 1317923
Date & Time Sampled:	Unknown	Sampled By:	Unknown
Sample Method:	Unknown	Date Received:	30-Aug-24

2012-1-1-1		1.84		10%	5%		0% Air Volds Line		
% Retained (+19.0mm Fraction)	0.0 %	1.83			À				
Solid Density: (-19.0mm Fraction)	2.74 t/m ³	1.82			2	1			
Maximum Dry Density:	1.82 t/m ³	1.70	0		1	1			
Optimum Water Content:	13.0 %	(H) 1.78							
otes: The sample was received i state. The material tested in the Compaction test was whole The air voids lines were counter the tested solid density about	NZ Standard le soil. alculated from	DA Density (1/m2)	9 10 11	п и	14 I5 Water Con	to 17	11 19	20 21	n

Notes:

- Information contained in this report which is Not IANZ Accredited relates to the sample description based on NZ Geotechnical Society Guidelines 2005, the client supplied information (cs) and sampling.
- . This report may not be reproduced except in full.

Tested By:

T. S, K.H, M.D, V.F & L.T.S

Date: 24-Oct-24 to 14-Nov-24

Checked By:

Reference No: CTS24W1705-7

Date: 25 November 2024

<u>TEST REPORT – SANTANA MINERALS INVESTIGATIONS</u>

Client Details:	Santana Minerals Limited, P.O. Box 11, Hokitika		Attention:	R. Redden
Job Description:	Santana Minerals Investigations			
Sample Description:	GRAVEL with some cobbles, minor sand & trace of silt		Sample No: (cs)	MG 41755
Sample Source: (cs)	Weathered brown schist x2	Sampl	le Location: (cs)	5017377 - 1317920
Date & Time Sampled:	Unknown	Sampl	led By:	Unknown
Sample Method:	Unknown	Date I	Received:	30-Aug-24

A LULES DE DES CO.	ZE ANALYSIS 986, Test 2.8.1)						1	0.003	0.30	0.60	136	5.50	37.5	63.0 75.0 106 150	117	
Test Sieve (mm)	% Passing (by mass)		100	N	IG 41	755		0			Ì			1	TII	
150.0	100	1	90		-				++++					/		₩
106.0	98	11.														Ш
75.0	93		80	\Box	H		Ш		1-1-1-	1111	1111					Ш
63.0	88	11	70													Ш
53.0	79															
37.5	65	1888	60										//			Ш
26.5	56	ě,											1			
19.0	48	% Passing (by mass)	50	1						1111			1			Ħ
13.2	41	Passi	40									/				Ш
9.50	34	20	40													Ш
4.75	22		30									/				Ш
2.36	15	i														Ш
2.00	14		20	-								-				₩
1.18	11		1								-					Ш
0.60	8		10													Ħ
0.30	7		0													Ш
0.212	6	1		001		0.01	T India	0.1	Ton	T		10	T is	100		- 1
0.150	6			CHEY	Fine	Meilitte	Caltrie	Fine	Medium	Come	Fire	Medium	C/mrse	COBBLES	BOULDE	RS
0.075	5		7	he sam	ple wo	s received	in a natur	al state	The percen	ntage pass	sing the t	3um test	sieve was	obtained	n differ	ene
0.063	4		- 1				- major						19.00			

Water Content: ("All In" As Received)	1.2 %
Liquid Limit: (LL)	31
Plastic Limit: (PL)	27
Plasticity Index: (PI)	4

Notes:

- Information contained in this report which is Not IANZ Accredited relates to the sample description based on NZ Geotechnical Society Guidelines 2005, the client supplied information (cs) and sampling.
- This report may not be reproduced except in full.

Tested By: T. Shaw, K. Hedges, L.T. Smith & V. Fawcett Date: 6 to 18-Nov-24

Checked By:

Reference No: CTS24W1705-7

Date: 25 November 2024

TEST REPORT – SANTANA MINERALS INVESTIGATIONS

Client Details:	Santana Minerals Limited, P.O. Box 11, Hokitika	R. Redden		
Job Description:	Santana Minerals Investigations			
Sample Description:	GRAVEL with some cobbles, minor sand & trace of silt	_ = = :	Sample No: (cs)	MG 41755
Sample Source: (cs)	Weathered brown schist x2	Sampl	e Location: (cs)	5017377 - 1317920
Date & Time Sampled:	Unknown	Sampl	ed By:	Unknown
Sample Method:	Unknown	Date F	Received:	30-Aug-24

	DRI DE	NSITY & AI	bold He	11-112		.,,,,,,	1050 12			
% Retained (+19.0mm Fraction)	52.0 %	2.00	10%			5%	0% A	ir Veids Lin		
Dry Density: (+19.0mm Fraction)	2.60 t/m ³	2.17				1				
Absorption (+19.0mm Fraction)	2.3 %	2.16				Ser.	0			
Solid Density: (-19.0mm Fraction)	2.72 t/m ³	(all 214			1			1		
Maximum Dry Density: (-19.0mm Fraction)	2.16 t/m ³	Ory Density (Um ³)			1		1			
Optimum Water Content: (-19.0mm Fraction)	8.0 %	211			-		7			
Notes:		230		1			1			
 The sample was receive state. 	d in a natural	2.05		1			1			
 The material tested in the Compaction test was the a 19.0mm test sieve. 	to a very management of the contract of the co	207				>	1		1	
The air voids lines were the tested solid density a		206 1	4 9	6		Water	S Ontent (%)	10	11 12	13 1

Notes:

- Information contained in this report which is Not IANZ Accredited relates to the sample description based on NZ Geotechnical Society Guidelines 2005, the client supplied information (cs) and sampling.
- This report may not be reproduced except in full.

Tested By:

T. Shaw, K. Hedges, L.T. Smith & V. Fawcett Date: 6 to 18-Nov-24

Checked By:

Test results indicated as not accredited are outside the scope of the

Page 1 of 1 Page

Reference No: CTS24W1705-8

Date: 25 November 2024

<u>TEST REPORT – SANTANA MINERALS INVESTIGATIONS</u>

Client Details:	Santana Minerals Limited, P.O. Box 11, Hokitika	R. Redden		
Job Description:	Santana Minerals Investigations			
Sample Description:	Sandy SILT with some gravel & some clay, organics presen	t	Sample No: (cs)	MG 41757
Sample Source: (cs)	Topsoil x3	San	ple Location: (cs)	5017501 - 1317967
Date & Time Sampled:	Unknown	San	pled By:	Unknown
Sample Method:	Unknown	Dat	e Received:	30-Aug-24

	IZE ANALYSIS Test 2.8.1 & 2.8.4)						100	0.075	0.30	1.18	36	50	26.5	63.6 75.0 106 150	2100	
Test Sieve (mm)	% Passing (by mass)		100	N	IG 417	57	Ш									П
53.0			90		-	THE STATE OF	+++		++++			1			-44	1111
37.5												8111				
26.5	100		80					-	++++							
19.0	99				444											Ш
13.2	97		70		-	1111										+++
9.50	95	6						1								
4.75	88	Ē	60		-			1	1111						-	111
2.36	83	% Passing (by mass)														
2.00	82	ing	50				1		1111							
1.18	77	Pass	40				1									
0.60	72	\$	700						1111							
0.30	67	П.	30				1	Ш		Ш						Щ
0.212	66					1			1111							
0.150	64		20	\vdash	+											
0.075	54				_											
0.063	51		10			-		-	++++	-					- 11	+++
Fraction Size	Interpolated % Passing		6	.001		0.01	Ш	0.1		ı.		19		100		Щ
60 µm	51			CLÁY	File	Message	Conse	Free	Moditor	Coine	Fine	Medium	Conse	COBBLES	BOUL	DERS
20 μm	31		T	he sam	ole was		n a nature	l state	71	stane nas	ino the		sieve wa	s obtained	by diff	ferene
6 µт	19													dispersant.		
2 μm	12															

PARTI	CLE SIZE ANALYSIS &	HYDROMETER ANA	LYSIS RESULTS -	NZS 4402:1986, Test 2.8	.1 & 2.8.4
Description	Fraction Range	% Within Range	Description	Fraction Range	% Within Range
Coarse Gravel	60.0 mm to 20.0 mm	1	Fine Sand	200 μm to 60 μm	14
Medium Gravel	20.0 mm to 6.0 mm	9	Coarse Silt	60 μm to 20 μm	20
Fine Gravel	6.0 mm to 2.00 mm	8	Medium Silt	20 μm to 6 μm	12
Coarse Sand	2.00 mm to 600 µm	10	Fine Silt	6 μm to 2 μm	7
Medium Sand	600 um to 200 um	7	Clav	< 2 um	12

	ONTENT RESULTS - NZS 4402:1986, Test 2.1, 2.7.1 & 3.1.2
Water Content: ("All In" As Received)	20.7 %
Solid Density:	2.61 t/m ³
Organic Content:	1.66 %

Notes:

- Information contained in this report which is Not IANZ Accredited relates to the sample description based on NZ Geotechnical Society Guidelines 2005, the client supplied information (cs) and sampling.
- This report may not be reproduced except in full.

Tested By: K. Hedges, V. Fawcett, L.T. Smith & C. Henderson Date: 6 to 14-Nov-24

Checked By:

Approved Signator

Reference No: CTS24W1705-7

Date: 25 November 2024

<u>TEST REPORT – SANTANA MINERALS INVESTIGATIONS</u>

Client Details:	Santana Minerals Limited, P.O. Box 11, Hokitika	R. Redden		
Job Description:	Santana Minerals Investigations			
Sample Description:	GRAVEL with some cobbles, minor sand & trace of silt		Sample No: (cs)	MG 41755
Sample Source: (cs)	Weathered brown schist x2	Sampl	e Location: (cs)	5017377 - 1317920
Date & Time Sampled:	Unknown	Sampl	ed By:	Unknown
Sample Method:	Unknown	Date R	Received:	30-Aug-24

	DRY DE	NSITY & A	BSORPTION - 1	NZS 3111:1986	6, Test 12	
% Retained (+19.0mm Fraction)	52.0 %	2.29	10%	5%	9% Air Volda	Line
Dry Density: (+19.0mm Fraction)	2.60 t/m ³	2.25		1	P. \	
Absorption (+19.0mm Fraction)	2.3 %	2.26		Y	\wedge	
Solid Density: (-19.0mm Fraction)	2.72 t/m ³	(125 (b) 224		and a		
Maximum Dry Density: (-19.0mm Fraction)	2.27 t/m ³	Dry Density (t/m²)	1	000	1 1	\
Optimum Water Content: (-19.0mm Fraction)	6.5 %	221			1 /	
• The sample was received state.	d in a natural	2.20		1		
 The material tested in the Compaction test was the a 19.0mm test sieve. 	AND THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED ADDRESS OF THE PERSON NAMED ADDRESS OF THE PERSON NAMED ADDRESS	2.18		1	1	1
The air voids lines were the tested solid density a	The state of the s	2.17	1 4	5 Wat	6 7 8 er Content (%)	0 10

Notes:

- Information contained in this report which is Not IANZ Accredited relates to the sample description based on NZ Geotechnical Society Guidelines 2005, the client supplied information (5) and sampling.
- · This report may not be reproduced except in full.

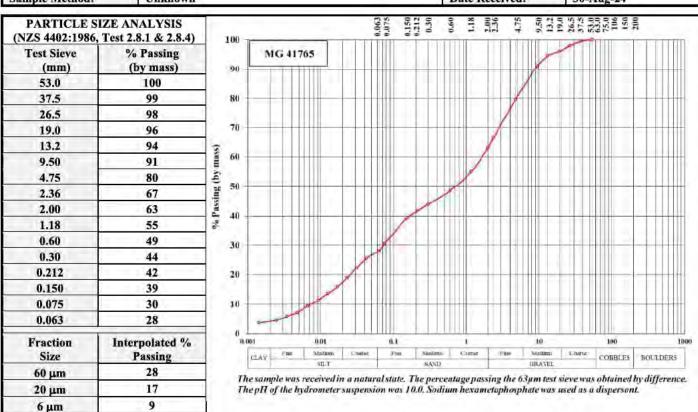
Tested By: T. Shaw, K. Hedges, L.T. Smith & V. Fawcett Date: 6 to 18-Nov-24

Checked By:

Approved Signatury

L.T. Smith

Key Technical Personnel



Reference No: CTS24W1705-9

Date: 25 November 2024

<u>TEST REPORT – SANTANA MINERALS INVESTIGATIONS</u>

Client Details:	Santana Minerals Limited, P.O. Box 11, Hokitika	Attention	R. Redden
Job Description:	Santana Minerals Investigations		
Sample Description:	Silty Sandy GRAVEL with trace of clay	Sample No: (cs)	MG 41765
Sample Source: (cs)	Alluvium / colluvium	Sample Location:	Not Stated
Date & Time Sampled:	Unknown	Sampled By:	Unknown
Sample Method:	Unknown	Date Received:	30-Aug-24

2 µm PARTICLE SIZE ANALYSIS & HYDROMETER ANALYSIS RESULTS - NZS 4402:1986, Test 2.8.1 & 2.8.4 % Within Range % Within Range Description Fraction Range Description Fraction Range Coarse Gravel 60.0 mm to 20.0 mm Fine Sand 4 200 µm to 60 µm 13 Medium Gravel 20.0 mm to 6.0 mm 13 Coarse Silt 11 60 μm to 20 μm 20 Medium Silt Fine Gravel 6.0 mm to 2.00 mm 8 20 μm to 6 μm Coarse Sand 14 Fine Silt 5 2.00 mm to 600 µm 6 μm to 2 μm Medium Sand 8 Clay 600 µm to 200 µm < 2 µm

PLASTICITY INDEX RESULTS - NZS 4402:1986, Test 2.2, 2.3 &2.4						
Liquid Limit: (LL)	43					
Plastic Limit: (PL)	34					
Plasticity Index: (PI)	9					

Notes:

- Information contained in this report which is Not IANZ Accredited relates to the sample description based on NZ Geotechnical Society Guidelines 2005, the client supplied information (cs) and sampling.
- This report may not be reproduced except in full.

4

Tested By:

K. Hedges, V. Fawcett & L.T. Smith Date: 8 to 14-Nov-24

Checked By:

Reference No: CTS24W1705-9

Date: 25 November 2024

TEST REPORT – SANTANA MINERALS INVESTIGATIONS

Client Details:	Santana Minerals Limited, P.O. Box 11, Hokitika	Attention	R. Redden
Job Description:	Santana Minerals Investigations		1.0.0
Sample Description:	Silty Sandy GRAVEL with trace of clay	Sample No: (cs)	MG 41765
Sample Source: (cs)	Alluvium / colluvium	Sample Location:	Not Stated
Date & Time Sampled:	Unknown	Sampled By:	Unknown
Sample Method:	Unknown	Date Received:	30-Aug-24

100 CO 11 CO 12 C		10.141		10%		5%	0% Air Volds L	Inc
% Retained (+19.0mm Fraction)	4.0 %	1.91				1		
Solid Density: (-19.0mm Fraction)	2.70 t/m ³	£50		Land		1		
Maximum Dry Density: (-19.0mm Fraction)	1.89 t/m ³	1.89		1		1		
Optimum Water Content: (-19.0mm Fraction)	10.0 %	Density (t/m³)	,	/	1	1		
Notes: The sample was received in a natural state. The material tested in the NZ Standard Compaction test was the fraction passing a 19.0mm test sieve. The air voids lines were calculated from the tested solid density above.		DQ 2.87						
		1.64	7 8	. 10	11 12	0 0	15 16	(7 18

Notes:

- Information contained in this report which is Not IANZ Accredited relates to the sample description based on NZ Geotechnical Society Guidelines 2005, the client supplied information (cs) and sampling.
- This report may not be reproduced except in full.

Tested By:

K. Hedges, V. Fawcett & L.T. Smith Date: 8 to 14-Nov-24

Checked By:

Test results indicated

Reference No: CTS24W1705-9

Date: 25 November 2024

TEST REPORT – SANTANA MINERALS INVESTIGATIONS

Client Details:	Santana Minerals Limited, P.O. Box 11, Hokitika	Attention	: R. Redden
Job Description:	Santana Minerals Investigations		
Sample Description:	Silty Sandy GRAVEL with trace of clay	Sample No: (cs)	MG 41765
Sample Source: (cs)	Alluvium / colluvium	Sample Location:	Not Stated
Date & Time Sampled:	Unknown	Sampled By:	Unknown
Sample Method:	Unknown	Date Received:	30-Aug-24

V3 (2) (3) (3)		- 0	10%	59	6	0% Air V	olds Line	
% Retained (+19.0mm Fraction)	4.0 %	2.07		1		1		
Solid Density: (-19.0mm Fraction)	2.70 t/m ³	2.05			day.			
Maximum Dry Density: (-19.0mm Fraction)	2.05 t/m ³	2.04	1	1	11			
Optimum Water Content: (-19.0mm Fraction) 9.5 %		(₁ H/ ₁) (i)		\ /	1	V.		
 The sample was received state. The material tested in the Compaction test was the ja 19.0mm test sieve. The air voids lines were conthe tested solid density about the tested solid density ab	NZ Heavy fraction passing alculated from	2.00 2.00 1.99 1.98 1.97 1.96			9 10			

Notes:

- Information contained in this report which is Not IANZ Accredited relates to the sample description based on NZ Geotechnical Society Guidelines 2005, the client supplied information (cs) and sampling.
- This report may not be reproduced except in full.

Tested By:

K. Hedges, V. Fawcett & L.T. Smith Date: 8 to 14-Nov-24

Checked By:

Approved Signatory

L.T. Smith

Key Technical Personnel

Reference No: CTS24W1705-6

Date: 15 November 2024

TEST REPORT – SANTANA MINERALS INVESTIGATIONS

Client Details:	Santana Minerals Limited, P.O. Box 11, Hokitika	Attention:	R. Redden
Job Description:	Santana Minerals Investigations		
Sample Description:	SILT with some sand, trace of clay & trace of gravel	Sample No: (cs)	MG 41754
Sample Source: (cs)	Loess	Sample Location: (cs)	5016805 - 1317923
Date & Time Sampled:	Unknown	Sampled By:	Unknown
Sample Method:	Unknown	Date Received:	30-Aug-24

O/ Databased		1.94			10%		5%		024	Air Void	s Line			
% Retained (+19.0mm Fraction)	0.0 %	1.93	=	1-1	X	-	1		1				-	-
Solid Density: (-19.0mm Fraction) 2.74 t/m ³		1.92			1		1			1				
Maximum Dry Density: (-19.0mm Fraction) 1.92 t/m ³		1.89		1		1	1	1			1			
Optimum Water Content: (-19.0mm Fraction) 11.0 %		Density (t/m ²)				- 3		1	1		-			
Notes:							1	1	1			1		
The sample was receive state.	ed in a natural	C 1.82					1		1	1				
The material tested in to Compaction test was with		1.79						1	1	-			1	
The air voids lines were calculated from the tested solid density above.		1.78						X		1	1			
		1.76				-			1	1	- 1	Λ.		1
		1.75							1	10	•	1		1
		1,73	9	8 9	10	n	12	13	14	15 I	6 1	7 0	19	20
		1000	Ŷ	B 9	10	n		Conter	-	5 1	6 1	7 1	19	

Notes:

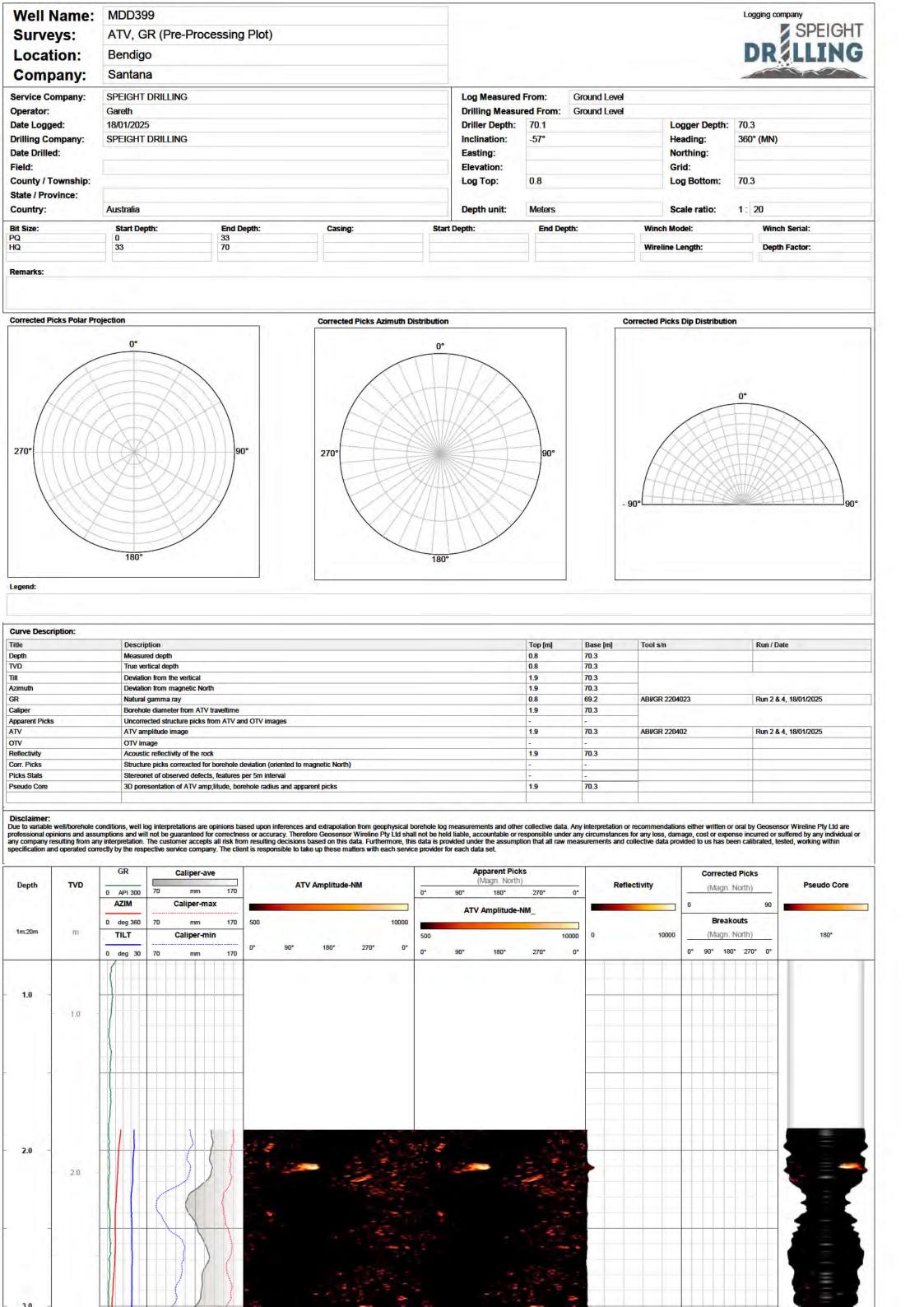
- Information contained in this report which is Not IANZ Accredited relates to the sample description based on NZ Geotechnical Society Guidelines 2005, the client supplied information (cs) and sampling.
- This report may not be reproduced except in full.

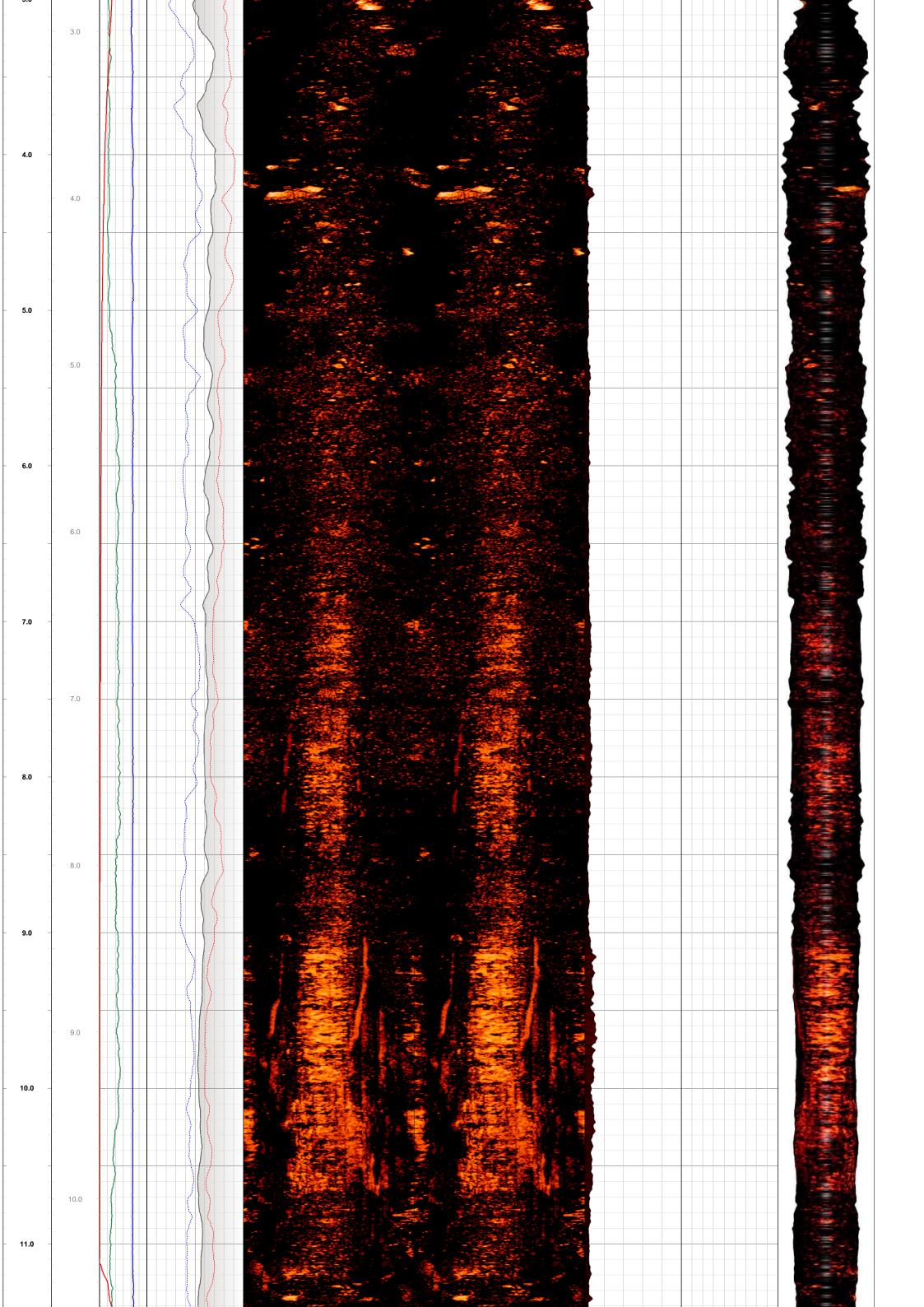
Tested By:

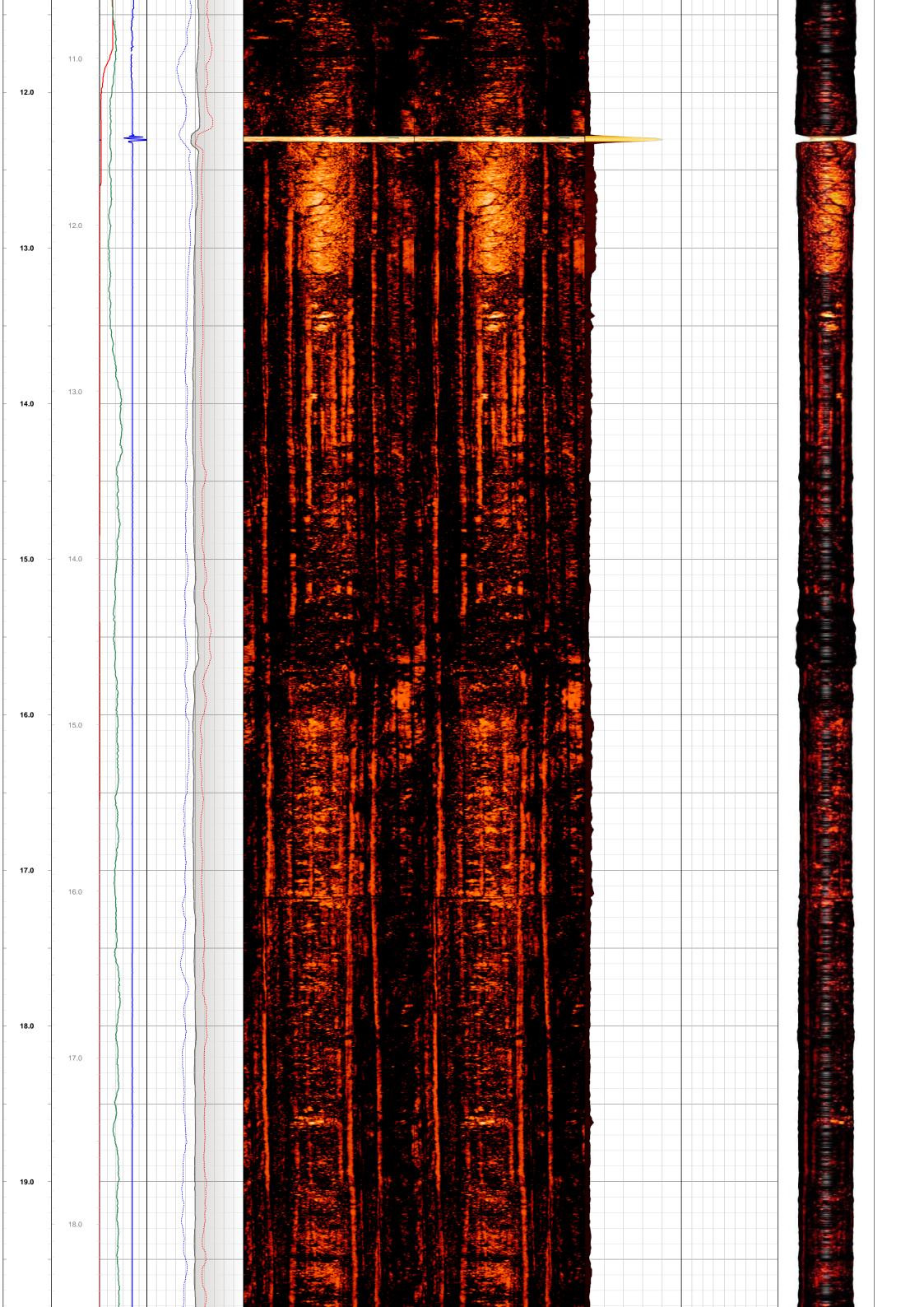
T. S, K.H, M.D, V.F & L.T.S

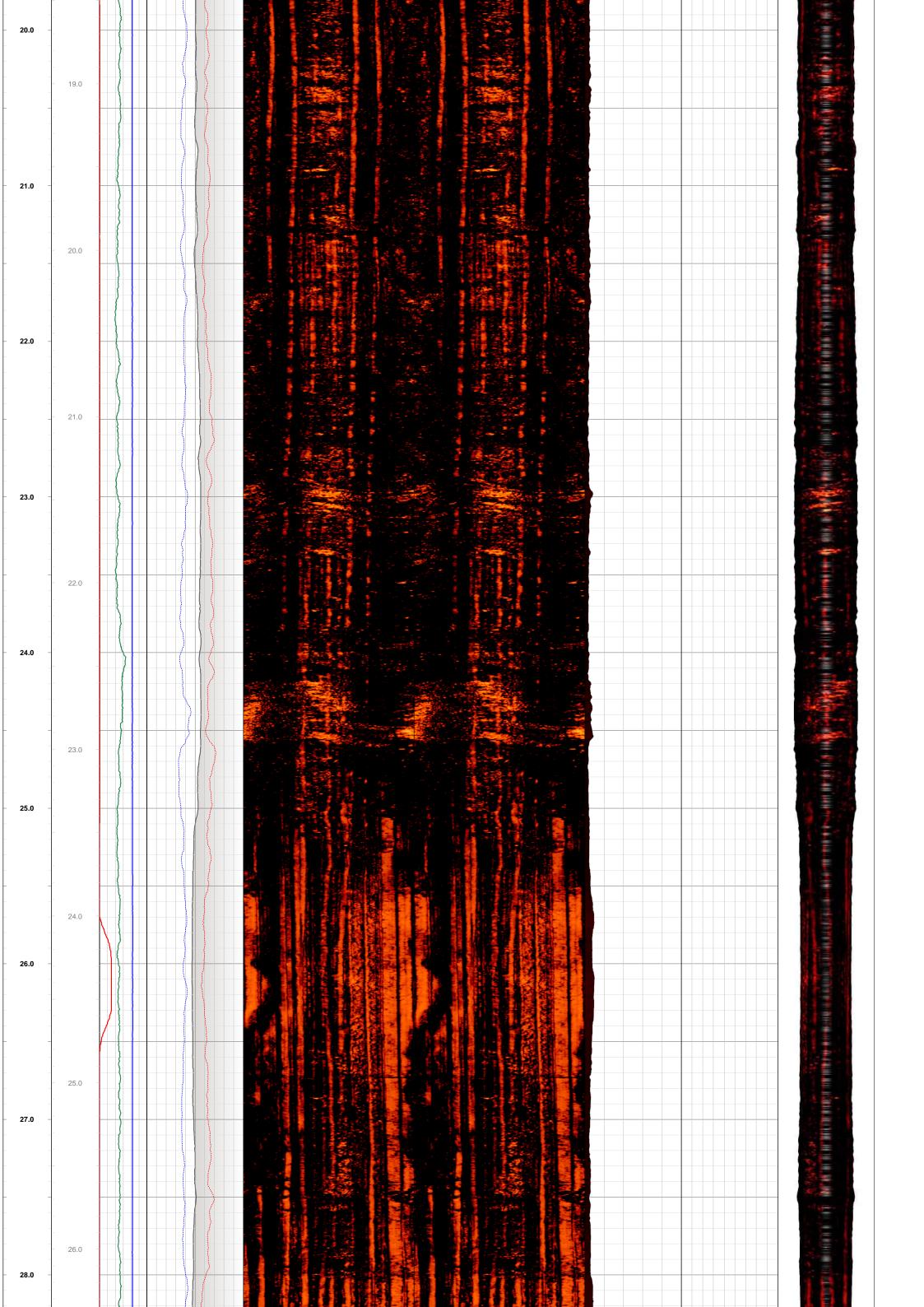
Date: 24-Oct-24 to 14-Nov-24

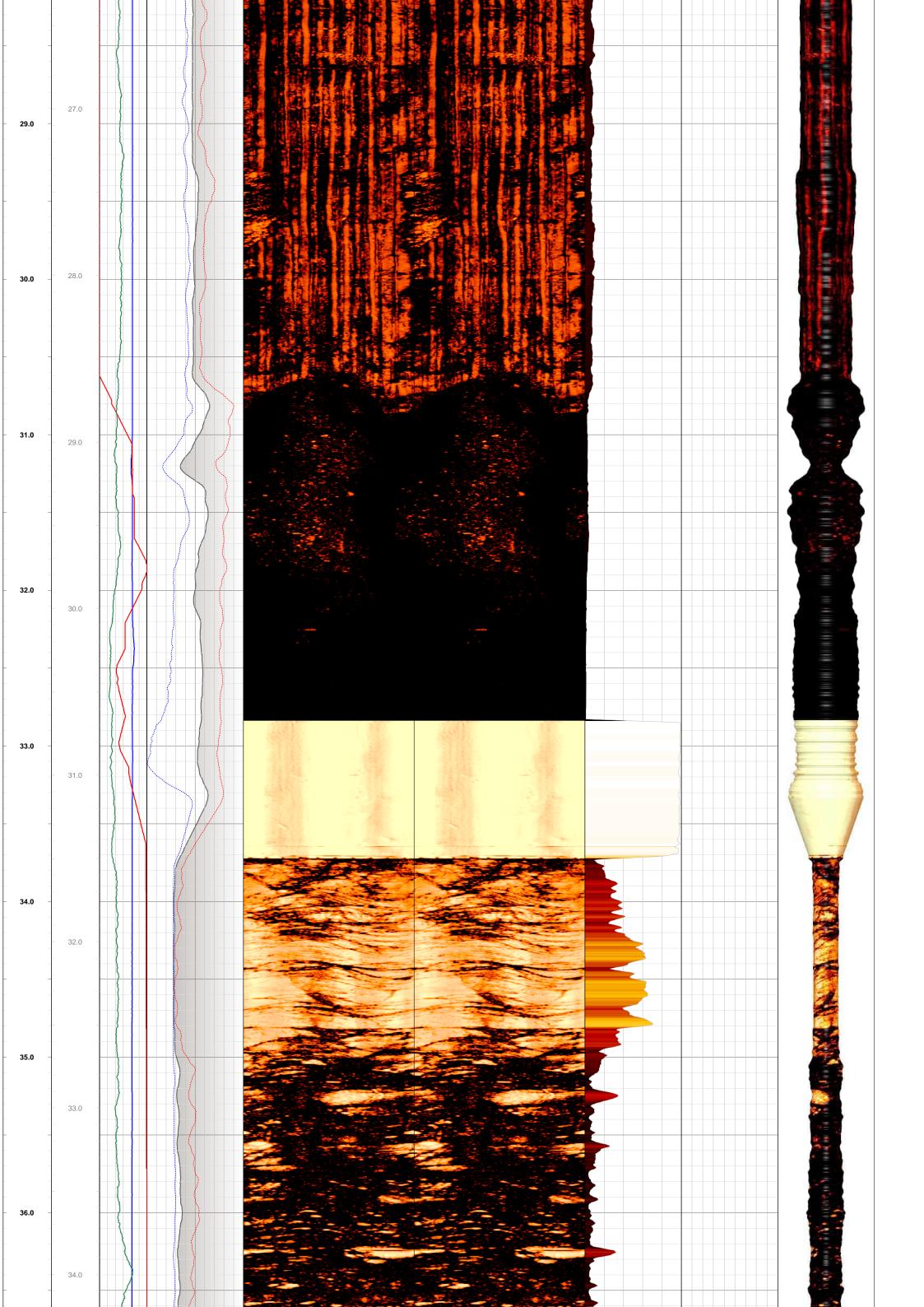
Checked By:

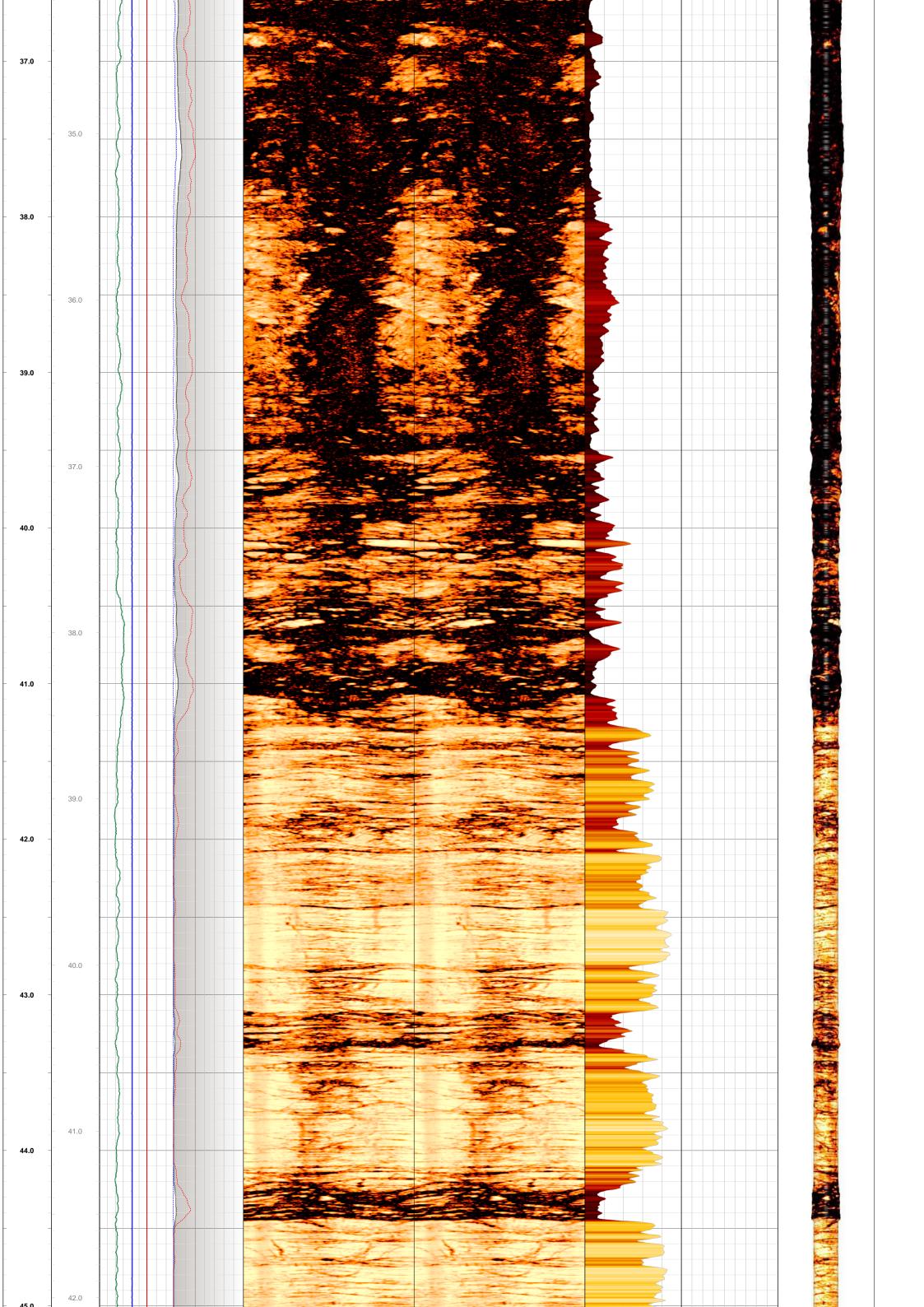

Approved Signatory

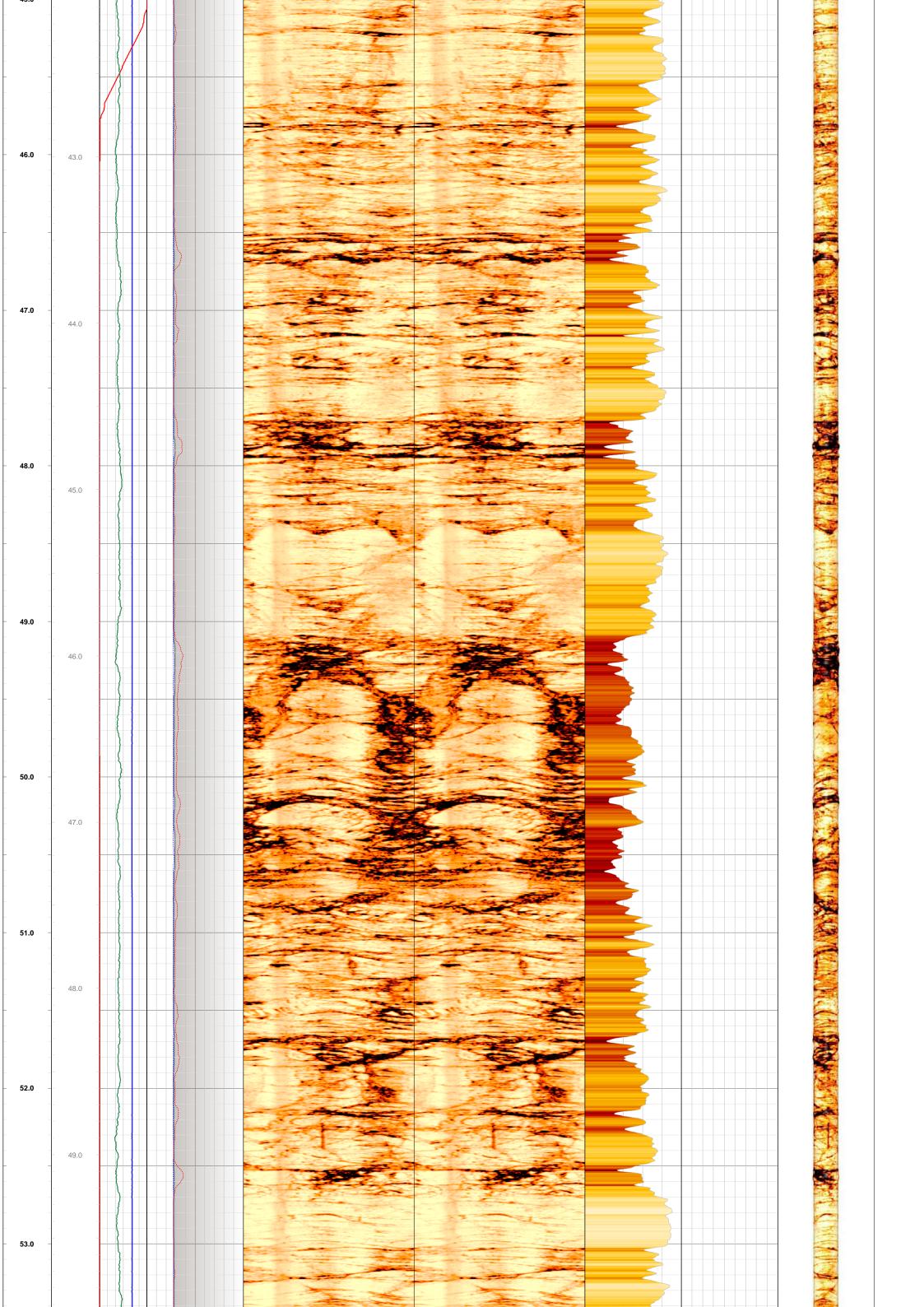

N.P. Danischewski Key Technical Personnel

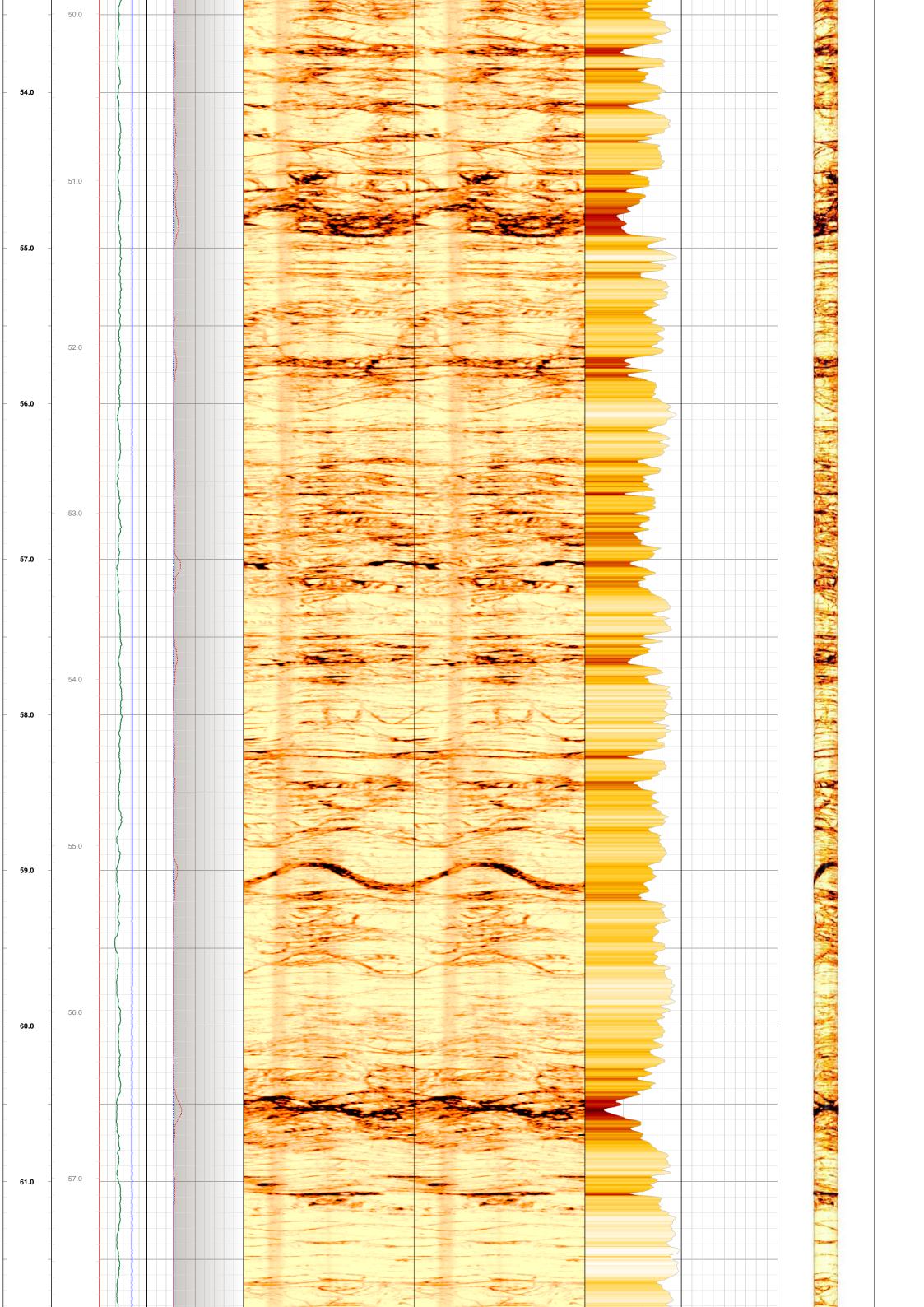


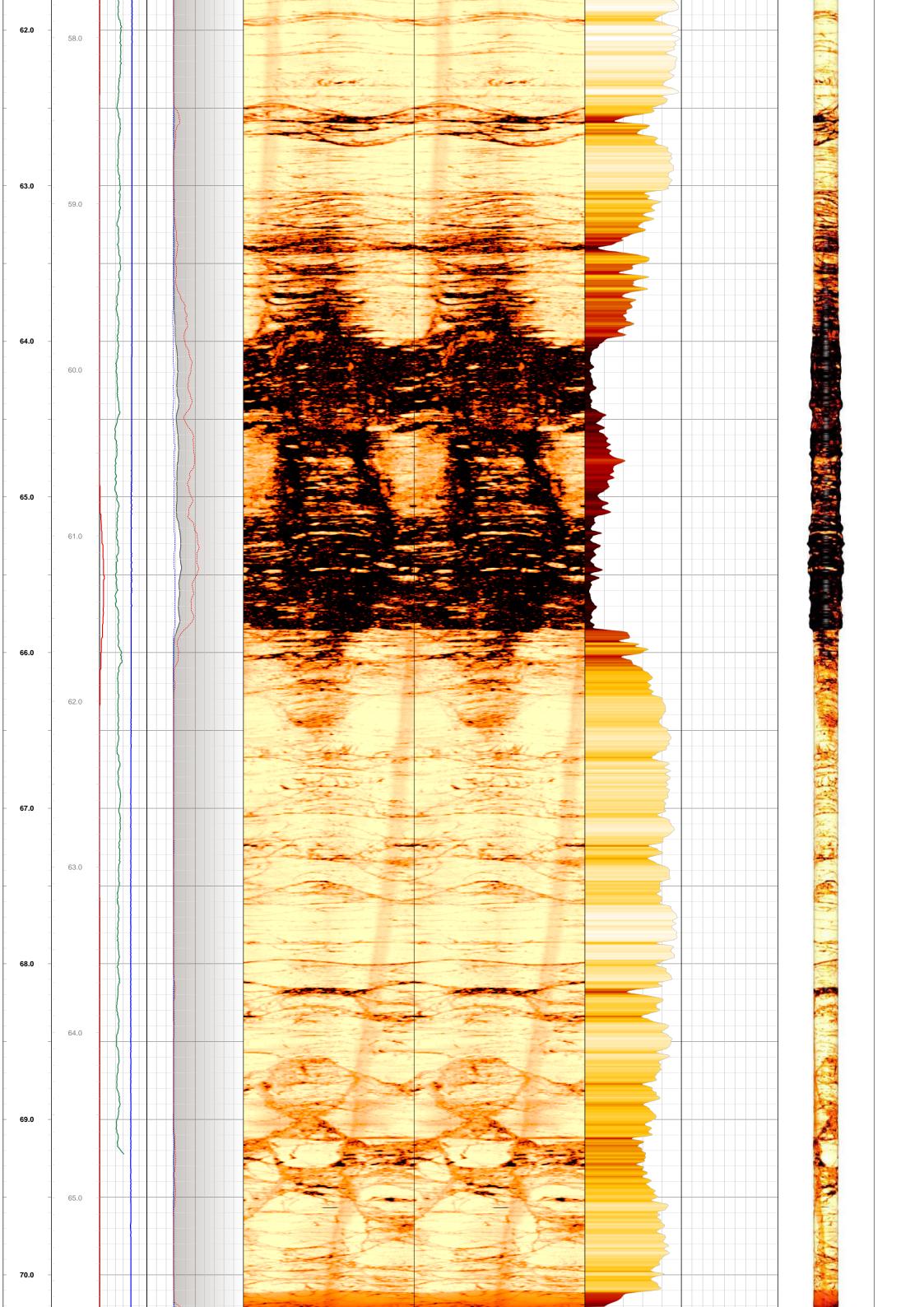

APPENDIX H

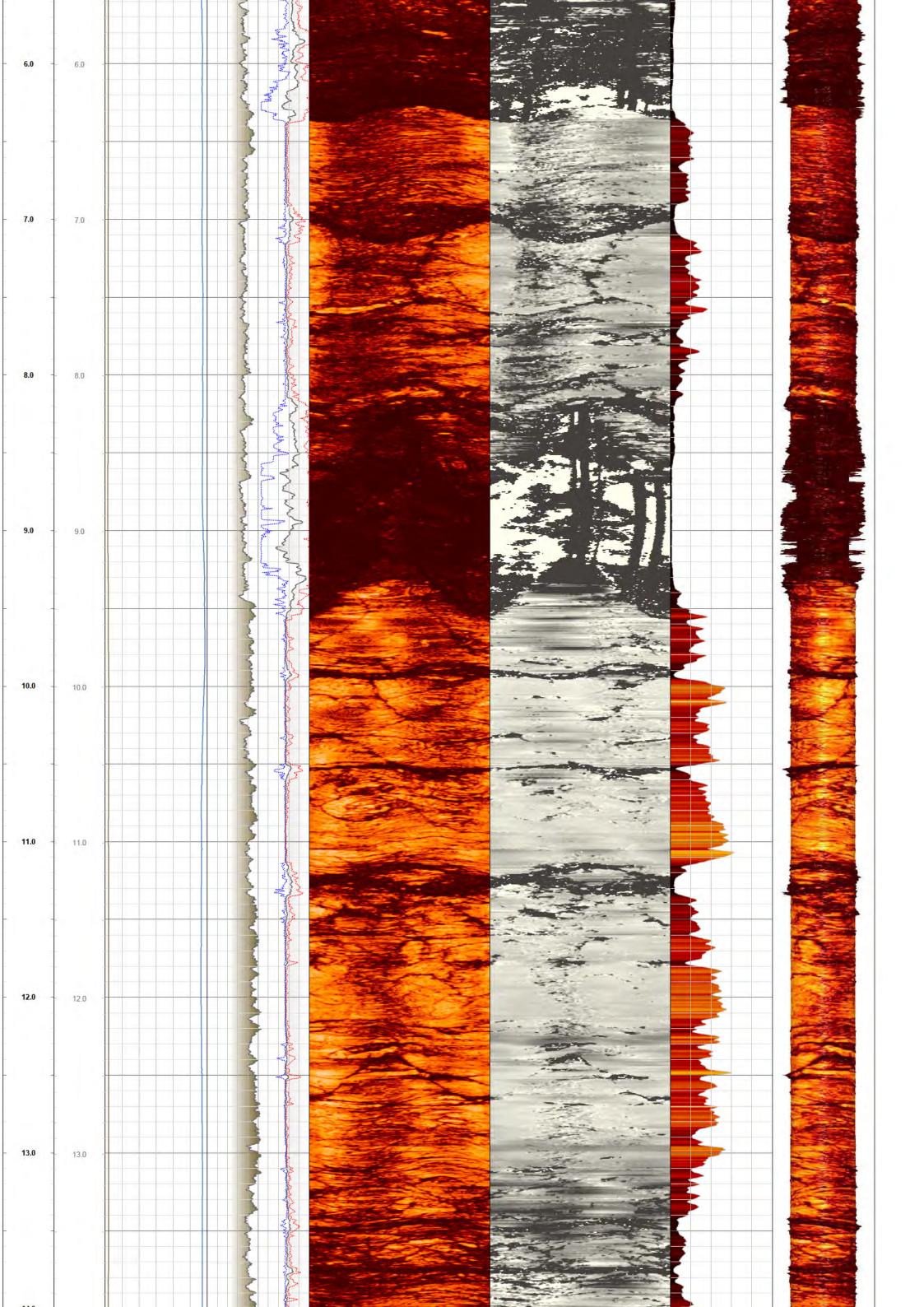

Insitu Acoustic Test Results

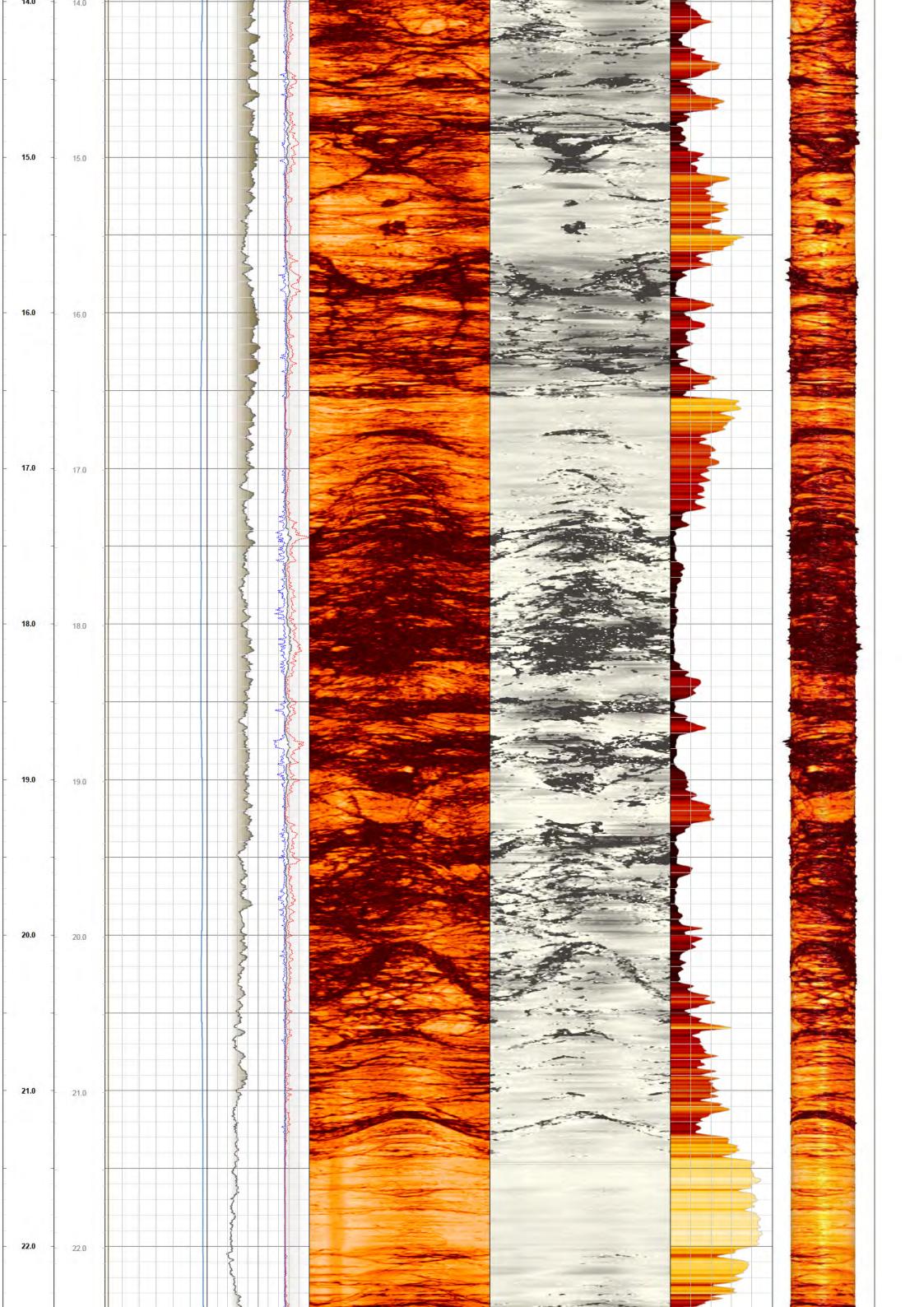


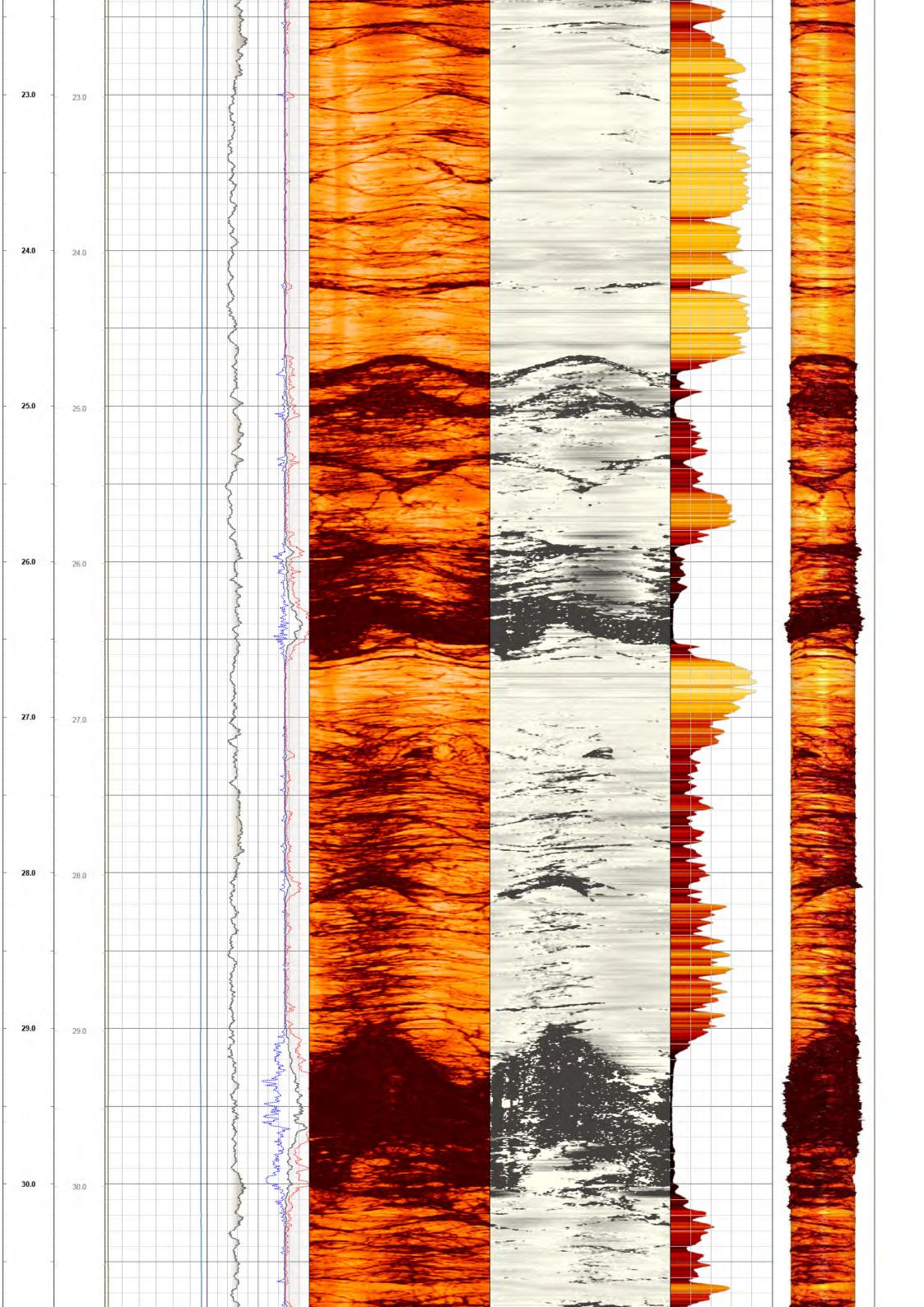


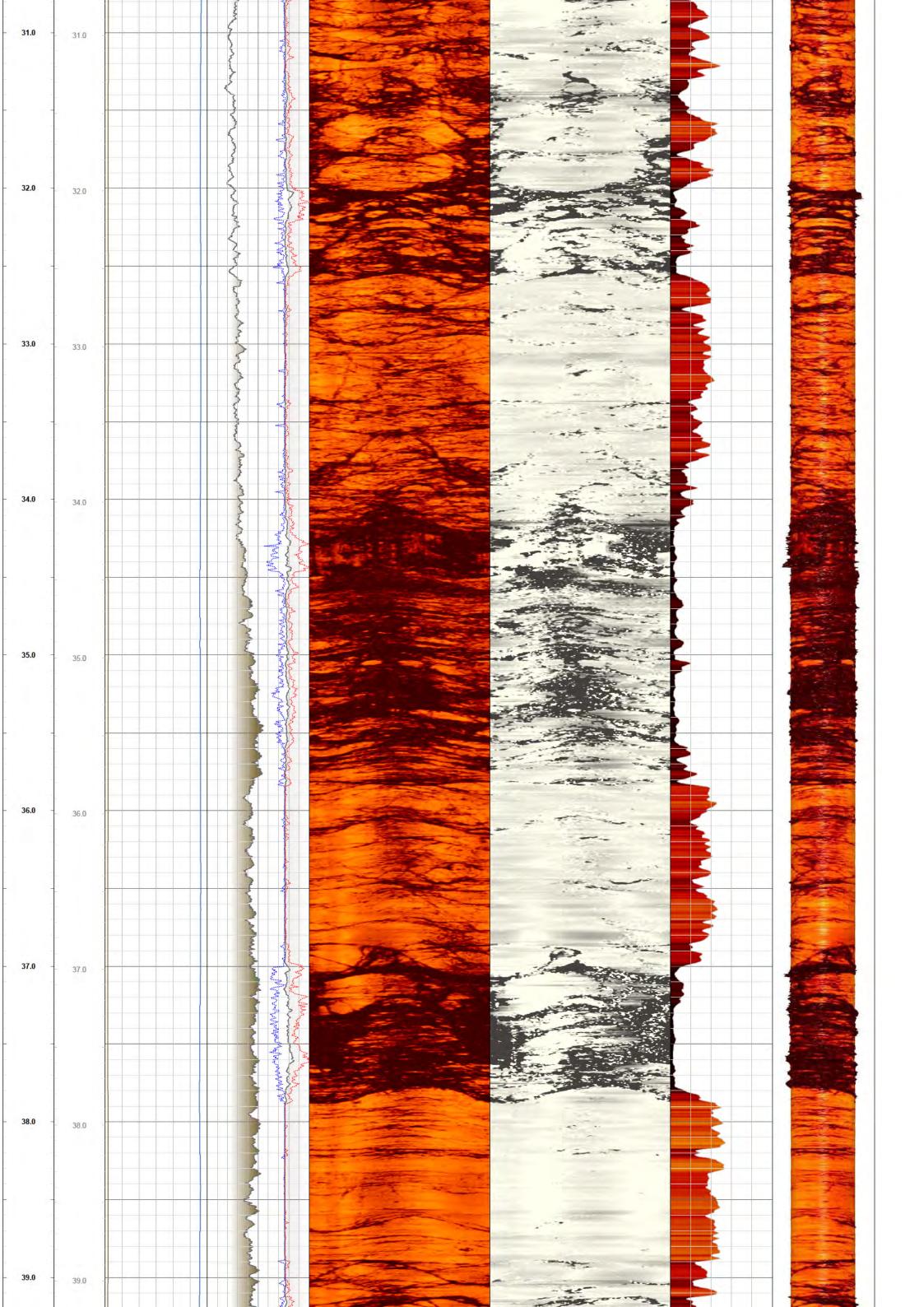


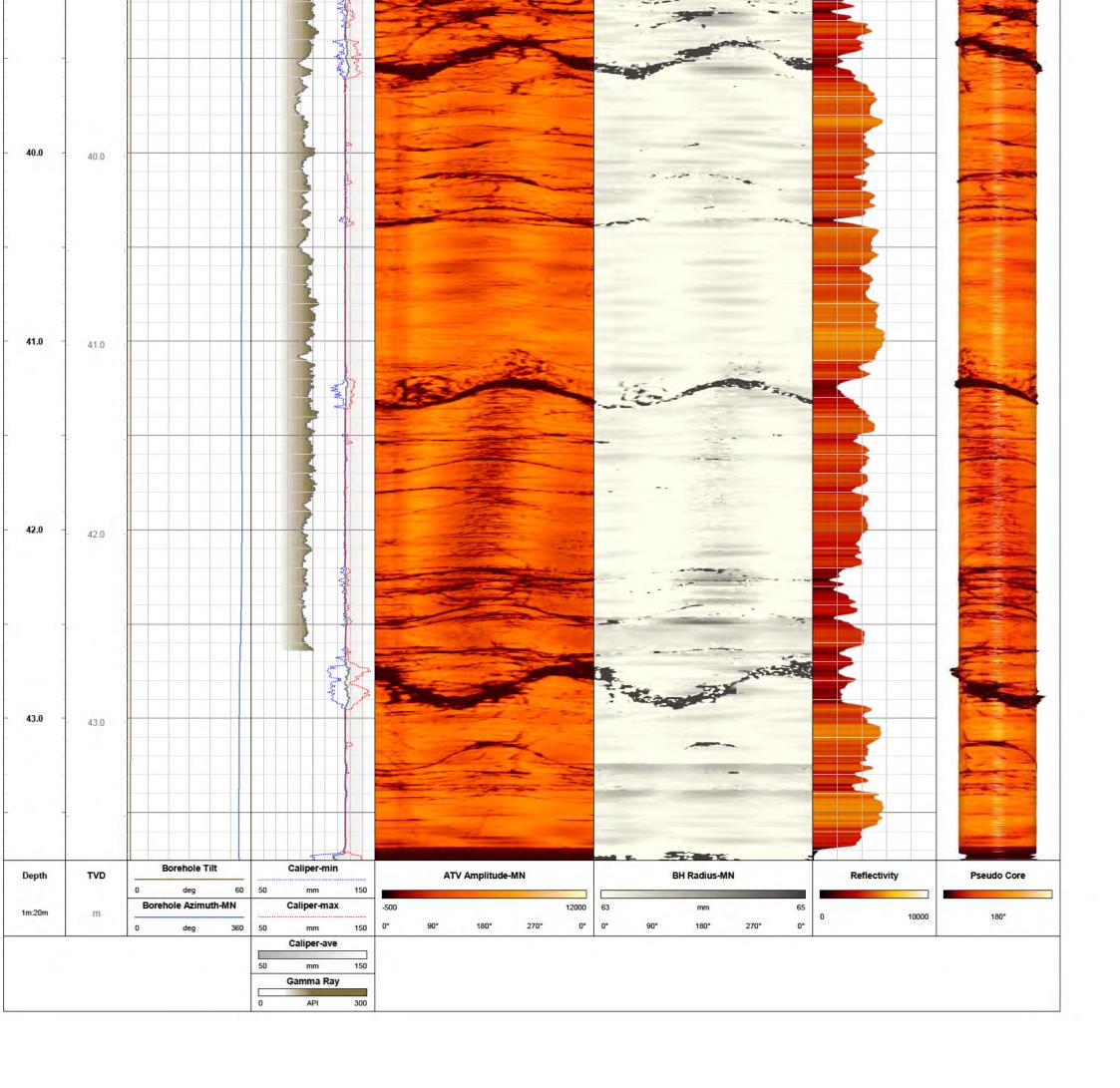


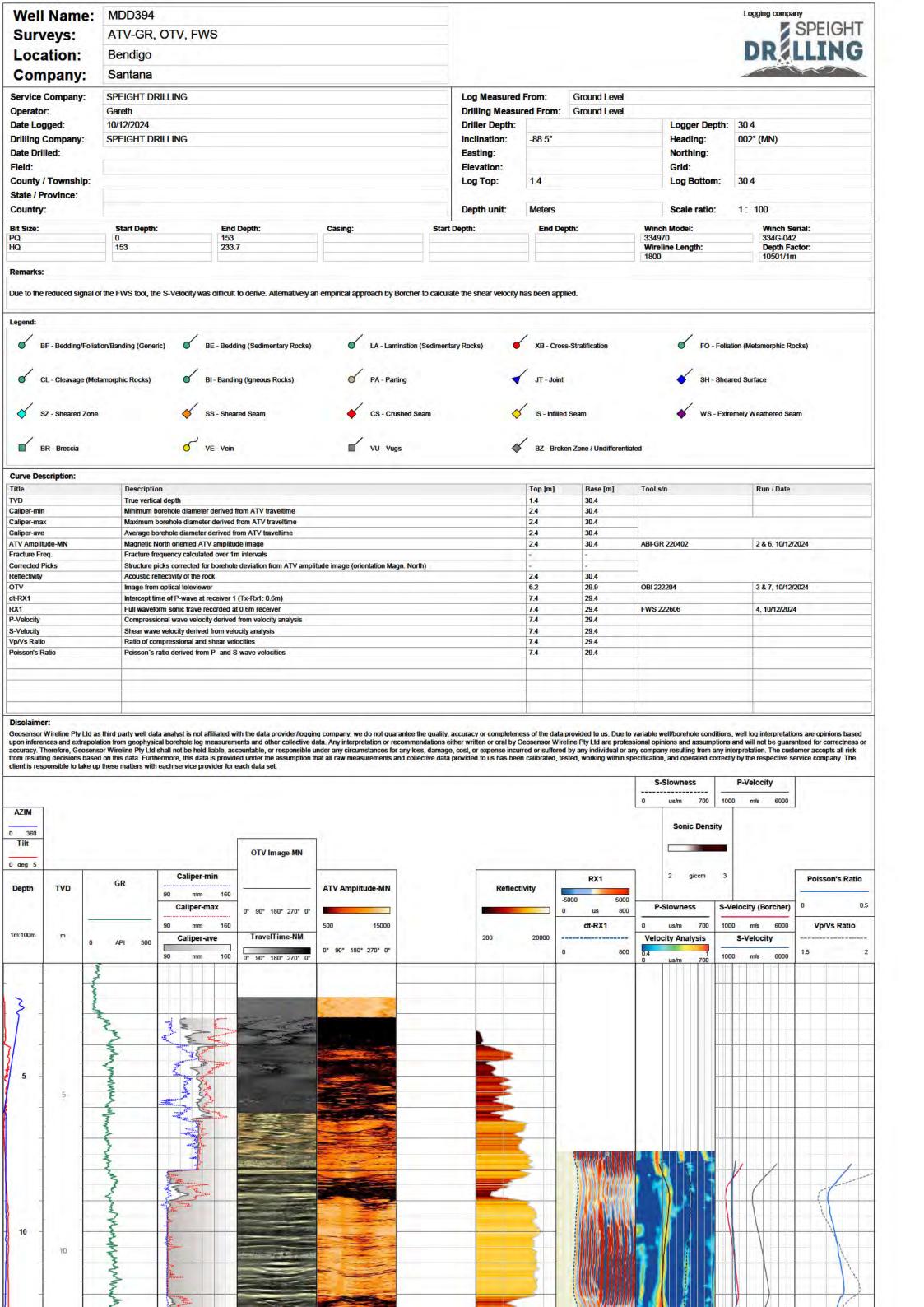


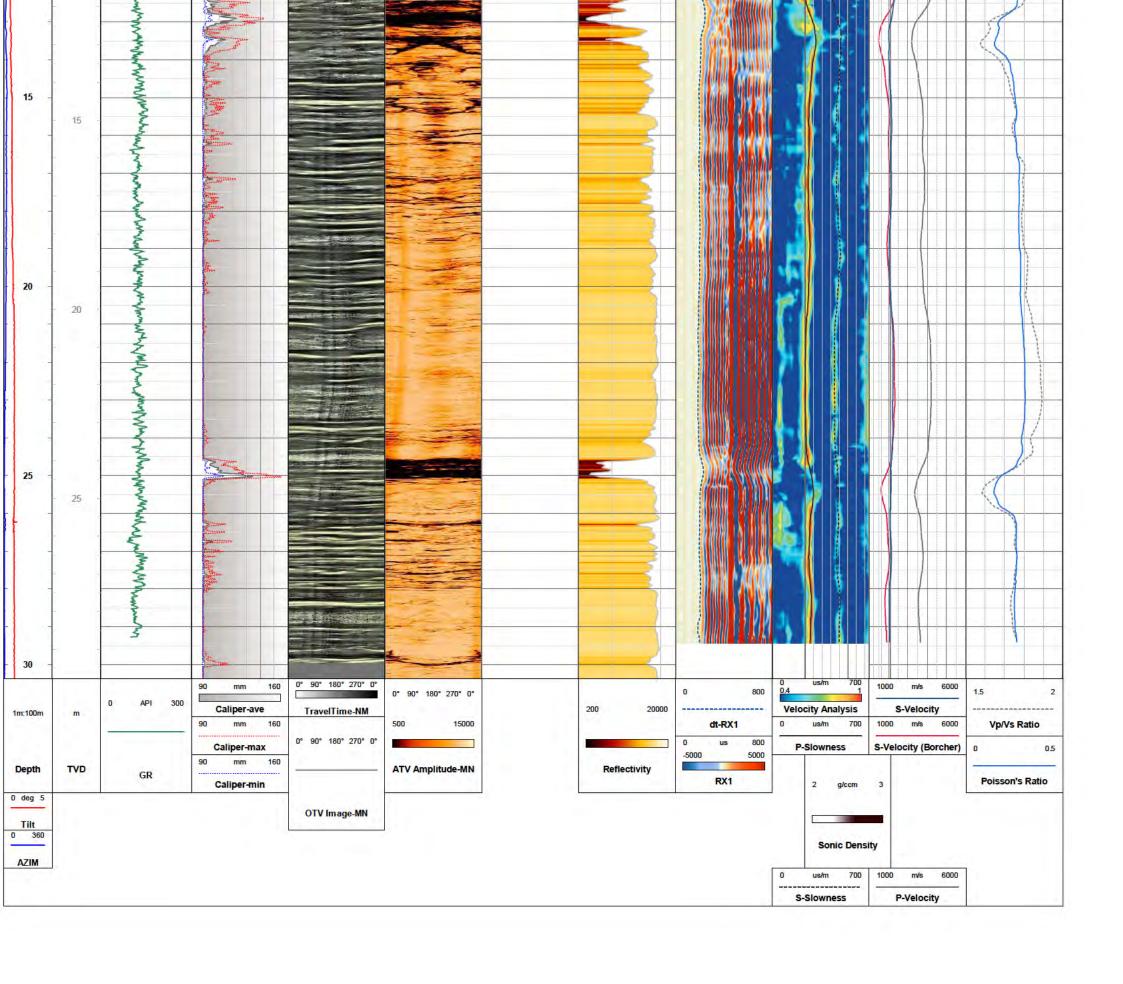





							7		-			150		_					
		0 deg 30	70	mm	170	0°	90° 180°	270°	0°	0°	90°	180°	270°	0°			0° 90° 180° 270° 0°		
1m:20m	m	TILT		Caliper-min	ı					500				10000	0	10000	(Magn. North)	180°	
		0 deg 360	70	mm	170	500			10000								Breakouts		
		AZIM		Caliper-max	(AT\	/ Amplitude	-NM_				0 90		
Depth	TVD	0 API 300	70	mm	170]	ATV Amplitud	e-NM		0°	90°	180°	270°	0°		Reflectivity	(Magn. North)	Pseudo Core	
	.,,	GR		Caliper-ave			7 Ampiitud			(Magn. North) Apparent Picks						nonconvity	Corrected Picks	i seudo core	


Well N	lame:	MDD333									SPEIGHT
Surve		ATV (Pre-Processi	ing Plot)							D	SPEIGHT
Locat									D	K	LLING
Comp											
Service Co		SPEIGHT DRILLING LTD			Log	Measured	From: Ground Level				
Operator:		Gareth			Drilli	ng Measu	red From: Ground Level			z 1=	
ate Logge Orilling Co		15 June 2024 SPEIGHT DRILLING LTD		Driller Depth: Logger Depth: Inclination: -88.7° Logger Depth: Heading: 324.4° (MN)							IN)
Date Drilled		SI LIGHT DIVILLING LTD				Easting:			Northing:	324.4 (W	
ield:						ation:	0.0		Grid:	40.75	
county / To					Log	op:	0.0		Log Bottom:	43.75	
Country:		Australia			Dept	h unit:	Meters		Scale ratio:	1: 20	1 - 1
Bit Size:		Start Depth:	End Depth:	Casing:	Start Depth:		End Depth:	Winc	h Model:	Wir	nch Serial:
								3349 Wirel	line Length:	Dep	G-042 oth Factor: 01/1m
emarks:								1800		100	01/1m
			Gamma Ray								
			0 API 300 Caliper-ave								
			50 mm 150								
Depth	TVD	Borehole Azimuth-MN	Caliper-max	ATV Amplitude-N	MN		BH Radius-MN		Reflec	tivity	Pseudo Core
	777	0 deg 360	50 mm 150	17-077			7,41,000,000			-	and the state of t
1m:20m	m	Borehole Tilt		500)° 90° 180°	12000 270° 0	3 11 1	mm 90° 180° 270	65 1° 0	0	10000	180°
0.0	0.0	0 deg 60	50 mm 150 C	- 00 100	270 0	3	20 100 270	U			
1											
			1								
			3								
-			*								
10			and the								
			N. C.								
			4								
1.0	- 1.0		*							1 1	
			1								
			\$								
			3			4					
	Es.										
-			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				111	-			
			7-13								7
								E			100
2.0	2.0		3 3 5				1 1				
			1								
			3					1			
			3				115				
			{					-	-		
			3 5 5						1		-
			1			- 1					1
			3 3			-					
3.0	- 3.0					* 35 S					
427	- W		3			-	1		24		
-			3 3 5			A.A.					
			3 3 2			. 3		-			
			3 3			1					
			7 4 5			3	- N	*			
			3				5-				
			3					À.			
40			1			2	>	7			
4.0	4.0		1			1	* # ** ***				
			3 3 3					1			+ Save
			3 3 3								
16	-		} ~ \\			1				1	
-			£ 5 €3			4.2	1 5	.	è		
			3			*					
						E 72		- 1900			
5.0 -	5.0		354			7 5			3		
			1 2 3								
									1		
			3 2 3					1			
			3/5	-		7.					
			7 ()				The second second	227.5			





Surv	Name: /eys: ation:	MDD333 Full Waveform	n Sonic				D	SPEIGHT
	pany:							
	Company:	SPEIGHT DRILLING	G LTD		Log Measured From:	Ground L	_evel	
Operator	r:	Gareth			Drilling Measured Fro		_evel	
Date Log		15 June 2024	0.170		Driller Depth:	70	Logger Depth	
Drilling C	Company: lled:	SPEIGHT DRILLING	GLID		Inclination: -88.7 Easting:		Heading: Northing:	324.4° (MN)
Field:	iicu.				Elevation:		Grid:	
	/Township:				Log Top : 0.78		Log Bottom:	42.16
State / Pr		Australia			Depth unit: Mete	re	Scale ratio:	1: 200
Bit Size:	•	Start Depth:	End Depth:	Casing: Start [d Depth:	Winch Model:	Winch Serial:
Dit Size.		Start Deptii.	спи верип.	Casing.	эерин.	и Бериі.	334970 Wireline Length:	334G-042 Depth Factor:
							1800	10501/1m
Remarks:								
					T		S-Slowness	
Depth		dt-RX1	dt-RX2	dt-RX3	dt-RX4			
	0	800	0 800	0 800	0	800	P-Slowness	1000 m/s 6000
		RX1	RX2	RX3	RX4	0) us/m 70	P-Velocity
1m:200m	-5000	5000	-5000 5000	-5000 5000	-5000	5000	Velocity Analysis	
_	0	us 800	0 us 800	0 us 800		800).4) us/m 7(1 1000 m/s 6000
	1125						- 5	<u> </u>
_								
-	14.			111			E	
_ 5 _				(499)				
_		TOLEN					- > > - >	
_ 10 _								
							*** *********************************	
_		門。這樣					- ₩	
15		惟用其						
_ 10	33	機和學學	開發樂	1				
_								
_								
					(
_ 20 _						((())		
		機工作作						
_		權用發						
		羅川川美					- 🕌 🧎 -	
_ 25 _		De l'interes				9 li 6 2 / 10 -		
		個所能						
- 30 -				V Danie				
-								
-					5			
_		無限制						
- 35 -						[[[]]]]	- =	
33 —								
	1					18 14		
		廣川清漠						
— 40 —								
_								
_		RX1	RX2	RX3	RX4		Velocity Analysis	P-Velocity
Depth	-5000	5000	-5000 5000	-5000 5000		5000		1 000
	0	us 800	0 us 800	0 us 800	0 us	800	P-Slowness	1000 m/s 6000
1m:200m		dt-RX1	dt-RX2	dt-RX3	dt-RX4	C	S-Slowness	S-Velocity
	0	800	0 800	0 800	0	800		1000 m/s 6000
	<u> </u>		I	l	1		. dənii //	

Wel	l Name:	MDD365								Z S	PEIGH	-IT
Surv	eys:	Full Waveform	n Sonic						DI		ITAL	0
Loca	ation:									KAL	LIN	U
Com	npany:									1		
	Company:	SPEIGHT DRILLING	LTD			Log Measured From		d Level				
Operato Date Log		Gareth 18 Sep 2024				Drilling Measured Driller Depth: 44		d Level	Logger Depth:	42.2		
1	gged. Company:	16 Sep 2024				Inclination:	4.3		Heading:	42.2		
Date Dri	illed:					Easting:			Northing:			
Field:	/ Township:					Elevation: Log Top: 24	4.6		Grid: Log Bottom:	40.9		
State / F	Province:											
Country	: 						1eters		Scale ratio:	1: 100		
Bit Size:		Start Depth:	End Depth:		Casing: Start	Depth:	End Depth:	3349		334G-		
								Wire 1800	eline Length:	Depth 10501	Factor: /1m	
Remarks:		around 27 7m and 28 9m	n; casing installed down to 33m.									
11010 21001	tod soveral times	ar ourid 2777711 arid 201771	, casing instance down to com-									
		dt-RX1	dt-RX2		dt-RX3	dt-RX	(4	S-S	owness		S-Velocity	
Depth									us/m 700			
	0	800	0	800	0 800	1	800		owness	1000	m/s	6000
1m:100m		RX1	RX2		RX3	RX4			ry Analysis	_	P-Velocity	
	-5000 0	5000 us 800	-5000 0 us	5000 800	-5000 5000 0 us 800	-5000 0 us	5000 800	0.4	us/m 700	1000	m/s	6000
_		分 注:										
				Ш				3				
_ 26 _				Ш			1	3	- 3			
				Ш				§				
				Ш			li i cest	7				
_ 28 _		HE 111111						1				
								1				
				Ш	- III			k II				
_ 30 _								١				
_				100)))				
_							War.	1. 1	1 2			
32				M				}	1 1			
				ŲŲ,			n dining					
_						1003		- 😽	3	\		
34		(株) 有景語		la la		(33)	m_{ij}	*	1			
							mes	A A				
_			WHAT		Continue of the Continue of th		uui					
_ 36 <u>_</u>	1.55		Transfer of the second	444	1112111111			· ·				
								1	>			
	144	作	Madakk	MM	MARKE		(i) Hiteria					
-				Ш	A CONTRACTOR OF THE PARTY OF TH		111111111					+
— 38 —					tteetteetteet 2			9				
_	· ·	靐 [6] 網開		Alli			14.75 ×					
— 40 —			Y HILLIA	1	Contract of the contract of th		1111111		· ·			
	1	DV1	DVA	(美国英	DV2	577	Marie Control	Veloci	ry Analysis		D. Vol = -14	
Depth		RX1	RX2		RX3	RX4		0.4	1		P-Velocity	
	-5000 0	us 800	-5000 0 us	5000 800	-5000 5000 0 us 800	-5000 0 us	5000 800		owness	1000	m/s	6000
1m:100m		dt-RX1	dt-RX2		dt-RX3	dt-RX			us/m 700		S-Velocity	
	0	800	0	800	0 800	0	800		owness us/m 700	1000	m/s	6000
1	I .		1	J		1		<u> </u>	٠٠٠ /١٠١	1		

		MDD394													Lo	gging co	mpany	LIT
	veys:	FWS															SPEIG	
Loc	ation:	Bendigo														JK.	FLTIN	G
Con	npany:	Santana													1			
Service	Company:	Speight Drillin	ng						Log Measured F	From:	Ground Le	vel						
Operate	-	Gareth Speigl	ht						Drilling Measure	ed From:	Ground Le	velk						
Date Lo		10/12/2024							Driller Depth:	00.50				Logger Depth:				
Date Dr	-	Speight Drillin	ig						Inclination: Easting:	-88.5°				Heading: Northing:	002	° (MN)		
ield:									Elevation:					Grid:				
-	/ Township:								Log Top:	7.4				Log Bottom:	29.4			
State / I Country	Province:								Depth unit:	m				Scale ratio:	1:	200		
Bit Size:		Start Depth:		End Depth:		Casing:		Start De		End Dep	-4h.		Winch I				h Serial:	
Q		0		30		Casing.		otait De	pui.	Elia Del	Juii.						h Factor:	
													vvii Giiii	e Length:		Берп	i racioi.	
ny compa	er: able well/borehole cor al opinions and assum ny resulting from any	interpretation. The	customer accepts	all risk from resulting	decisions ba	l extrapolation from geophy e Geosensor Wireline Pty L sed on this data. Furthermo	ore, this data is	s provide	ed under the assumption	collective data sponsible unde on that all raw	. Any interpreta er any circumsta measurements	ion or reco	mmenda ny loss, c tive data	itions either written damage, cost or exp provided to us has l	or oral by ense inc been cali	/ Geosen: urred or s brated, te	sor Wireline Pty Ltd a suffered by any individ sted, working within	re ual or
	on and operated correct		· ·	ny. The client is respor	nsible to take	up these matters with each	service provid	dt-R	X4	S-S	lowness			S-Velocity			Vp/Vs Ratio	
epth	0			***		***			0)	us/m	700	000		0000			
-	0	800	0	800	0	800	0		800		lowness	— <u> </u>	000	m/s	6000	1.5		2
n:200m	RX1			RX2		RX3		RX	4 0		us/m ity Analysis	700		P-Velocity			Poisson's Ratio	
	-5000 0 us	5000 800	-5000 0	5000 us 800	-5000 0	5000 us 800	-5000 0	us	5000 800).4	us/m	1 700	000	m/s	6000	0		0.5
20 —												The state of the s						<u> </u>
,	0 us -5000	800 5000	-5000	us 800 5000	0 -5000	us 800 5000	0 -5000	us	800 0 5000).4	us/m	700	000	m/s	6000	0		0.5
				DVO		RX3		RX	4 0		us/m	700		P-Velocity			Poisson's Ratio	
n:200m	RX1	I		RX2			1	-				1		,		i	-	
n:200m					0		0		800	p_Q	lowness	一 .	000	m/s	6000	15		
n:200m Depth	RX1	800	0	800	0	800	0		800		lowness us/m	700	000	m/s	6000	1.5		2