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INTRODUCTION

Detailed knowledge of species spatial and temporal
distribution patterns is crucial to conservation re-
search (Ferrier 2002, Rushton et al. 2004). Species dis-
tribution models (SDMs) help us understand the eco-
logical relationships between a species’ occurrence

patterns and its environment, leading to better knowl-
edge of its habitat preferences and spatial distribution.
These models have grown popular because they can
be directly applied to spatial planning and manage-
ment of protected species and areas around the globe
(e.g. Leathwick et al. 2008). SDMs are a relatively re-
cent tool in marine ecology (Robinson et al. 2011) but
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ABSTRACT: Effective management of space-use conflicts with anthropogenic activities is contin-
gent upon reliable knowledge of a species’ ecology. The Ma -ui dolphin Cephalorhynchus hectori
maui is endemic to New Zealand and is listed as Critically Endangered, mainly as a result of fish-
eries bycatch. Despite conservation efforts, the population was estimated at 55 animals in 2011.
Here we investigate environmental correlates of Ma -ui dolphin nearshore distribution, using 119
encounters with Ma -ui dolphin groups during boat-based, coastal surveys across 4 summers (2010,
2011, 2013, 2015). We describe the nearshore distribution using a kernel density analysis with dif-
ferential smoothing on the x- and y-axes to account for the nearshore preference of the dolphins
and the survey design. In all years, dolphins were encountered consistently in a restricted area
(4 year area of overlap: 87.3 km2). We modelled habitat preference with boosted regression trees,
using presence/absence of dolphins relative to static and dynamic environmental predictors. An
index of coastal turbidity was created based on a near-linear relationship between Secchi disk
measurements and log-transformed remotely sensed chl a concentration. Sea surface temperature
(SST; 22.6% contribution), turbidity (22.2%), distance to major watersheds (17%), depth (14.5%),
distance to minor watersheds (13.3%) and distance to the coast (10.4%) partly explained Ma-ui
dolphin distribution. We detected a match between predicted areas of high nearshore habitat suit-
ability around North Island and historical sightings (76.2% overlap), thus highlighting potential
areas of Ma-ui dolphin recovery. Our study presents methods broadly applicable to distribution
analyses, and demonstrates an evidence-based application toward managing Ma-ui dolphin habitat.
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they have proved successful at informing the conser-
vation of marine megafauna (e.g. pinnipeds, Costa et
al. 2010; porpoises, Gilles et al. 2009; leatherback tur-
tles Dermochelys coriacea, Howell et al. 2015; sea
birds, Lieske et al. 2014; southern right whales Eubal-
aena australis, Torres et al. 2013; polar bears Ursus
maritimus, Wilson et al. 2014). Indeed, SDMs are a
powerful, descriptive and predictive tool to study ani-
mals that are hard to observe in the wild be cause of
their high mobility, low densities and logistically chal-
lenging survey environment. This modelling approach
is even more valuable when studying endangered
species with extremely small ranges and population
sizes (Engler et al. 2004) be cause their extrapolation
power enables suitable habitat to be inferred even
from a small number of ob servations, as long as the
predictions are within the range of observed environ-
mental conditions (Mannocci et al. 2015).

The Ma-ui dolphin Cephalorhynchus hectori maui
is a critically endangered subspecies endemic to
New Zealand; it is currently encountered primarily
along a 139 km stretch of nearshore habitat along the
west coast of North Island (Oremus et al. 2012), yet
the extent and regularity of its offshore distribution
patterns are frequently debated (Du Fresne 2010). It
is considered a separate subspecies of the more
widely distributed Hector’s dolphin (C. hectori hec-
tori) found mostly around South Island (Baker et al.
2002). The Ma-ui dolphin population size was re -
cently estimated at 55 individuals older than 1 year of
age (Hamner et al. 2014a), and numerous studies
suggest a population decline in the last 3 decades
associated with a loss of genetic diversity in this sub-
species (Martien et al. 1999, Pichler 2002, Baker et al.
2013, Hamner et al. 2014a). As a result, Ma-ui dol-
phins are classified as Critically Endangered by the
International Union for the Conservation of Nature
and nationally critical under the New Zealand Threat
Classification (Baker et al. 2010).

Entanglement in fishing gear is the main threat to
the Ma-ui dolphin population: set nets, trawls and
drift nets are the most likely cause of entanglement
(Currey et al. 2012). Spatial management to restrict
fishing effort has been in place since 2002, and ex -
panded in range in 2008, 2010, 2012 and 2013 to now
include much of the Ma-ui dolphin’s known, current
range in the nearshore region (New Zealand Depart-
ment of Conservation 2013). Although life-history
traits of Ma-ui dolphins (low reproductive capacity)
limit a rapid population recovery, so far there is no
evidence of increased population size or distribution
range since the implementation of these protective
measures. No abundance estimates for the Ma-ui dol-

phin prior to the 1970s exist, but historical data con-
sisting of opportunistic sightings, stranding and sur-
vey data suggest a contraction in range from all
around North Island to the current extent restricted
to the central part of the west coast, between Kaipara
Harbour and Kawhia Harbour (Fig. 1; Russell 1999,
Ferreira & Roberts 2003, Slooten et al. 2006, Du Fres -
ne 2010, Oremus et al. 2012). Currently, Ma-ui dol-
phins are mainly observed within 4 nautical miles
(nmi) of the coast (7.4 km) but are occasionally ob -
served further offshore, up to 7 nmi (Ferreira &
Roberts 2003, Slooten et al. 2006, Du Fresne 2010,
Oremus et al. 2012). In the summer, they are usually
found in small groups of less than 5 individuals from
both sexes, and occasionally in larger aggregations
(>8 individuals) with a higher proportion of calves
(Oremus et al. 2012). The average along-shore range
of Ma-ui and Hector’s dolphins is relatively small
(<50 km in both subspecies; Rayment et al. 2009,
Oremus et al. 2012) although larger movements have
been reported (Hamner et al. 2014b).

The distribution of Hector’s dolphins appears to be
linked to distance to shore, depth, sea surface temper-
ature (SST), salinity, water clarity and chl a concentra-
tion (Bräger et al. 2003, Rayment et al. 2010, Miller
2015). Most of these oceanographic variables have
also been shown to drive the distribution of other spe-
cies of the Cephalorhynchus genus: Chilean dolphin
C. eutropia (Ribeiro et al. 2007, Viddi et al. 2015) and
Commerson’s dolphin C. com mer sonii (Garaffo et al.
2011). In comparison, little is known about Ma-ui dol-
phin habitat preferences. Due to qualitative observa-
tions of Ma-ui dolphins in nearshore waters and close
to river mouths, it has been hypothesized that their
spatial distribution is influenced by some of the same
 environmental drivers as the other Cephalorhynchus
species: distance to the coast, depth (Ferreira &
Roberts 2003, Slooten et al. 2005, Rayment & Du
Fresne 2007, Childerhouse et al. 2008, Dawson 2009,
Du Fresne 2010) and water turbidity associated with
 estuaries (Dawson 2009) or not (Ferreira & Roberts
2003). Yet, no quantitative study of these environ -
mental correlations has been undertaken to date.

The distribution of many marine megafauna, like
that of the Ma-ui dolphin, is also influenced by prey
and predator distribution. However, data on these 2
factors are frequently lacking. SDMs typically
include static and dynamic oceanographic features
as proxies of ecosystem productivity and prey abun-
dance. While static features (e.g. depth, bottom
slope, distance to shore) often integrate habitat use
patterns and are significant predictors, the functional
distribution of all 3 trophic levels — prey, predator
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and study species — responds at fine scales to their
environment, requiring SDMs to incorporate more
dynamic and representative variables to achieve in-
creased model performance and predictability. When
in situ data are not available, remotely sensed water
characteristics (SST, chl a, salinity) provide readily
accessible data at dynamic temporal and spatial
scales (Redfern et al. 2006). Yet, not all potentially
important environmental metrics are directly avail-
able via satellite-derived data. For instance, water
turbidity is not always processed from satellite im-
agery in coastal areas, and alternative methods must
be found to include these variables in marine SDMs.

In this study, we examined the nearshore summer
distribution patterns of Ma-ui dolphins at a population
scale, as well as the ecological relationships between
their occurrence and environmental variables. We

asses sed the potential for remotely sensed chl a to be
used as a turbidity measure to improve our SDM of
Ma-ui dolphins. For the first time, we described Ma-ui
dolphin nearshore habitat preferences and applied
our model to predict habitat suitability both within
their current range along west coast North Island and
in other areas around North Island where no data
had been collected.

MATERIALS AND METHODS

Survey protocol

Boat-based surveys were undertaken along the
New Zealand North Island west coast from February
to April over 4 years (2010, 2011, 2013, 2015; Table 1).

263

Fig. 1. Study area, kernel density estimates contours and Ma -ui dolphin sightings during 4 years of summer surveys. (a) New
Zealand North Island map with diamonds showing major watersheds: harbours (f) and major rivers (f). The primary study
area on the west coast is demarcated by a black rectangle. (b−e) Ma-ui dolphin areas of use are shown in colour: core areas of
use in red (50% kernel contour) and broad distribution of encounters in yellow (95% kernel contour). Black areas correspond
to 98% kernel contour areas of survey track lines effort for each year. Ma -ui dolphin sightings for each year are shown (s). Ker-
nel density estimates of Ma-ui dolphin sightings were weighted by survey effort in each year. Lower panels enlarge the central
area of the coast for each year where Ma-ui dolphins were consistently encountered. The red arrow overlaid with the north 

arrow represents the angle at which the coordinate system was rotated to calculate kernel densities
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The primary objective of these surveys was to locate
dolphins for the purposes of photo-identification and
the collection of genetic samples. Consequently, the
surveys were generally conducted in nearshore water
(distance to shore = 1.0 ± 1.5 km, mean ± SD; max =
15.6 km), where the dolphins are most often encoun-
tered (Ferreira & Roberts 2003, Slooten et al. 2006, Du
Fresne 2010, Oremus et al. 2012). A total of 4 ob -
servers were posted in a 7 m rigid-hulled boat travel-
ling at 15 to 20 knots and they visually scanned the
surroundings at 360°, primarily in Beaufort sea states
≤2 (for more details see Oremus et al. 2012). During
each dolphin group en counter, GPS position and time
were recorded. Group size was calculated using the
average be tween minimum and maximum estimates
 (Oremus et al. 2012). It is only possible to distinguish
between Ma-ui and Hector’s dolphins from genetic
ana lysis of biopsy samples, but the number of Hector’s
dolphins found in association with the Ma-ui dolphins
is small and unlikely to influence the habitat model-
ling (Hamner et al. 2014a). GPS points were also col-
lected along the track lines for each survey day at an
average frequency of <1 min. Every year, the west
coast was surveyed from Kaipara Harbour (174.52° E,
37.06° S) to south of Tirua Point (174.62° E, 38.54° S),
and occasionally up to Manganui and down to New
Plymouth (Fig. 1). In 2015, water turbidity was meas-
ured using a Secchi disk (i.e. a disk attached to a rope
and lowered into the water until it is no longer
visible), at the beginning of every survey day, at every
dolphin group location and on an hourly basis along
the  surveys.

Annual distribution patterns

To estimate areas of high Ma-ui dolphin density, a
bivariate fixed kernel method (Worton 1989) was
used, adjusted for a priori knowledge of Ma-ui dol-
phin distribution. Due to the extreme coastal distri-
bution of Ma-ui dolphins (Du Fresne 2010) and the

design of the surveys, the coordinate system was
rotated and the x and y smoothing parameters were
modified to account for this known along-shore dis-
tributional bias. Dolphin locations were projected in
the Universal Transverse Mercator coordinate sys-
tem (UTM zone 60H) prior to calculations. The coor-
dinate system was then rotated by 22° so the y-axis
aligned with the dominant course of west coast North
Island. This rotation allowed a realistic distortion of
the 2-dimension kernel density estimate using a dif-
ferent smoothing parameter on the y-axis and the x-
axis. This approach resulted in an asymmetric varia-
tion of the probability density function along the axis
parallel to the coast, in contrast to the axis perpendi-
cular to the coast. A Gaussian kernel function was
used, set to a bandwidth of 3 km on the y-axis and
1 km on the x-axis. Probability of presence was esti-
mated over a grid with cell size 500 × 500 m to allow
for a relatively fine resolution of spatial structure at
the scale of our study area.

The broad distribution of Ma-ui dolphin encounters
was defined as the 95% kernel contour, and the
50% kernel contour described the core area of use.
All portions that overlapped with land were re -
moved and the remaining kernel volumes were
rescaled to 100 for each year. Finally, density esti-
mates across all years were set to the same 0 to
100% scale, so that 100% relative probability of
presence indicated cells with maximum probability
of occurrence. A similar procedure was applied
to calculate survey effort density from track line
GPS positions each year using a smoothing parame-
ter of 3 km on both axes. To calculate the annual
weighted probability of Ma -ui dolphin presence, re -
scaled annual maps of dolphin relative probability
were divided by the matching annual map of survey
effort density. The resulting annual weighted prob-
ability of presence grids was then set to the same
scale, with 100% relative probability of presence
being attributed to cells with maximum probability
across all years.

Year          Start−end         Survey      Time on water       Distance       Presence      Mean group       Pres:dist          Pseudo 
                     dates            effort (d)           (hh:mm)         covered (km)                            size (SD)           covered          absence

2010       4 Feb−1 Mar           12                   97:15                   1143                 35               5.4 (3.8)              0.031                494
2011     14 Feb−10 Mar         11                   80:57                   1022                 28               3.9 (2.5)              0.027                524
2013      13 Mar−9 Apr           2                    14:36                    406                  13               3.2 (2.0)              0.032                152
2015      12 Feb−1 Mar          12                  103:13                  1655                 43               5.3 (2.7)              0.025                517

Total                 –                     37                  296:01                  4226                119              4.8 (3.0)                 –                   1687

Table 1. Ma -ui dolphin survey effort along the west coast North Island, New Zealand, and sample sizes by year. Presence: number
of dolphin groups observed. Mean group size was calculated per year as well as over the 119 groups observed in total. Pres:dist 

covered = ratio between presence and distance covered
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Presence/absence dataset

In order to optimally model dolphin habitat selec-
tion, environmental conditions must be compared
be tween locations where dolphins were observed
(presence data) and where they were not (absence
data) (Elith et al. 2006; our Table 1). In transect sur-
vey protocols, data are collected as ‘presence points’
and ‘absence zones’. When building a binomial pres-
ence/ absence distribution model, pseudo-absences
are generally simulated within absence zones (Phil -
lips et al. 2009). The method for selecting pseudo-
absences must be thoroughly considered, as both the
area over which the pseudo-absences are selected
and their number can affect the model (Chefaoui &
Lobo 2008, Phillips et al. 2009, VanDerWal et al.
2009). As we were interested in habitat selection at a
relatively fine scale, we considered environmental
variability with a 1 km spatial resolution and 1 d tem-
poral resolution. Hence, for each survey day, pseudo-
absence points were randomly distributed within the
survey track strip-width (250 m minimum detection
distance to each side), excluding areas within har-
bours containing ports (Kaipara, Manukau and
Raglan Harbours), and within a 1 km radius exclu-
sion area around each sighting to prevent overlap
between pseudo-absence points and presence points
(in accordance with our 1 km spatial resolution scale;
Torres et al. 2008). As habitat at a given location was
considered unchanged over the course of a day,
exclusion areas around sightings were applied to
both the outbound and inbound tracks, which often
were in close proximity. To avoid serial correlation
between pseudo-absences, daily groups of absence
points were distributed with a minimum distance of
1 km from each other, and with a sample size propor-
tional to the area surveyed.

Environmental data

Based on hypothesized Ma-ui dolphin habitat pref-
erences (Ferreira & Roberts 2003, Slooten et al. 2005,
Rayment & Du Fresne 2007, Dawson 2009, Du Fresne
2010), several environmental variables were col-
lected for presence and pseudo-absence points to
characterize habitat use (Table 2). A total of 4 static
variables were collected: distance to the coast (DIST_
COAST, km); distance to the closest minor watershed
(DIST_MINWATERSHED, km); distance to the clos-
est major watershed (DIST_MAJWATERSHED, km);
and depth (DEPTH, m). In addition, 2 dynamic vari-
ables were included in the model: sea surface tem-
perature (SST, °C) and a turbidity index (TURBID-
ITY). For more details about source and manipulation
of environmental data, see Supplement 1 at www. int-
res. com/ articles/ suppl/  m551 p261_ supp. pdf.

Due to the hypothesized association between
Cepha lorhynchus dolphins and river mouths (Dawson
2009), we investigated the relationship between dol-
phin presence and watersheds (defined here as river
mouths, or harbour entrances into which multiple
rivers empty). Watersheds were classified into 2 cate-
gories: minor watersheds (minor river mouths) and
major watersheds (major river mouths and harbour
mouths). All distances were calculated as Euclidean
distances after projecting in a UTM coordinate system
(except for Ahipara Bay, where a local correction on
distance was applied; see Supplement 1). Bathymetry
was acquired at a 250 m resolution and corrected to
compensate for values above mean lower low water
(10 m was added over the whole depth grid). Bathym-
etry, coastline and river spatial data were provided by
Land Information New Zea land (LINZ; https://data.
linz. govt.nz/) and the Natio nal Institute of Water and
Atmospheric Research (https://niwa.co.nz/).
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Predictors                                    Unit         Mean ± SD                 Range                Data provider Contributions in model 1
                                                                                                                                                                       Mean (%)    CV (%)

SST                                               °C              20.7 ± 0.7             18.9 to 22.0                  NASA                        22.6             4.8
TURBIDITY                                   –                 0.9 ± 0.8             −1.9 to 3.8                    NASA                        22.2             3.9
DIST_MAJWATERSHED           km             18.6 ± 20.6             0.1 to 125.1                 LINZ                         17.0             5.1
DEPTH                                          m              12.6 ± 7.1             −0.1 to −62.3                NIWA                        14.5             5.0
DIST_MINWATERSHED           km               4.3 ± 7.7             0.02 to 44.4                   LINZ                         13.3             4.0
DIST_COAST                              km               1.2 ± 1.7             0.01 to 16.4                   LINZ                         10.4             4.3

Table 2. Environmental variables used to model Ma -ui dolphin habitat and their contribution in boosted regression tree (BRT)
models. Mean, SD and range are calculated over all positions in the training dataset (presence and pseudo-absences in-
cluded, n = 1626). Model 1, containing all environmental variables, was selected as the best BRT model. Mean contribution of
each predictor and the associated CV were calculated over 1000 runs on bootstrap samples of the training dataset. NASA:
National Aeronautics and Space Administration; LINZ: Land Information New Zealand; NIWA: National Institute of Water 

and Atmospheric Research
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Daily estimates of SST were obtained from the Natio -
nal Aeronautics and Space Administration (NASA)
multi-scale ultra-high resolution SST (MURSST) data-
set with 1 km resolution (http://coastwatch.  pfeg. noaa.
gov/erddap/griddap/jplMURSST.html). Furthermore,
to test the relationship between Ma-ui dolphin pres-
ence and water turbidity, we used remotely sensed
chl a concentration (mg m−3) obtained from 8 d com-
posite datasets with 4 km resolution (NASA, Aqua
MODIS; http://coastwatch.pfeg.noaa.gov/erddap/
griddap/ erdMBchla8day.html). The moderate resolu-
tion imaging spectroradiometer (MODIS) algorithm
calculates the spectral absorption properties of surface
waters and, based on the measured water-leaving ra-
diance, it estimates phytoplankton and coloured dis-
solved organic matter concentrations, ultimately de-
riving chl a concentration (Savtchenko et al. 2004). In
coastal waters, the isolation of the chl a absorption
signal is challenging due to increased suspended sed-
iments and dissolved organic matter (Gitelson et al.
2008). Yet, this technical bias can be advantageous
when trying to record turbidity remotely in coastal en-
vironments. The relationship between in situ Secchi
disk measurements taken during 2015 and MODIS
chl a concentrations was examined. We recognize the
difference in scale of these 2 oceanographic measure-
ments, but no satellite product other than MODIS chl
a was available at a finer spatial scale across the study
area. Therefore, we assessed the potential of this
readily accessible remotely sensed dataset as an
index of coastal water turbidity at a kilometric scale
(see Supplement 1). Based on a near-linear relation-
ship between Secchi disk measurements and log-
transformed remotely sensed chl a concentration (see
‘Results’), the latter measure was included in our SDM
(hereafter referred to as TURBI DITY).

Modelling methods

The relationship between Ma-ui dolphin occur-
rences and environmental predictors was modelled
using a boosted regression tree framework (BRT;
Friedman 2001). BRTs differ fundamentally from tra-
ditional regression methods as they do not require
assumptions about the appropriate data model. BRTs
are based on a decision tree algorithm that partitions
the predictor space into homogeneous response cate-
gories, and a boosting algorithm that iteratively opti-
mizes the predictive performance of the model by
combining a large number of decision trees (Elith et
al. 2008). In this study, the BRT approach was pre-
ferred over a linear or additive regression approach

because of its ability to detect complex interactions
among predictors and to model non-linear ecological
relationships between response and predictor vari-
ables (Elith et al. 2008).

BRTs were fitted using the gbm v.2.1.1 (Ridgeway
2007) and dismo v.1.0-12 (Hijmans et al. 2011)
libraries in R statistical software. Models were opti-
mized through a 4-fold cross-validation following the
Elith et al. (2008) procedure that balanced the num-
ber of trees (nt) with the learning rate (lr), bag frac-
tion (bf) and tree complexity (tc; see Supplement 2
at www. int-res. com/  articles/ suppl/ m551 p261 _ supp.
pdf). As recommended by De’ath (2007), cross-vali-
dation folds were specified to reflect the internal
structure of our dataset and were each composed of
one year of presence/absence data.

Presence and pseudo-absence were divided into a
training dataset (1626 points) and an evaluation data-
set (180 points) using a stratified random split (i.e.
balancing year and presence/absence in each strata).
Calibration of the BRT algorithm was run on the
training dataset, while the evaluation dataset was
withheld for external validation. Model validation
was conducted through 4 metrics to achieve mini-
mum predictive error (see Supplement 2): the per-
cent deviance explained in the training dataset
(int.dev) or in the evaluation dataset (ext.dev), and
the area under the receiver operating curve aver-
aged during cross-validation (cv.AUC) or calculated
in the evaluation dataset (ext.AUC). AUC measures
the model’s ability for binary classification between
presence and absence points (range between 0 and
1, with >0.7 considered a useful model; Swets 1988).
The percent deviance explained is a measure of
deviance reduction (Guisan & Zimmermann 2000),
which can be calculated internally to illustrate de -
scriptive performance of the model or externally to
illustrate predictive performance.

The relative contribution of a predictor to a BRT
model is measured by the number of times it is se-
lected for tree splitting, and variable selection occurs
automatically as non-informative predictors are ig-
nored. Yet, manually removing redundant variables
may be desirable when working with small datasets
(Elith et al. 2008). Based on internal and external per-
formance metrics, 5 models including either DIST_
COAST or DEPTH or neither of the 2 variables were
compared, as these predictors showed a significant
correlation (Spearman’s rho = 0.79) and were likely
to be redundant (see Supplement 2, Fig. S3). This
comparison was repeated for each model over 1000
bootstrap samples of the training dataset. These ran-
dom samples in cluded 90% of the training dataset
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that were balanced to include a constant presence:
pseudo-absence ratio (i.e. 7% of presences). The
mean effect of each predictor on the probability of
dolphin presence was described in partial depend-
ency plots. These fitted functions are a useful basis
for ecological interpretation (Friedman 2001).

Comparison of spatial predictions to historical data

Using the 1000 bootstrapped repetitions of the opti-
mal BRT model, Ma-ui dolphin habitat suitability was
predicted on a grid with 1 km2 cells covering all
North Island coastal waters. Using the outputs from
these 1000 models, the mean value of habitat suit-
ability and the associated coefficient of variation
(CV) was calculated for each grid cell. For this pur-
pose, turbidity and depth layers were re-sampled to
1 km resolution using a bilinear interpolation me -
thod. Cells within harbours or with a turbidity index
under −0.5 were excluded (equivalent to a 0.61 mg
m−3 chl a concentration). This method limited predic-
tion to nearshore waters where turbidity conditions
were within the range of our chl a index. Dynamic
predictors were averaged over 5 summer months
(December 2013 and January to the end of April
2014) to create average summer grids of SST and tur-
bidity. SST in the south of North Island tends to be
lower than the temperatures experienced in our
study area during this time period. In order to limit
our predictions to areas where the SST was similar to
the conditions of our training dataset, we removed
grid cells with summer SST outside the interval
[min(training SST) − SD(training SST): max(training
SST) + SD(training SST)] (with minimum, maximum
and SD from Table 2). This approach ensured a con-
servative geographical extrapolation of our model to
North Island that was within the range of our sam-
pled predictor variables.

The mean predicted values of habitat suitability
were rescaled to range between 0 and 1, and grid
cells with predicted values above the fourth quantile
of the overall mean were selected as highly suitable
habitat. This relatively low threshold was applied
because the distribution of predicted habitat suitabil-
ity values was zero-skewed and heavy-tailed. High
habitat suitability cells were clumped together and
suitable areas with surface areas >80 km2 were
selected (threshold based on the overlap of core
areas of presence across years; Fig. 1). This surface
threshold reduced the noise produced by small suit-
able areas and let the ecologically meaningful larger
areas stand out. These zones were spatially com-

pared to current management areas along the west
coast of North Island and to historical dolphin sight-
ings. A dataset of 452 observations was derived from
public sightings and dedicated survey sightings
(acoustic boat-based, land-based and aerial surveys
excluding sightings used in our model) collected be -
tween 1970 and 2012 in the warm season (December
to April; data provided by the New Zealand De -
partment of Conservation; http://www. doc. govt. nz/ 
our-work/our-work-with-maui-dolphin/ maui-dolphin-
sightings/). Visual species identification is difficult
between Ma-ui and Hector’s dolphins, so this dataset
may include both species. Most historical sightings
were not scored using a consistent validation process
but were conserved in the dataset because they pro-
vide information on the past distribution of Ma-ui and
Hector’s dolphins. Overall, we selected sightings
from the most reliable validation categories (scores 1
to 3) or not validated (score 0). Dolphin positions
were plotted against the North Island map of pre-
dicted habitat suitability, and the degree of overlap
was assessed between highly suitable patches and
sightings that were included within the prediction
range. All analyses were conducted using QGIS
v.2.6.1 (QGIS Development Team 2015) and R statis-
tical software v.3.1.1 (R Core Team 2014).

RESULTS

Annual distributions

The effort of the boat-based surveys was relatively
similar between 2010, 2011 and 2015, and lower in
2013. A total of 4226 km were surveyed during 296 h
across the 4 years, with 119 dolphin group en -
counters recorded (Table 1). Most sightings were
concentrated between Manukau Harbour and Port
Waikato (72%); 13% of sightings were made in the
northern part of the study area, towards Kaipara Har-
bour, while 14.3% were made between Port Waikato
and Raglan Harbour. Sightings were located at a dis-
tance of 0.80 ± 0.39 km from the coast, with a maxi-
mum of 2.53 km. There was no significant difference
in group size across years (Kruskal-Wallis test: H =
8.927, p = 0.03) and groups averaged about 5 individ-
uals (Table 1).

The kernel density estimates scaled by effort illus-
trate that across 4 years, the area between Manukau
Harbour and Port Waikato was consistently occu-
pied, with Ma-ui dolphins sighted south of Waikato in
2010 and 2011 (n = 17 groups; Fig. 1). The area of
overlap between the 4 annual core areas of use was

267
A

ut
ho

r c
op

y



Mar Ecol Prog Ser 551: 261–275, 2016

873 km2. The ratio of the number of presence points
over the distance covered during surveys was stable
over the years (Table 1), but the spatial extent of the
sightings was smaller in 2013, and particularly small
in 2015, even though the spatial extent of the survey
effort was relatively consistent.

Habitat selection model

Secchi disk values from 110 measurements in 2015
ranged from 0.8 to 14.0 m (3.8 ± 2.4 m). Despite the
difference in scale between the log-transformed chl a
concentrations and Secchi disk measurements, they
showed a linear relationship (adjusted R2 = 0.43, df =
107, regression coefficient = 2.12 ± 0.24 SE) and were
significantly correlated (Pearson’s coefficient = 0.65,
paired sample 2-sided t-test: t = −8.906, df = 107, p <
0.0001; see Fig. S1 in Supplement 1). As a result, the
log-transformed chl a concentration was included in
BRT models to describe turbidity.

We generated 12 cross-validated BRT models from
the different combinations of parameters. After com-
paring these models, we selected a set of parameters
(tc = 4, lr = 5 × 10−4, bf = 0.1) allowing the production
of the model with highest predictive performance
(model 1, 6 predictors, nt = 1025). This model ex -
plained 31.3% of the deviance in the training dataset
on average (int.dev, bootstrap CV = 7.7%) and 20.3%
of the evaluation dataset deviance on average
(ext.dev, bootstrap CV = 6.4%). AUC scores were
 relatively high, both when calculated within the
cross-validation stage (cv.AUC = 0.803, bootstrap CV
= 1.9%) and within the evaluation dataset (ext.AUC =
0.870, bootstrap CV = 0.9%). Models including fewer
predictors (models 2 to 5: without DIST_MINWATER-
SHED and/or DEPTH and/or DIST_COAST) did not
perform better on average, either in terms of explica-
tive power or of predictive power (see Supplement 2,
Table S2). Therefore, model 1 was considered our best
model, with the following influential predictors con-
tributing in the model in descending order: SST, TUR-
BIDITY, DIST_ MAJWATERSHED, DEPTH, DIST_
MINWATER  SHED and DIST_COAST (Table 2).

Species−environment relationships are described
by the partial response plots (Fig. 2). SST displayed a
positive relationship to probability of dolphin pres-
ence, which peaked at about 21.8°C, then slightly
decreased for higher temperatures. A predominantly
positive asymptotic relationship was found between
TURBIDITY and dolphin presence. Partial responses
to DIST_MAJWATERSHED, DIST_COAST and
DEPTH displayed clear peaks and reached their

maximum at 15 km, 700 m and −10 m, respectively.
The response to DIST_MINWATERSHED is more
complex as it displays a small peak for distances of 0
to 5 km and then reaches a plateau for distances over
20 km. This pattern is likely to result from the hetero-
geneous distribution of minor rivers on the west
coast. In 2010, 2011 and 2013, several groups of dol-
phins were observed in an area free from minor
rivers south of Kaipara Harbour, whereas the core
area of use across all study years was located be -
tween Manukau Harbour and Port Waikato, where
the river network is relatively dense (see Fig. S2 in
Supplement 1).

Predicted habitat suitability

Mean predicted habitat suitability based on
model 1 was high in the kernel density core area be -
tween Manukau Harbour and Port Waikato, and
other hotspots were correctly identified farther south:
be tween Port Waikato and Raglan Harbour; south of
Kawhia Harbour; and south of Hawera (Fig. 3). When
applying our bootstrapped BRT model to North
Island and selecting grid cells with high average pre-
dicted suitability (>0.10 after rescaling values to
range between 0 and 1), we predicted 21 patches of
high nearshore habitat suitability, with area sizes
ranging from 92 to 1456 km2 (Fig. 4a). There was
variability in the shape of these patches, with some
extending over more than 100 km of the coast (e.g.
South Taranaki Bight), while others were restricted
inside bays (e.g. Hauraki Gulf). A halo effect was
commonly observed around major watersheds,
reflecting the strong peak in the functional relation-
ship at 15 km. The CV of predicted habitat suitability
varied between 10 and 19% over our area of geo-
graphical extrapolation. Grid cells with highest
uncertainty were globally located further from the
coast and from major watersheds (Fig. 4b). Due to the
restriction on predictions for waters outside our sam-
pled SST range, no predictions were made in the
Wellington region (Fig. 4).

Of the 452 historical and contemporary Ma-ui and
Hector’s dolphin sightings, 391 were located inside
our prediction range. Evaluation of these 391 sight-
ings indicated that 76.2% were located within high
habitat suitability patches around North Island (Fig.
4a, yellow points). The remaining 93 points (23.8%)
were located at a distance of 25.2 ± 13.2 km from the
closest patch. Overlap cannot be measured for sight-
ings located outside the prediction range (either too
far offshore, or in harbours, or in the Wellington
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region), but it is evident that many reported sightings
occurred relatively close to predicted suitable habitat
(50% occurred within 40 km of the nearest highly
suitable patch; Fig. 4a, blue points).

DISCUSSION

For the first time, we quantified the relationship
be tween Ma-ui dolphin nearshore distribution and
environmental predictors. Using a BRT modelling
approach, we showed that the distribution of Ma-ui

dolphins is related to SST, water turbidity, distance to
major watersheds, depth and, to a lesser extent, dis-
tance from the coast and to minor watersheds (Fig. 2).
Applying this model outside the current known
range of the species, we highlighted other areas of
potentially suitable habitat, which show close spatial
distribution with historical sightings of Hector’s and
Ma-ui dolphins around North Island.

The current nearshore distribution of Ma-ui dol-
phins is centred between Manukau Harbour and Port
Waikato. Ma-ui dolphins were generally ob served in
pods of less than 5 individuals that were clustered
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Fig. 2. Boosted regression trees (BRT) partial dependency plots for the predictor variables of Ma -ui dolphin habitat use. Each
plot shows the effect of a variable on the probability of presence while fixing other variables to their mean value. The y-axes
are centred to have a common 0 mean over each variable distribution. Rug plots show distribution of values across that vari-
able, in deciles, and provide a measure of confidence on the fitted response. Grey dashed lines correspond to the 5 and 95% 

confidence intervals calculated over 1000 BRT models fitted to bootstrap samples of the training dataset
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along the coast. Although annual changes in distri-
bution are hard to estimate, given the variation in
effort across study years, we observed a restriction of
the encounter range between 2011 and 2015. In
2015, despite a spatially extensive survey effort, all
groups were observed within a 20-km-long portion
of the coast just south of Manukau Harbour. The
preference for this restricted zone probably results
from a combination of 2 scenarios: (1) habitat in this
zone best meets the ecological and physiological
needs of Ma-ui dolphins compared to habitats along
the rest of the west coast North Island; and (2) other
factors prevent dispersion to the rest of the west
coast, thus limiting Ma-ui dolphin occurrence to this
zone. Among other factors, the Allee effect (i.e.
depensatory feedback operating only at low num-
bers) has likely contributed to the current distribu-
tion of Ma-ui dolphins by favouring the aggregation
of individuals for social interactions, cooperative
feeding and/or predator avoidance (Courchamp et al.
1999). As observed in other species, social animals
such as Ma-ui dolphins may preferentially concen-
trate in patches of habitat already occupied, even if
other areas of equal or higher habitat suitability exist
at close range (Stephens & Sutherland 1999,
Clapham & Zerbini 2015). Unfortunately, these social
behaviours are difficult to quantify within a habitat
distribution model.

While our results provide insight into the near-
shore, summer habitat of Ma-ui dolphins, caution is
warranted in model extrapolation to other seasons
and habitats. First, although our application of easily
accessible remotely sensed chl a data to describe tur-
bidity enabled us to use 3 years of survey data when
in situ water clarity data were not collected, the lin-
ear relationship between in situ Secchi disk meas-
urements and chl a concentration is only valid in a
restricted range (>0.6 mg m−3), limiting predictions to
turbid nearshore waters within this range. Second,
the limited extent of model calibration data relative
to habitat availability in areas of geographical extra -
polation is an inherent problem when applying
SDMs, and can highlight variation between funda-
mental and realized habitat use patterns (e.g. Torres
et al. 2015). The limited extent of our sightings and
survey effort data to nearshore habitats of the west
coast of North Island resulted in higher uncertainty of
predictions in geographical areas in which habitats
were not sufficiently represented in the training
dataset, and should be regarded with more caution.
Yet, by limiting predictions based on SST, we en -
sured that no environmental extrapolation was made
beyond our predictive data range (e.g. Fig. 4b,
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Fig. 3. Nearshore relative habitat suitability for Ma-ui dolphins
predicted by BRT models for west coast North Island, New
Zealand. Habitat suitability is averaged over 1000 BRT models
using a bootstrap resampling approach and scales on a colour
gradient. Areas in white correspond to offshore waters where
no predictions were made because turbidity dropped below
the −0.5 limit of reliability between chl a concentration and
Secchi disk relationship. Limits of Marine Mammal Sanctuary
(solid line), set net prohibition area (dashed lines), conditional
commercial set net prohibition area (dashed-dotted line) and
trawl prohibition area (dotted line) are shown in black. Light 

grey lines represent 50 m isobaths
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Wellington region excluded from our predictive
range). Lastly, seasonally biased calibration data
must be considered when making habitat predic-
tions. Indeed, SST and turbidity along the west coast
of North Island vary greatly throughout the year and
the habitat preferences of Ma-ui dolphins are likely
affected by the resulting seasonal changes of their
prey and predator distributions (Heithaus & Dill
2002). Hector’s dolphins extend their distribution off-
shore during winter (Rayment et al. 2010) and Ma-ui
dolphins may display the same behaviour (Du Fresne
2010). As all 2010−2015 surveys took place during
summer, we only predicted habitat suitability in
warm months and used historical sightings collected
during this time period, but future research should
include winter surveys to ascertain whether there are
seasonal differences.

Like other habitat studies of marine predators (e.g.
Block et al. 2011), SST was the main factor describing
Ma-ui dolphin occurrence. Due to its accessibility
using remote sensing, SST is commonly included in
marine SDMs. Furthermore, SST integrates the spa-
tial and temporal patterns of many abiotic and biotic
parameters such as prey abundance, frontal location
and productivity. In our study, Ma -ui dolphin proba-
bility of presence increased in relatively warm
waters. This relationship may be a function of prey
abundance, but there is currently no direct evidence
for such a relationship. Little is known about the diet
of Ma-ui dolphins, but it may resemble the generalist
diet of Hector’s dolphins, which eat various species of
fish throughout the water column and often target
juveniles. Miller et al. (2012) analysed 2 Ma -ui dol-
phin stomach contents, and found only ahuru Auche-
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Fig. 4. Predictions of habitat suitability for Ma-ui dolphins and historical sightings of Ma -ui and Hector’s dolphins in North Is-
land, New Zealand. (a) Mean predicted patches of high habitat suitability. Black zones show areas of high habitat suitability
with surface area greater than 80 km2. Historical sightings of Ma-ui and Hector’s dolphins included within (d) and outside (d)
our prediction range are shown. Background shows SST average values for December 2013 to April 2014. Although obscured
by many sightings, the area between Kaipara Harbour and Kawhia Harbour is covered by several patches of high habitat suit-
ability. (b) CV of the predicted habitat suitability. The coefficient is calculated over 1000 BRT model runs using a bootstrap re-
sampling approach. It ranges from 10 to 19% and provides a spatial measure of uncertainty for our predictions. Areas in white
were excluded from our predictions because they are outside the data calibration range (i.e. offshore waters in general, har-
bours and nearshore waters of the Wellington region). Light grey lines represent isobaths from depth 100 to 10 000 m, with a 

400 m increment. Black arrows indicate the latitudinal limit under which no predictions were made

A
ut

ho
r c

op
y



Mar Ecol Prog Ser 551: 261–275, 2016

noceros punctatus and red cod Pseudophycis bachus,
2 species that are common in coastal waters of New
Zealand and also consumed by Hector’s dolphins
around South Island. More information about the diet
and distribution of Ma-ui dolphins is required to
improve our mechanistic understanding of their spa-
tial relationship with SST.

The occurrence of Ma-ui dolphins was also ex -
plained by turbidity, depth, distance to the coast and
distance to watersheds, which agrees with previous
qualitative studies (Ferreira & Roberts 2003, Slooten
et al. 2005, Rayment & Du Fresne 2007, Childerhouse
et al. 2008, Dawson 2009, Du Fresne 2010). The re -
lationship between turbidity and the occurrence of
Ma-ui dolphins revealed an overall preference for tur-
bid waters but was relatively complex in its shape.
This non-linear pattern may be due to the dynamic
nature of turbidity, which fluctuates as a result of
multiple factors such as concentrations of chl a, dis-
solved organic matter and suspended sediment. The
latter two are mainly supplied by rivers and are
transported by oceanic currents. We found that the
probability of dolphin occurrence was optimized by a
distance of 15 km from major watersheds, suggesting
that (1) turbid waters are transported by currents
away from major watersheds, providing optimal tur-
bidity levels at a distance of 15 km, or (2) other
unconsidered sources of turbidity exist in the area of
highest dolphin density south of Manukau Harbour.

During the 2010−2015 surveys, Ma-ui dolphins
were observed feeding in turbid plumes between
Manu kau Harbour and Port Waikato, suggesting that
their distribution is linked to prey availability. How-
ever, predation is also known to be a driver of species
distribution patterns and may add to the complexity
of the ecological relationships displayed by Ma-ui dol-
phins. New Zealand is one of the world’s hotspots for
white sharks Carcharodon carcharias, and they are
reported in the nearshore waters of west coast North
Island (Malcolm & Warrick 2012). Shark bite scars
have been observed on stranded (Russell 1999) and
live Ma-ui dolphins (R. Constantine pers. comm.), but
it is likely that some shark attacks are simply fatal
and do not leave scars. Since vision is one of the
major senses white sharks rely on while foraging at
close range (Strong 1996), Ma-ui dolphins could
actively seek turbidity plumes to avoid predation.
Overall, an optimal level of turbidity could provide
Ma-ui dolphins with the best trade-off between prey
availability and predation risk.

The relatively high overlap rate (76.2%) between
the predicted patches of high habitat suitability and
historical sightings supports the relevance of our

model, but also raises questions about the past and
future dynamics of Ma-ui dolphin distribution pat-
terns. Given that the Ma-ui dolphin population cur-
rently occupies a small subset of its historical range
(Russell 1999, Ferreira & Roberts 2003, Slooten et al.
2006, Du Fresne 2010, Oremus et al. 2012), our model
predictions are likely to underestimate the real ex -
tent of suitable habitat in North Island. Yet, these
predictions indicate that during summer months,
pockets of suitable habitat currently exist all around
North Island, and historical sightings suggest that
Ma-ui or Hector’s dolphins may have previously occu-
pied these areas (Du Fresne 2010). However, these
pockets are separated by relatively great distances
(maximum of about 200 km without considering the
Welling ton region), and by deep and cold waters that
might act as natural barriers to population connectiv-
ity, contributing to the species’ isolation and decline.
Given the small home ranges observed for Ma-ui and
Hector’s dolphins (Rayment et al. 2009, Oremus et al.
2012), this lack of connectivity is a matter of concern
for the recovery of the North Island population. How-
ever, there is also evidence of long-distance dispersal
in Hector’s dolphins (Hamner et al. 2014b), suggest-
ing that while they usually live in restricted areas
with very specific habitat requirements, the species
may also be able to migrate to new areas.

This and previous studies suggest that the realized
ecological niche of the Ma -ui dolphin is very re -
stricted. Protection measures successfully cover the
small nearshore area currently occupied by the pop-
ulation in summer. Although our model predictions
may not be appropriate to evaluate habitat suitability
in offshore waters outside the set net prohibition
zone, high suitability habitats were predicted in the
shallowest waters that are well covered by fishing
and mining restriction zones. Yet, bringing Ma-ui dol-
phins back from the brink of extinction may require
increased conservation measures specifically tuned
towards their habitat use. It is critical to assess
whether the offshore extent of their range increases
in the winter and whether current conservation ef -
forts are adequate for protecting Ma-ui dolphins all
year round. Also, the relatively low deviance ex -
plained by our model underlines the lack of data that
is essential to distinguish their fundamental niche
(i.e. free of interference from other species; Hutchin-
son 1957) from their realized niche (i.e. accounting
for biotic interactions and competition). Including
prey−  predator and intra-specific relationships in
models will improve our mechanistic understanding
of habitat selection and help clarify the niche of Ma-ui
dolphins. Nonetheless, we believe the methods used
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here to describe Ma-ui dolphin distribution (kernel
density estimate generated using modified smooth-
ing factors and shifted coordinate system) and habi-
tat use (turbidity derived via remotely sensed data
and BRT modelling) may be applicable to other mar-
ine species living in coastal environments. Indeed,
several dolphin species preferentially occupy turbid,
coastal waters near rivers (e.g. Commerson’s dolphin,
Garaffo et al. 2011; Indo-Pacific humpback dolphin
Sousa chinensis, Lin et al. 2015; Chilean dolphin,
Viddi et al. 2015) and our methods may improve our
understanding of their spatial ecology. More gener-
ally, this study illustrates how habitat modelling may
be used to predict the distribution patterns of endan-
gered marine species and provide valuable ecologi-
cal knowledge necessary for their conservation.
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