

# ATTACHMENT THIRTY-THREE

## Oil Spill Contingency Plan (“OSCP”)





## **Oil Spill Contingency Plan (OSCP)**

**MV WILLIAM FRASER**



**July 2025**

### Vessel Particulars

#### William Fraser 68m Landing Craft

Owner: McCallum Bros Limited

Built: Miri, Malaysia  
Berjaya Dockyard Sdn Bhd  
Miri, Sarawak, Malaysia

Dimensions: LOA 68.0 m  
Beam 16.0 m  
Draft 5.3 m  
Gross Tons 1540  
Decks 3  
Mast 2  
Construction Steel (principal material)

Survey: BV/MNZ  
Registration#  
MNZ# 142118  
MMSI # 512007465  
Call Sign ZMG 3728  
Vessel Mob # [REDACTED]  
Vessel Email [REDACTED]

Main Engines: 2 x Caterpillar C32 ACERT (total 746 kW)

Fuel: 190,000 Litres diesel (Ocean Voyages only)  
40,000 L (Regular working fuel capacity)

Service speed: 9 knots

Operating in Inshore limits

Load Capacity: 1500 tons

Fuel Burn: 179 litres/hr at normal service speed

Fire Fighting: CO<sub>2</sub> Fire Fighting System  
Various Extinguishers

Operating Limits  
Service Area: Auckland, Great Barrier, Northland and Bay of Plenty Inshore,  
Waiheke, Charters to all Gulf Islands and other East Coast areas.  
Stand in vessel for the Kapua.

Mooring location: Ports of Auckland

## CONTENTS

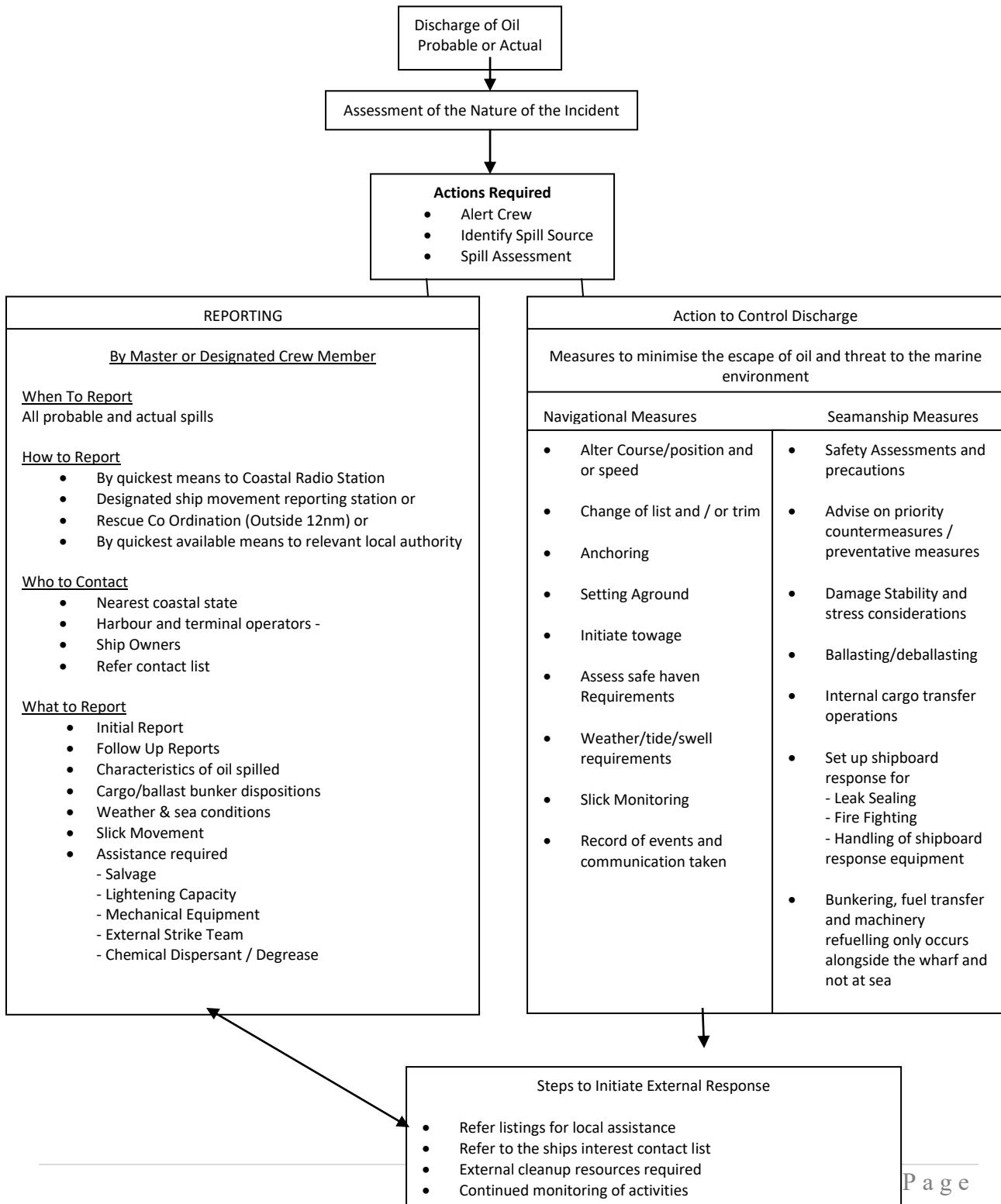
|                                                 | Page |
|-------------------------------------------------|------|
| 1. INTRODUCTION                                 | 5    |
| 2. REPORTING REQUIREMENTS                       | 6    |
| 3. STEPS TO CONTROL DISCHARGE                   | 10   |
| 4. OPERATIONAL SPILLS                           | 11   |
| 5. GENERAL RESPONSIBILITIES                     | 15   |
| 6. DAMAGE STABILITY AND HULL STRESS CALCULATION | 15   |
| 7. PERIODIC REVIEW                              | 16   |
| 8. ADDITIONAL INFORMATION                       | 16   |
| 9. LIST OF CONTACTS                             | 16   |
| 10. SHIPS PLANS AND DRAWINGS                    | 19   |
| 11. OIL SPILL RESPONSE PLANS                    | 21   |
| 12. FUEL BUNKERING CHECK SHEET                  | 25   |
| 13. SPILL NOTIFICATION AND EQUIPMENT            | 32   |
| 14. APPENDIX: SHIP TO SHORE TRANSFER PROCEDURES | 35   |

### Flow Chart Attachments

Oil Spill Responses

Pollution Control

Contaminated Products Control


Bunkering

## 1. INTRODUCTION

**1.1** The purpose of the plan is to provide guidance to the master and officers on board the ship with respect to the steps to be taken when a pollution incident has occurred or is likely to occur.

**1.2** The plan contains all information and operational instructions required by the Guidelines. The appendices contain names, telephone, etc, of all contacts referenced in the plan, as well as other reference material.

### Summary Flowchart



## **2. REPORTING REQUIREMENTS**

### **2.1 When to Report**

A report is required whenever there is:

- (i) A discharge or probable discharge of fuel into the sea resulting from damage to the ship or its equipment, or for the purpose of securing the safety of a ship or saving life at sea;

In identifying whether there is a probable discharge of fuel into the sea, as a minimum, the following factors, should be taken into account:

- (a) The nature of the damage, failure, or breakdown of the ship, machinery, or equipment.
- (b) The location of the ship and its proximity to land or other navigational hazards. should any spill occur while dredging operational are taking place the vessel is to cease operations immediately and head to sea to protect the beach area & sea & birdlife in the area
- (c) Weather, tide, current and sea state.
- (d) Traffic density.

### **2.2 Whom to Contact**

This report shall be submitted to the following contacts:

- (i) Maritime NZ Contacts or the Relevant Local Authority report to be provided with minimum possible delay.
- (iii) Ship Interest Contacts - report to be provided as soon as practicable or with minimum possible delay

If the master of the vessel considers that the spill cannot be contained and cleaned up using the resources available on the vessel, the master of the vessel is required to notify the Relevant Local Authority office.

As precise definitions of all types of discharge situations cannot be made, as a guideline, reports should be made in the case of:

Damage, failure, or breakdown which affects the safety of the ship; examples of such situations are collision, grounding, fire, explosion, structural failure, flooding, or cargo shifting.

Failure or breakdown of machinery or equipment which results in impairment of the safety of navigation; examples of such incidents are failure or breakdown of steering gear, propulsion, electrical generating system, or essential ship borne navigation aids.

## INITIAL NOTIFICATION

The following format provides an example as to how Initial Notification information shall be presented:

| LABEL    | FUNCTION                                                 | EXPLANATION                                                                                                                                                                                                        |
|----------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>A</b> | Ship                                                     | Name, Call Sign and nationality                                                                                                                                                                                    |
| <b>B</b> | Date and time of event                                   | A 6-digit group giving day of month (First two digits), hours and minutes (Last four Digits)                                                                                                                       |
| <b>C</b> | Position                                                 | A 4-digit group giving latitude in degrees and minutes suffixed with N or S, and a 5-digit group giving longitude in degrees suffixed by E or W                                                                    |
| <b>D</b> | Position                                                 | True bearing (First 3-digits) and distance (state distance) in nm from clearly identified landmark ( State landmark)                                                                                               |
| <b>E</b> | True Course                                              | A 3-digit group                                                                                                                                                                                                    |
| <b>F</b> | Speed at time of incident                                | In knots and 10ths of knots in 3-digit group                                                                                                                                                                       |
| <b>L</b> | Route information                                        | Details of intended track                                                                                                                                                                                          |
| <b>M</b> | Radio communications                                     | Full details of radio stations(names) and frequencies being guarded                                                                                                                                                |
| <b>N</b> | Time of next report                                      | A 6-digit group as under BB above                                                                                                                                                                                  |
| <b>P</b> | Cargo onboard                                            | Type(s) and quantities of cargoes/bunker onboard and brief details of any Dangerous Cargoes as well as harmful substances and gasses that could endanger persons or the environment                                |
| <b>Q</b> | Defects or damage or deficiencies or other limitations   | Brief details of conditions of the ship as relevant; Ability to transfer cargo/ballast/bunker fuel                                                                                                                 |
| <b>R</b> | Description of pollution or possible overboard discharge | Brief details of pollution: this should include the type, estimated quantity discharged, whether the discharge is continuing, the cause of the discharge and if possible, an estimate of the movement of the slick |
| <b>S</b> | Weather conditions                                       | Brief details of weather and sea conditions prevailing including wind force and direction and relevant swell details                                                                                               |
| <b>T</b> | Ships representative or owner                            | Name, address and phone number of owners representative.                                                                                                                                                           |
| <b>U</b> | Ships size and type                                      | Details of ships length, breadth and type as well as draft                                                                                                                                                         |
| <b>X</b> | Miscellaneous and additional information                 | Any other information such as brief details of incident need for outside assistance, action being taken to limit further discharge; details of any injuries sustained.                                             |

**INITIAL REPORT SAMPLE**

|          |                                                                                                                                                             |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>A</b> | MV William Fraser - Call Sign ZMG3728 - NZ Flag                                                                                                             |
| <b>B</b> | 01 12 22                                                                                                                                                    |
| <b>C</b> | 36 08 09 S 174 38 17 E                                                                                                                                      |
| <b>D</b> | 345                                                                                                                                                         |
| <b>F</b> | 2knts                                                                                                                                                       |
| <b>L</b> | Dredging sand in Bream Bay                                                                                                                                  |
| <b>M</b> | VHF CH 16                                                                                                                                                   |
| <b>N</b> | As required                                                                                                                                                 |
| <b>P</b> | NO IMDG CARGO/ BUNKERS 20,000 litres Diesel 2000 litres Hydraulic Oil                                                                                       |
| <b>Q</b> | Accidental Discharge                                                                                                                                        |
| <b>R</b> | Quantity of hydraulic oil spilled from burst hose on gantry, approx. 20 litres.                                                                             |
| <b>S</b> | Weather fine, wind SW, 10kts , sea state slight to moderate, no swell                                                                                       |
| <b>T</b> | Owner: McCallum Bros, 747 Rosebank, Avondale Auckland.<br>Contact: Mike Haynes, [REDACTED] 09 828 5202                                                      |
| <b>U</b> | Length 68m, breadth 16m, 5.3m Draft, tonnage 1540 , type Landing Craft                                                                                      |
| <b>X</b> | No personnel injuries sustained;<br>Hydraulic flow immediately stopped, scuppers blocked using plugs, absorbent pads and rags to stop oil entering the sea. |

Footnote: The alphabetical reference letters in the above format are from "General principles for ship reporting systems and ship reporting requirements, including guidelines for reporting incidents involving dangerous goods, harmful substances and/ or marine pollutants", adopted by the International Maritime Organization by resolution A. 851 (20). The letters do not follow the complete alphabetical sequence as certain letters are used to designate information required for other standard reporting formats, e.g., those used to transmit route information.

**REPORTING FORM****SHIPBOARD OIL POLLUTION EMERGENCY PLAN - SAMPLE FOR INITIAL NOTIFICATION****A (SHIPS NAME; CALL SIGN; FLAG)****B (DATE AND TIME OF EVENT)**

|   |   |   |   |   |   |
|---|---|---|---|---|---|
| D | D | H | H | M | M |
|---|---|---|---|---|---|

**C (POSITION;LAT;LONG)**

|  |  |  |  |   |   |
|--|--|--|--|---|---|
|  |  |  |  | N | S |
|--|--|--|--|---|---|

|   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|
| D | D | D | M | M | E | W |
|---|---|---|---|---|---|---|

**D (BEARING;DISTANCE FROM LANDMARK)**

|   |   |   |   |    |
|---|---|---|---|----|
| D | D | D | D | NM |
|---|---|---|---|----|

**E (COURSE)**

|   |   |   |
|---|---|---|
| D | D | D |
|---|---|---|

|    |    |        |
|----|----|--------|
| kn | kn | 1/10th |
|----|----|--------|

**L (INTENDED TRACK)****M (RADIO STATION)****N (DATE AND TIME OF NEXT REPORT; UTC)**

|   |   |   |   |   |   |
|---|---|---|---|---|---|
| D | D | H | H | M | M |
|---|---|---|---|---|---|

**P (TYPE AND QUANTITY OF CARGO/BUNKERS ON BOARD)****Q (BRIEF DETAILS OF DEFECTS / DEFICIENCIES / DAMAGE)****R (BRIEF DETAILS OF POLLUTION, INCLUDING ESTIMATE OF QUANTITY LOST)****S (WEATHER AND SEA CONDITIONS)**

|           |           |
|-----------|-----------|
| WIND      | SWELL     |
| DIRECTION | DIRECTION |
| SPEED     | HEIGHT    |

**T (CONTACT DETAILS OF OWNER)****U (SHIPS SIZE AND TYPE)****X (ADDITIONAL INFORMATION)**

The master of the ship shall, when possible, comply as fully as possible with requests for additional information from Maritime NZ.

The master of any ship engaged in or requested to engage in an operation to render assistance or undertaken salvage should report, as far as practicable, the items listed in the standard report. The master should also keep the Maritime NZ and the relevant Local Authority informed of developments.

### **3. STEPS TO CONTROL DISCHARGE**

In the event of a discharge or a probable discharge, it shall be the responsibility of the master to determine priority actions to:

- (i) Ensure the safety of personnel and the ship;
- (ii) Prevent the escalation of the discharge or probable discharge;
- (iii) Stop the discharge at the source, where-ever possible.

#### **3.1 Priority Actions**

The following provides guidance and information to masters on the priority actions required in the event of an operational spill and/or spill resulting from an accident in order to control or mitigate the discharge or probable discharge:

- (a) Ensure safety of personnel and ship and take action to prevent escalation of the incident. Immediate consideration should be given to measures aimed at preventing fire and explosion, ie, altering course so ship is upwind of slick, shutting down non-essential air intakes, etc. If ship is aground and cannot manoeuvre, all possible sources of ignition should be eliminated and action taken to prevent flammable vapours entering accommodation and engine room spaces. When it is possible to manoeuvre, the master, in conjunction with the appropriate shore authorities, may consider moving the ship to a more suitable location, in order, for example, to facilitate emergency repair work or lightering operations, or to reduce the threat posed to any particularly sensitive shoreline areas.
- (b) If in shallow waters or while dredging, turn out to sea as quickly as possible to minimise chance of grounding or allowing spill to end up on land.
- (b) Assess and obtain detailed information on damage sustained by the ship. A visual inspection should be carried out and all bunker tanks and other compartments sounded. Care should be taken when opening spillage plugs or sighting ports, especially when the ship is aground, as loss of buoyancy could result.
- (c) Having assessed the damage sustained by the ship, the master will be in a position to decide what action should be taken to prevent or minimise further spillage. When bottom damage is sustained, hydrostatic balance will be achieved fairly rapidly, especially if the damage is severe, in which case the time available for preventative action will often be limited.

#### 4. OPERATIONAL SPILLS

The designated crew member in the event of the following types of operational spills should undertake the following actions:

| Spill Type                        | Action To Be Taken                                                                                                                                                                                        | Designated Crew Member (rank/rating)                                   |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Tank overflow                     | Watch communications<br>Plug in spill boxes<br>Scupper plugs prepared<br>Response kit readied<br>Lower bunkers back to empty or slack tanks or ready Stbd FWD transfer pump to transfer the excess ashore | Engineer<br>Engineer<br>Engineer<br>Deckhand<br>Engineer               |
| Pipe leakage                      | Stop product flow - Isolate<br>Contain spill – Drain affected section of pipeline into an empty or slack tank<br>Determine quantity of oil lost                                                           | Engineer<br>Engineer and Deckhand                                      |
| Oil spilled and contained on deck | Plug scuppers with plugs and absorbent pads and rags<br>Retrieve oil<br>Mop up residue<br>Clean Area                                                                                                      | Engineer and Deckhand<br>Engineer and Deckhand<br>Deckhand<br>Deckhand |

## **4.1 Spills Resulting from Accidents**

In the event of a casualty the master's first priority is to ensure the safety of the vessel's personnel and to initiate action to prevent the incident from getting worse.

If the casualty involves grounding, breaching of the outer hull, or other structural damage for which calculations of stability and damaged longitudinal strength are beyond the ship's resources, assistance must be sought from ashore. Stability book is located in the wheelhouse.

It may be necessary to transfer all or part of the diesel to another ship. In these cases contact is to be made with the Relevant Local Authority

The following casualty situations are dealt with:

- 4.1.1 Grounding
- 4.1.2 Fire/Explosion
- 4.1.3 Collision
- 4.1.4 Hull Failure
- 4.1.5 Excessive List

### **4.1.1 Grounding**

If the ship runs aground:

- (i) Sound the emergency alarm and initiate emergency response procedures
- (ii) Eliminate all avoidable sources of ignition and ban all smoking on board
- (iii) Consider whether to stop air intake to accommodation and non-essential air intake to the engine room
- (iv) Carry out a visual inspection of the vessel to determine the severity of the situation
- (v) Reducing longitudinal stress on the hull by transferring cargo internally; attention should be given to hull stress and damage stability information (Stability book located in wheelhouse)

### **4.1.2 Fire/Explosion**

If an explosion or a fire occurs on board:

- (i) Sound the emergency alarm, deploy the vessel's fire emergency team and follow the emergency procedures
- (ii) Determine the extent of the damage and decide what damage control measures can be taken
- (iii) Determine whether there are casualties
- (iv) Request assistance as deemed necessary
- (v) Assess the possibility of pollution from oil leakage
- (vi) If there is a spill of oil in connection with the fire or explosion, inform appropriate parties in accordance with section 2 of this plan

#### **4.1.3 Collision**

If a collision occurs:

- (i) Sound the emergency alarm and initiate emergency procedures
- (ii) Determine whether there are casualties

The master should assess the situation for pollution purposes as follows, taking action where appropriate:

- (i) Decide whether separation of the vessels may cause or increase the spillage of oil
- (ii) Take soundings of all cargo, ballast, and bunker tanks, and check all other compartments adjacent to the hull; ullage plugs should not be opened indiscriminately as loss of buoyancy could result
- (iii) Compare present soundings against departure soundings
- (iv) Evaluate the probability of additional release of fuel

Having assessed the damage that the hull has sustained, and taking into account the effects of hull stress and stability, the master should decide whether or not any action can be taken to avoid further spillage, such as:

- (i) Isolate bunker tanks to reduce further loss due to hydrostatic pressure during tidal changes
- (ii) Evaluate the possibility of transferring fuel to other barges or other ships, and request such assistance accordingly
- (iii) Trimming or lightening the vessel sufficiently to avoid damage to intact tanks, thereby avoiding additional pollution from oil spillage

If the risk of additional damage to the vessel by attempting to re-float it by its own means is assessed to be greater than remaining aground until assistance has been obtained, the master should try to prevent the vessel from moving from its present position by:

- Using anchors
- Taking in ballast in empty tanks (if possible)
- If any oil tanks are penetrated, reduce the risk of spillage by isolating penetrated tanks or transferring oil to slack or empty tanks
- If there is a spill of oil in connection with the collision, inform the appropriate parties in accordance with section 2 of this plan

#### **4.1.4 Hull Failure**

If the vessel suffers severe structural failure:

- (i) Sound the emergency alarm and muster the passengers and crew
- (ii) Reduce speed or stop to minimise stress on the hull
- (iii) Assess the immediate danger of sinking or capsize
- (iv) Initiate damage control measures

The master should then assess the situation for pollution purposes as follows:

- (i) If the change in stability and stress cannot be calculated on board, contact the ship owner and arrange for the necessary calculations to be carried out
- (ii) Consider the forecast weather conditions and the effect they may have on the situation

When it is possible to manoeuvre, the master, in conjunction with the appropriate shore authorities, may consider moving the ship to a more suitable location in order, for example, to facilitate emergency repair work or lightening operations, or to reduce the threat posed to any particularly sensitive shoreline areas.

Use sorbents and permissible solvents to clean up oil spills on board.

Ensure that any residues collected in the clean-up operation are stored in a safe and proper manner prior to disposal, said disposal to be carried out in the Owner's approved manner.

On no account should spilled oil be washed overboard and neither should dispersants or degreasants be used on any oil on the sea surface without the permission of the Local Authorities, as this could contravene local regulations.

#### **4.1.5 Excessive List**

Should the ship for some reason begin to list during discharging / loading operations, or bunkering all operations should be stopped immediately until the cause has been determined. The Master should try determine the reason for the excessive list and take steps to rectify the situation and stabilise the ships condition.

#### **4.2 Lightering**

In the event of the ship sustaining extensive structural damage, it may be necessary to transfer all or part of the cargo to another ship. Should this be required, Masters are instructed to take the Regional Response path for Type B spills or in this case, potential Spills (refer to page 25 of this plan).

In New Zealand, under section 230 of the Maritime Transport Act 1994, notices of transfers of oil in New Zealand waters must be given to the Director of Maritime NZ or to the regional council within whose region the transfer is intended to be made. In such cases, the Director has the power, under section 234, to take or direct that precautionary measures are taken.

#### **4.3 Ship Borne Oil Spill Response Equipment**

An inventory of the oil response equipment held on board on the ship. The master shall ensure that crew members are assigned responsibilities for deployment, oversight and maintenance of equipment, along with training in its use.

In New Zealand, prior authorisation for the use of containment and recovery equipment is not required; however, any dispersants used must comply with the Marine Protection Rules on dispersants (in preparation).

## 5. GENERAL RESPONSIBILITIES

| Rank     | Duties                                                                                                                                                                                                                                                    |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Master   | <b>Overall in charge of operations onboard.</b><br><b>Report Incident as required</b><br><b>Remains Owners Representative until relieved or qualified individual</b><br><b>Transmit and receive reports</b><br><b>Keep log of all events and progress</b> |
| Engineer | <b>Keep master informed and updated on the situation and the results from action taken</b><br><b>Organise onboard clean up Equipment</b><br><b>Prepare Fire Fighting</b><br><b>Other duties as required by the Master</b>                                 |
| Deckhand | <b>Position absorbent material to prevent any oil spill from reaching railing</b><br><b>Commence clean up</b><br><b>Other duties as required by the Master or Engineer</b>                                                                                |

## 6. DAMAGE STABILITY AND HULL STRESS CALCULATION

If the ship is affected by non-operational spills and it is necessary to move cargo or bunker to mitigate the problem, the master should calculate all relevant stability and hull stress parameters prior to any commencement of any cargo/bunker movement.

Reference material / information such as the stability book is available in the Wheelhouse - If there is any doubt by the Master regarding the safety of the planned operation, he should request assistance from the head office Operations Department.

## 7. PERIODIC REVIEW

The plan must be reviewed by the owner not less than once a year to check the currency and completeness of the information contained in it. Information which is not current must be updated and new information relevant to the plan must be incorporated.

The Following Table Contains the Document Review History

## 7.1 Post-Use Review

The owner must evaluate the effectiveness of every plan after its use in response to a discharge or probable discharge of oil into the sea. Any modifications that would increase the effectiveness of the plan must be made.

## 7.2 Notification of Modifications

The Director of Maritime NZ must be notified of all significant modifications made to the plan, whether arising from a periodic or post-use review, or any other occasion.

### 7.3 Periodic Testing

The owner and master of every ship this rule applies to must ensure that -

- (a) Every plan is tested not less than once every 12 months; and
- (b) Accurate details of every such exercise are entered in the ship's official logbook.

## 8. ADDITIONAL INFORMATION

## 8.1 News Media

The master and any crew member shall ensure that any queries, interviews, comments, etc, from the news media shall be directed to Company CEO.

## 8.2 Records of Pollution Incident

The master shall ensure that records of all communications with various parties, as well as a brief summary of decisions and information passed and received are kept either by retaining copies of any documentation or by record in the ship's log.

### **8.3 Collection of Samples**

Should samples of spilled oil be required, the master shall ensure each sample is labelled giving details of ship name, call sign, time, date and position, when sample was taken and any other such information that may be required.

## **9. LIST OF CONTACTS**

### **9.1. Maritime New Zealand Contacts**

For New Zealand, the contact is:

24/7 Rescue Co-ordination Centre NZ  
P O Box 30050  
Lower Hutt  
Wellington

Telephone: 04 577 8030 (24 hours)  
Fax: 04 577 8030

Email reports to [rccnz@mnz.govt.nz](mailto:rccnz@mnz.govt.nz)

Maritime Operations Centre (24 hours)

Telephone: 04 914 8333  
Fax: 04 914 8334

Where the discharge or oil pollution incident occurs within the internal waters of New Zealand, the report should be provided to the appropriate regional council or the RCCNZ if unable to contact the regional authority.

### **9.2. Regional Council Contacts**

Contact details for the regional councils within the vessels operating limits are as follows:

#### **Auckland, Great Barrier**

24hr Pollution Hotline - 09 3773107

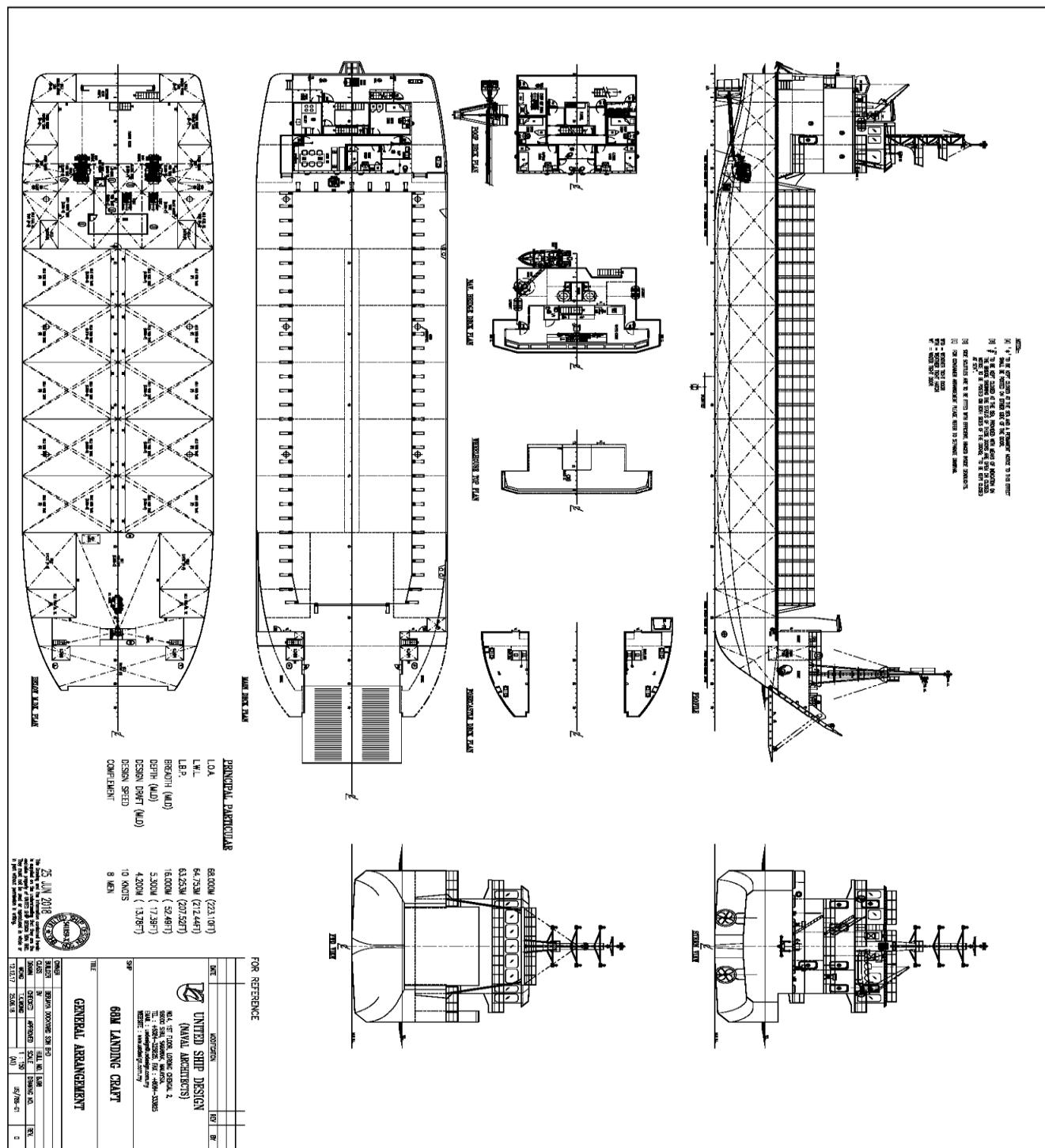
When a ship visits a port for which no local agency contact information is listed in the plan, the master upon arrival in port is to obtain details concerning local reporting procedure

#### **Bay of Plenty**

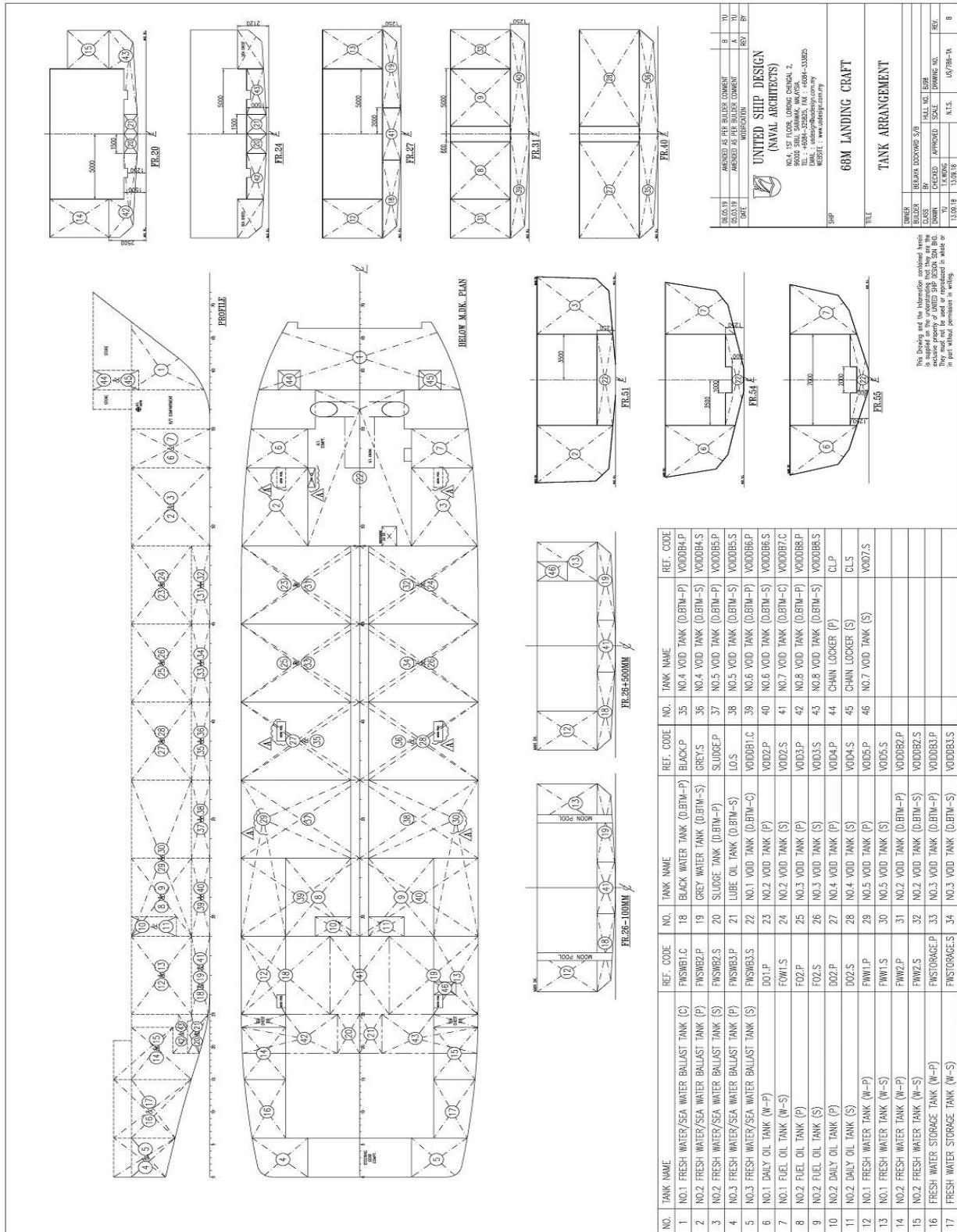
24hr Pollution Hotline - 0800738 393

#### **Northland**

24 hr Pollution Hotline 0800 504 639.


### 9.3. SHIP INTEREST CONTACTS

| NAME               | POSITION           | WK PHONE   | MOBILE     |
|--------------------|--------------------|------------|------------|
| Mike Haynes        | Operations Manager | [REDACTED] | [REDACTED] |
| Andrew Lees        | Compliance Manager | [REDACTED] | [REDACTED] |
| Gary Laurie        | Group Engineer     | [REDACTED] | [REDACTED] |
| Callum<br>McCallum | Managing Director  | [REDACTED] | [REDACTED] |
| Perry Gibbs        | Ship Master        | Vessel Mob | [REDACTED] |


## 10. SHIP PLANS & DRAWINGS

MV William Fraser - Official Number  
MNZ Number 142118

### General Arrangement



## Tank Arrangement & Tank Capacities



## **11. OIL SPILL RESPONSE PLANS**

### **Purpose**

The purpose of this section is to describe the systems used for a planned response in case of any emergencies that relate to spillages of fuel during transfers from the main fuel storage ashore to bunker McCallum Bros Limited® vessels that could give rise to pollution of the marine environment.

MV William Fraser Oil Spill Contingency Plan:

### **Safety**

The Safety of people overrides all other considerations

In the event of a spillage of flammable or explosive hydrocarbons, all sources of ignition must be shut down and the area checked for flammable vapours before deploying any machinery. Operations in conditions, which endanger personnel, must be suspended until conditions improve and it is safe to do so.

“Safe to do so” means each person must make a judgement based on his / her training and experience in coping with the situation faced.

McCallum Bros will provide appropriate training and protective clothing. .

### **Responsibilities**

The following personnel have the responsibility for putting the plan into action.

All personnel have a duty to raise the alarm, warning others at the scene and standing by in a safe location until instructed to take part in the clean up or spill containment.

The Ship’s Master of any Ship Bunkering:

The Ship’s Master has the responsibility for putting the plan into action.

Engineer and / or Deckhands:

The ship’s Engineer and or Deckhands are responsible for providing the Ship’s Master with any of the details of the occurrence requested and responding to his instructions.

McCallum Bros Limited® Shore Base Management:

Upon notification by any Ship’s Master, crew or from any other source of a spillage, the Shore Base Manager or his delegated deputy will ensure the oil spill contingency plan is implemented.

### **Environment**

Refueling takes place alongside the wharf and road access to the area is available at all times.

On all occasions there is risk of a spill into the marine environment. Preventative measures are in place to prevent spillage into the tide.

### **Characteristics of the Fuel Transferred**

The product being transferred is Diesel Fuel Class 3c and will float. The product has a high flash point of a minimum of 61° C and gives off little in the form of flammable vapours when exposed to the local atmosphere at ambient temperatures.

### **Potential Oil Spill and Risk**

Potential for a spill could arise from the splitting of a hose, a hose becoming disengaged or an overfill. If such an occurrence occurs immediate shut down of the pumping gear should result in a low volume of product being spilled.

Emergency shutdown of hydraulic failure is located in the wheelhouse.

2 x Emergency shutdown option.

- Hydraulic shutdown
- Shutdown power systems running hydraulics which shuts also down the dredging system

These are constantly monitored on deck by the deckhand & in the Engine room by the engineer.

Any failure the vessel is to move away from the dredge grounds to protect the environment and the local birdlife.

Bunkering, fuel transfer and machinery refuelling only occurs alongside the wharf and not at sea

Oily water discharge pipe is padlocked shut and cannot be discharged overboard.

Containment of a spill with the spill kits held on the vessel and at the shore base would be expected to reduce the risk of serious damage from the spillage.

### **Preventive measures in Place**

Absorbent socks are available to cover ship's reception pipe area and scuppers during the pumping operation and absorbent pads are available for containing any leakages into the environment. A crew member is keeping watch over the bunkering process at all times.

### **Training**

All crew engaged in the specific operations are trained fully in the fuel bunkering, operation and the emergency procedures required in the event of a spillage. Training is conducted quarterly and records are held onboard. Each crewmember is required to sign a document indicating they have received training and have read and understood the Oil Spill Contingency Plan.

### **Transfer and transport of oil, fuel and normal workshop contaminates**

When transferring products on and off vessels, transporting by road, moving with crane or fork hoist:

Seal all containers (Do not use open Buckets)

Use suitable containers to hold waste rags, filters etc.

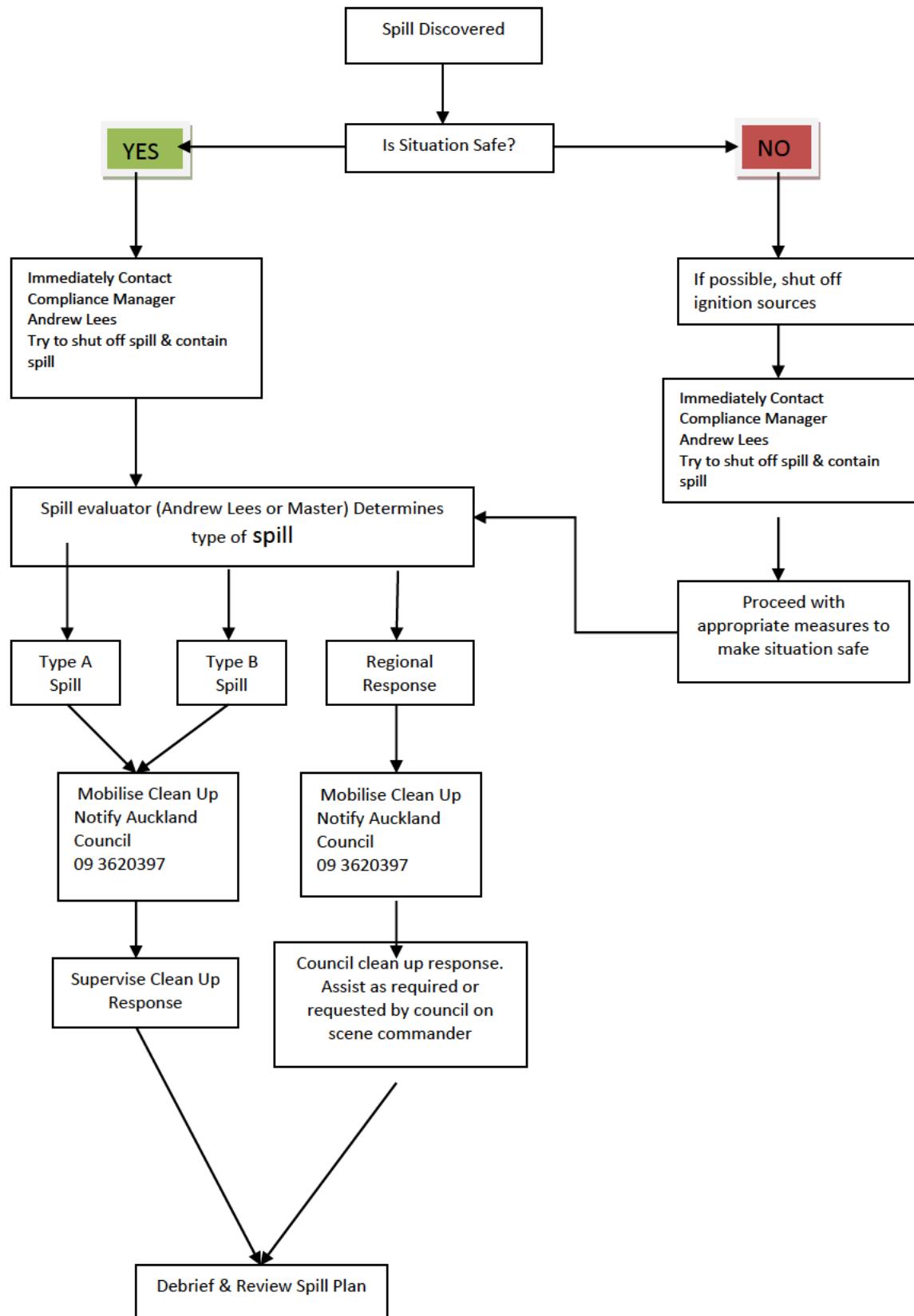
Use gangways and vessel ramps where possible.

Seal all pumps and hoses.

When pumping to and from vessels a person must stand by pumps.  
Secure all containers ECT on vehicles.  
Keep spill kits on hand.  
Use marked containers for waste and empty into waste container in the compound.

**In the event of a spillage into the water the oil spill contingency plan must be activated**

**The contaminated Products disposal procedure is on the following page.**  
Competent in their duties, and are fully signed off on the vessel they are required to work on


#### **Removal of Oil Contaminated Water from Bilges**

When WE have a situation such as an oil filter blowing off (Our Worst-case scenario) there can be up to 60 litres of oil in the bilge.

The immediate concern is to prevent any overboard discharge – The following procedures are followed to prevent this and clean up the contamination & keep the environment safe

- Immediately disconnect power to the bilge pumps – these have 3 pin plugs & sockets in the engine
- room, the plugs are removed from the sockets isolating power to the sockets.
- Wipe up with rags as much oil as possible – rags are placed into plastic disposal bags & delivered to the environmental disposal bins the maintenance shed.
- Remove floor plates to access bilge, where possible skim oil from surface of water & place in
- containers. These are emptied into waste oil tank onshore
- Introduce X Factor degreaser to bilge area, scrub around all surfaces. This effectively dissolves the oil into the water
- Suck out bilge contaminated water using certified suction truck from Salters Cartage.
- Clean remaining residue from bilges using rags – These are disposed of as in step 2.
- Apply a fine coating of X Factor & hose down engine & pump out into sucker truck.
- Replace floor plates & plug in bilge pumps
- Record quantity of contamination removed & disposed of in oil register. Salters environmental truck meters the quantity sucked out & will provide documentation confirming this

## OIL SPILL RESPONSE FLOW CHART



Note: Regional Clean Up Response - Vessel Operates in Auckland, Northland and Barrier. The Relevant Authority is to be contacted as required.

Note: Bunkering, fuel transfer and machinery refuelling only occurs alongside the wharf and not at sea

## **12. FUEL BUNKERING CHECK SHEET**

**Date:**

**Time:**

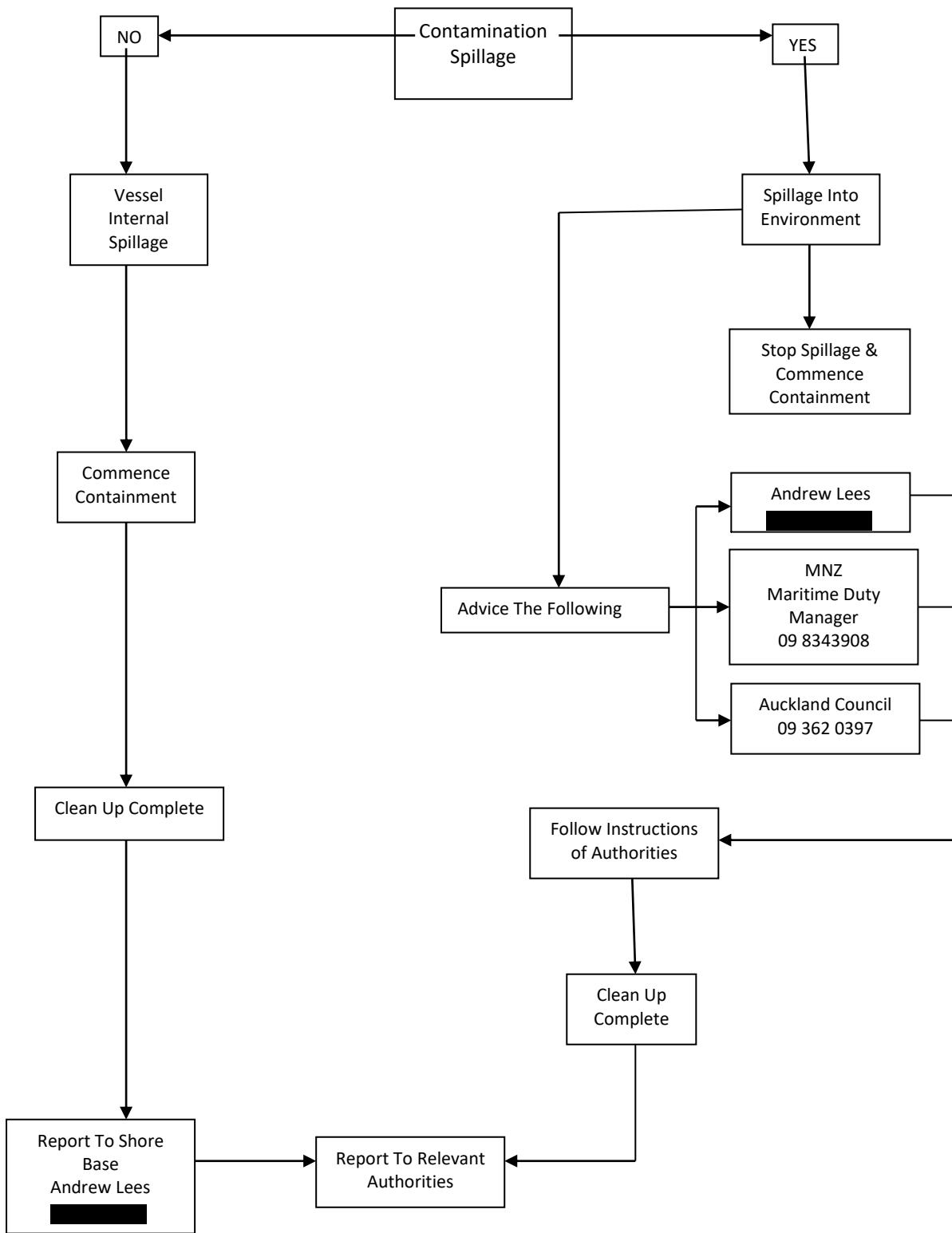
**Vessel:**

**Quantity:**

### **Pre-Bunkering**

| <b>Check list</b>                        | <b>Y / N</b> | <b>Initials</b> |
|------------------------------------------|--------------|-----------------|
| Vessel Properly Secured To Dock          |              |                 |
| Dip Taken                                |              |                 |
| Clean Up Material In Place               |              |                 |
| Bravo Flag Flying                        |              |                 |
| Emergency Shut Down Procedure Understood |              |                 |
| Check Hose & Couplings Are In Good Order |              |                 |
| Fuel Hose & Nozzle in Place & Secure     |              |                 |
| Commence Pumping                         |              |                 |
|                                          |              |                 |

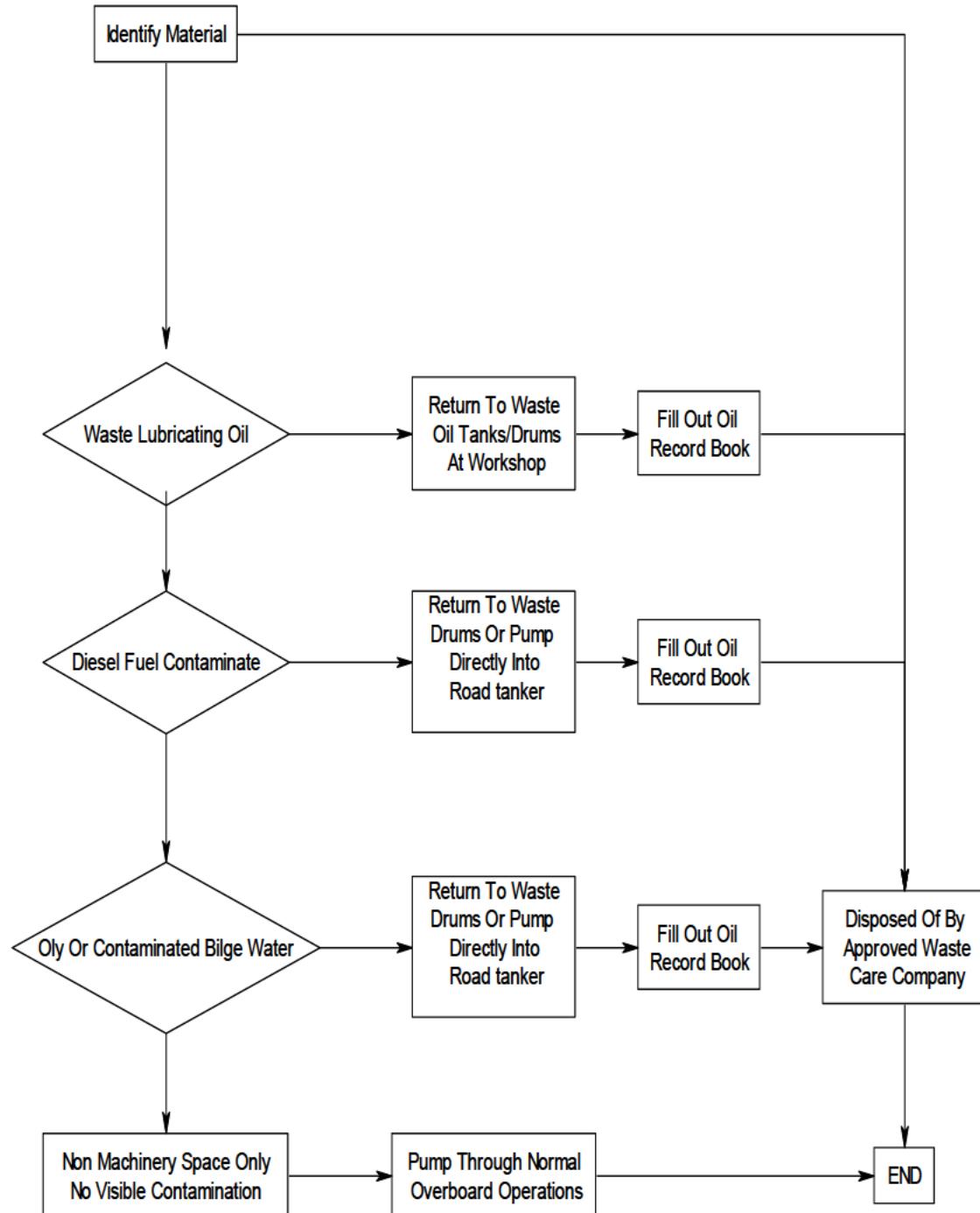
### **During Bunkering**


|                                                   |  |  |
|---------------------------------------------------|--|--|
| Continuous Monitoring Of Bunkering                |  |  |
| Continuous Monitoring Of Equipment                |  |  |
| Checking The Tightness/Slackness Of Mooring Lines |  |  |

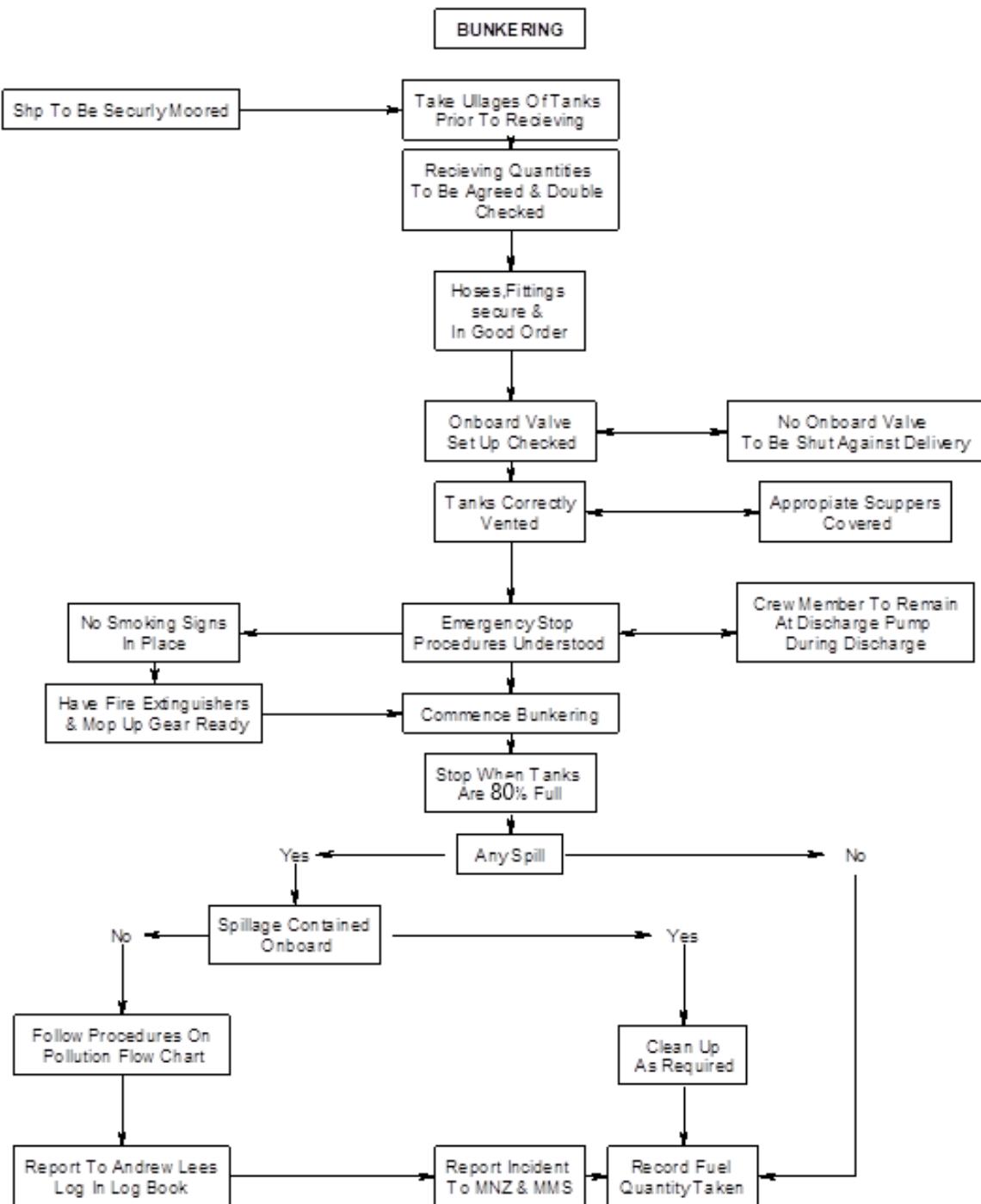
### **Post Bunkering**

|                                                   |  |  |
|---------------------------------------------------|--|--|
| Pump Turned Off                                   |  |  |
| Disconnect Hose & Hang Up Nozzle                  |  |  |
| Stow Clean Up Gear                                |  |  |
| Record Quantities, Time of bunker into Ships Logs |  |  |

**Signed**


## **12.1 POLLUTION CONTROL**




Note: Regional Clean Up Response - Vessel Operates in Auckland, Northland and Bay Of Plenty. The Relevant Authority is to be contacted as required

Note: Bunkering, fuel transfer and machinery refuelling only occurs alongside the wharf and not at sea

## CONTAMINATED PRODUCTS DISPOSAL PROCEDURE



## BUNKERING PROCEDURE



Note: Bunkering, fuel transfer and machinery refuelling only occurs alongside the wharf and not at sea

## 12.2 PRIOR TO BUNKERING

- Inform the local harbour authority ahead of time that you intend to take on fuel.
- Inform all personnel of intention to bunker. NO SMOKING.
- Cease cargo operations if unsafe to bunker while discharging
- Vessel is to be on an even keel.
- Ensure the vessel is correctly secured to wharf.
- Cone off area around the delivery tanker if required
- Turn off deck wash.
- Plugged all deck scuppers.
- Close all unnecessary manifold valves.
- Fly “Bravo” flag. Display all round red light during hours of darkness.
- Have spill kit immediately available
- Place oil absorbent material at key locations.
- Have fire extinguishers ready.
- Check all bunkering tank breather pipes are open and unlocked.
- Record and confirm space remaining in the bunker tanks to be filled.
- Check all sounding pipe caps are closed.
- Check high level alarms for all fuel tanks
- Inspect hoses and couplings for damage.
- Close save-alls under couplings and flanges.
- Place drip trays under house couplings and flanges.
- Confirm delivery specification and quantity is correct.
- Confirm loading rate with supplier.
- Review bunkering plan with supplier.
- Review vessels emergency response procedure with supplier.
- Review supplier’s emergency response procedure.
- Establish a communication link between the supplier, deck and engine room.

## 12.3 BUNKERING

1. Prepare filling line.
  - Close save-alls.
  - Place drip trays under couplings and flanges.
  - Place oil absorbent material around couplings and flanges.
2. Open all relevant valves to receive bunkers.
  - Open 1 valve at deck level below bunkering point.
  - Open relevant valve to desired tank on fuel valve manifold, at forward main engine room bulk head. *You will need valve extension handle to reach these valves*
3. Confirm with supplier a tank filling plan and nominated quantity for each.
4. Engineer and crew go to individual bunkering stations and confirm the communication link.
  - Deck crew positioned at couplings.

- Engineer positioned in engine room.

5. Master to advise Port radio and all stations of fuel transfer.
6. Engineer will advise from engine room that they are ready to commence bunkering while confirming the nominated volume for readied tank.
7. Bunkering is to be commenced at the minimum flow rate, during this time deck crew will check hoses, couplings and flanges for leakage, once satisfied that there is no leakage, the supplier is notified to increase flow rate. Deck crew are to monitor hoses, couplings and flanges throughout bunkering. *Give supplier timely warning to stop pumping*
8. When designated fuel tank has reached desired quantity, bunkering is ceased while changing fuel tanks over.
9. When engineer is satisfied with fuel tank change over, the engineer will communicate to deck crew and supplier to commence bunkering and nominated volume.

#### **12.4 COMPLETION OF BUNKERING**

1. Ensure sufficient ullage to drain bunker hose.
2. Ensure bunker hose is fully drained.
3. Close all bunkering valves and lock cap into deck bunkering point.
4. Reconfirm all bunker tank soundings.
5. Verify bunker receipt.
6. Complete entry in the oil record book.
7. Advise Port radio and all stations that bunkering is completed and lower B flag

##### **12.4.1 ENVIRONMENT**

Refueling takes place alongside the wharf and road access to the area is available at all times.

On all occasions there is the risk of a spill into the marine environment.

##### **12.4.2 CHARACTERISTICS OF THE FUEL TRANSFERRED.**

The fuel product transferred is DIESEL FUEL CLASS 3c and will float on water. The product has a high flash point of a minimum of 61 degrees C and gives off little in the form of flammable vapours when exposed to the atmosphere at ambient temperatures.

##### **12.4.3 POTENTIAL OIL SPILL AND RISKS**

Potential for a spill could arise from the splitting of a hose, a hose becoming disengaged or an overfill. If such an occurrence takes place an immediate shut down of the affected gear should result in a low volume of product being spilled.

Containment of a spill with the spill kits held on the vessel and at the shore base would be expected to reduce the risk of serious damage from spillage.

#### 12.4.4 PREVENTITIVE MEASURES IN PLACE

Coffer dams are fitted at the vessels bunker points and surround fill points and tank vents. All crew engaged in the specific operations are trained fully in the fuel bunkering operation and the emergency procedures required in the event of a spillage. Each crew member is required to sign a document indicating they have received training and have read and understood this plan.

#### Contacts

|                                                                                                                                                                                                |                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Marine Duty Officer (24hrs) Any spill reported to this person                                                                                                                                  | 09 362 0397                                  |
| Harbour Master                                                                                                                                                                                 | 09 446 6088                                  |
| Pollution Response coordinator                                                                                                                                                                 | 021 481 585      09 362 0397                 |
| Harbour Control<br>Should the spill effect their area?                                                                                                                                         | 09 366 0055                                  |
| Call for advice Maritime New Zealand Oil Spill Response                                                                                                                                        | 09 834 3908                                  |
| Mc Callum Bros LTD EMERGENCY NUMBERS<br>Andrew Lees (Compliance Manager)<br>Mike Haynes (Operations Manager)<br>Gary Laurie (Group Engineering Manager)<br>Callum McCallum (Managing Director) | [REDACTED]                                   |
| Auckland Harbourmaster                                                                                                                                                                         | 021 956 868                                  |
| Auckland Council Compliance Monitoring Officer                                                                                                                                                 | 09 301 0101                                  |
| Department Of Conservation Emergency Hotline (DOC)                                                                                                                                             | <a href="http://09 834 3908">09 834 3908</a> |
| Auckland Fire                                                                                                                                                                                  | 111                                          |

## **13. SPILL NOTIFICATION AND EQUIPMENT**

Immediate notification to McCallum Bros Ltd's Contact Person Mike Haynes or Andrew Lees

The responsibility for putting the plan into action will be The Vessel Master.

### **13.1 SPILL EQUIPMENT AVAILABLE**

#### **ONBOARD THE VESSEL**

The vessel carries 2 x 200l mobile spill kits

Absorption capacity up to 200 litres.

Contents:

- Absorbent Pads x 160
- Socks (7.6cm x 1.2m) x 5
- Socks (7.6cm x 3.6m) x 4
- Pillows (45cm x 45cm) x 5
- Coveralls x 1
- Gloves x1
- Goggles x1
- Disposal bags x6
- Spill response guide x1
- 2 x 22 litre Prosafe Zeolite absorbent.

The “matasorb” pillows and pads are designed to soak up engine and hydraulic oils and fuel (but not water) and can be wrung out and reused at least 15 times. The 60 litre kit drum as well as the disposal bags can hold the oil wrung from the matasorb pads. The “plug ‘n’ dike” leak sealant is designed to temporarily seal any holes in drums or fuel tanks, such as if a forklift punctured a lube oil drum with its forks or the quarry fuel tank was split open. The “matasorb” scupper pillows are to be used to temporarily seal the scuppers on vessels while refuelling.

### **13.2 SPILL EQUIPMENT AVAILABLE FOR A LARGE SPILL**

The Auckland Regional council will arrange for additional resources to be made available if the spill cannot be contained with available materials.

### **13.3 SPILL RESPONSE PROCEDURES**

Determine the nature of the incident and if it is safe to do so take immediate action to isolate the source or contain the spill by shutting down the pump, closing valves or any other appropriate action.

#### **SEE FLOW CHART (SPILL CONTROL)**

An evaluation should be made as quickly as possible as to whether the spill containment is beyond the control of the vessels response system.

Where it is considered beyond the vessels response system immediate contact should be made with the REGIONAL COUNCIL POLLUTION CONTROL CENTRE 09 377 3107 or 021 956868 and if unable to be contacted, then the REGIONAL COUNCIL MARINE DUTY OFFICER 09 361 2404 or MNZ DUTY OFFICER 04 473 7376. In making this contact advice should be given as to the location, estimated size of the spill and what action has been taken.

Implement instructions given by the Authorities and await the arrival of the "scene commander"

If any danger of a fire, notify the FIRE BRIGADE phone 111

### **13.4 CATEGORY OF SPILLS**

#### **TYPE A:**

A spill which can be contained before it reaches the water and can be cleaned up by the company and or its contractors within the scope of the plan.

#### **TYPE B:**

A spill which cannot be contained and reaches the water, or threatens to do so, and cannot be cleaned up without significant external resources: there is or may be a threat to local resources: and is beyond the scope of this plan and should be under the control of the Auckland Regional Council ON SCENE COMMANDER

### **13.5 PROCEDURE FOLLOWING SPILL EVALUATION**

Report to response co-coordinator, Andrew Lees [REDACTED] for all types of spillage

### **13.5 MEDIA ENQUIRIES**

All Media requests for information must be referred to:- **Company MD**

### **13.6 DEBRIEFING**

Andrew Lees will conduct the necessary debriefing following the incident.

This will comprise of all personnel involved in the incident and will determine the cause of the spill, any deficiencies in implementing the plan and any appropriate recommendations for any changes

### **13.7 PLAN TESTING**

The plan will be tested not less than once per year.

## APPENDIX: SHIP TO SHORE TRANSFER PROCEDURES

|                                                         |                |                    |
|---------------------------------------------------------|----------------|--------------------|
| <b>McCALLUM</b><br><b>BROS. LTD</b><br>Established 1904 | SOP# 35        | Oil Spill Response |
|                                                         | REVISION #     | 1                  |
|                                                         | LAST REVIEW    | Feb 2023           |
|                                                         | NEXT REVIEW    | Feb 2024           |
|                                                         | DOCUMENT OWNER | Andrew Lees        |

### STANDARD PROCEDURE

### Spill Response

#### Approach to Incident Readiness

The three tiers Following international best practice and convention guidance, New Zealand has implemented a three-tiered approach to all aspects of marine oil spill readiness and response. This approach means an appropriate response capability is readily available to deal with oil spills proportionate to the risks. The three tiers are as follows

**Tier 1** oil spill responses are managed by the operator, who must have an appropriate shipboard or Site Marine Oil Spill Contingency Plan.

**Tier 2** oil spill responses are generally those beyond the capability of the operator acting alone. The response is led and resolved by the Regional On-Scene Commander for the local regional council, in accordance with their Regional Marine Oil Spill Contingency Plan.

**Tier 3** oil spill responses are required for spills that are generally more complex, of longer duration and higher impact, and beyond the response capability of the regional council or operator. The response is nationally led and coordinated by the National On-Scene Commander for Maritime NZ which will likely call on considerable resources from around the country and overseas. This Contingency Plan relates to this category of spills.

The purpose of this plan is to promote a planned response to any marine oil spill

When an oil spill occurs, a process is set in motion to manage the response operation.

This includes notification of responders, resource mobilization and deployment, and ongoing response management as required.

#### Response Activities In the event of a discharge

The first priority is to safely stop the product flow and to shut off all ignition sources within a 10m radius of the discharged oil, followed by the containment, control, and mitigation of the discharge. This Contingency Plan breaks actions to be performed to respond to an oil discharge into different phases,

#### Discharge Discovery and Source Control Minor Discharge.

Minor discharge (i.e., small volume leak from equipment) may be discovered by during scheduled daily checks. All Equipment, above and below deck is visually inspected weekly and monthly during normal inspection rounds.

Major Discharge. A more severe and sudden discharge will trigger the response procedures.

Shutdown of the equipment and power to the selected system, in the case of the vessel winch hydraulics the system is monitored by the deck crew, engineer in the control room and Master in the Wheelhouse, any hose failure will be picked up immediately & the emergency shutdown is activated.

### Steps in the Event Of A Spill

- Determine the source of the spill, shutdown relevant equipment.
- Immediately contain the spill to the spill area – i.e. ensure that spill does not run/flow away: the most common method is to place either absorbent or non-absorbent socks, pillows & booms around the perimeter of the spill. Block scuppers to prevent product flowing overboard.
- Move the vessel as far away from the shore as quickly as possible to protect the beach, Sea and birdlife
- Identify nature of spill, for example hydraulic oil or diesel.
- Remove any sources of ignition
- Assess the level of the spill
- Consult the Material Data Sheets (MDSs): MDS are used to determine the necessary PPE required for a response to spill situations (for example protective suits, boots, gloves and/or respiratory protection)
- Identify method of clean-up and potential hazards. Proceed with recovery of spilled fuel and clean up
- Arrange for the appropriate disposal of the spilled material.
- All hazardous waste must be contained in separated designated containers and disposed of correctly.
- No spills are to be hosed into the natural environment.
- Report to McCallum Bros with the following information.
  - Nature of incident
  - Cause of incident;
  - Clean up measures; and
  - Mitigation measures taken

### Diesel Spill

Due to the high evaporation rate of diesel, on-water recovery is generally not required. However, if the product is thick enough and persists on the surface, responders can use booms and skimmers to attempt recovery. Fuzzy disc skimmers can be effective in these situations. Sorbent pads and sorbent boom can also be used to absorb diesel on the surface.

### **Hydraulic Oil**

McCallum Bros use a Biodegradable vegetable based Hydraulic Oil which has minimal effect on the environment or birdlife. The hoses are inspected daily to ensure they are in good working order.

### **Oil Absorbent Powder**

Using Oil Absorbent Powder to clean up hydraulic oil spills. It's easy to use hydraulic oil spills by following these simple steps:

1. Try to control wherever the spill originated from to avoid any additional spillage during the cleaning process.
2. Once controlled, apply Oil Absorbent Powder to the entire area of the hydraulic oil spill.
3. Using a broom, spread the Oil Absorbent Powder throughout the spill, which will produce a rubber compound.
4. Collect the combined hydraulic oil and powder and dispose of it in a normal trash receptacle.
5. Gather the excess OS Oil Absorbent Powder and put it back in the bag for future use.

### **Allow natural break up**

If the spill is a good distance from shore and unlikely to cause damage to marine wildlife or the environment, the best response may be to allow the oil to disperse naturally. The ocean contains bacteria that break down the molecular structure of oil into less complex substances that are not hazardous. In this situation, the only actions taken may be to report the incident and then monitor the movement of the oil and its rate of dispersal.

### **Mechanical action**

Other vessels are used to churn up the water to assist in breaking up the oil. The oil is then left to disperse naturally.

### **Dispersants**

Dispersants are chemicals that help remove oil from the sea surface by breaking oil slicks into small droplets. The small droplets are then dispersed and diluted into the underlying seawater by wave action where they are broken down by bacteria.

### **Containment**

With some oil spills the first priority may be to contain the oil to limit the impact on the environment. Once contained the oil can be recovered and removed for disposal. A boom is the most common piece of equipment used to contain an oil spill.

### **Recovery**

Once the oil has been contained, work starts on recovering the oil from the water. Mechanical skimmers and/or sorbents are most commonly used for this task.

### **Shoreline clean up**

In extreme cases it is not possible to prevent the oil reaching the shoreline. The oil spill response then focuses on minimising long term damage and clean-up of the area affected.

The goal of any shoreline clean-up is to clean only to the extent that will speed up the recovery and use of the area. In many cases intervention can do more harm than good and must be measured against allowing natural recovery.

A Shoreline Clean up Assessment Team undertakes detailed analysis of the affected area and identifies sensitive areas. They then prioritise areas according to a number of factors including ecological value, socio-economic value, recovery time and cultural significance.

#### **Shoreline clean-up techniques**

The situation may allow or dictate that one or a combination of any of the following actions provides the most effective response.

##### **Natural cleaning**

This is an option for exposed shores where wave action is sufficient to remove oil. It is particularly appropriate for remote beaches where there are no overriding considerations. It is also appropriate for more sheltered shores where other techniques would cause unacceptable damage to the environment.

##### **Mechanical removal**

Where oil contamination is extensive but has not penetrated deeply, graders can be used to skim off the surface layer of oiled sand. This is then collected using front-end loaders. Front-end loaders can be used. Sediment removal is best justified when there are overriding short-term considerations, eg. the need to clean a fishing or tourist beach where activities of socio-economic importance need to continue.

##### **Mechanical relocation**

This involves moving oily sediments lower down the shore where they are exposed to greater cleaning action by the waves, or moving buried oil to the surface for the same reason. This technique is most appropriate for badly oiled coarse sediments on relatively exposed shores, where wave action will eventually restore the normal shore profile.

##### **Manual removal**

Small areas of a spill where oil has not significantly penetrated the sediments can be cleared using rakes and spades. It is a useful technique for cleaning patchy oil, also in cases where use of machinery is limited because of access or because it would damage the beach structure.

##### **Bioremediation**

This is the breaking down of oil by microorganisms. Repeated and slow-release applications of appropriate fertilisers appear in some cases to speed up oil biodegradation by enhancing the activity of naturally occurring microorganisms. This works best when the oil concentration in the sediment is very low.

### **Terminating the response**

Responsibility for control of the response remains with the appropriate tier until the response is formally concluded.

Winding down the response involves:

- the recovery, cleaning and maintenance of equipment
- demobilisation of all personnel involved
- debriefing staff
- completion of all documentation associated with the spill including preparing a final report.

Other actions may continue for some time:

- gathering information to assist cost recovery
- investigation and/or review of the incident and the response (if required)
- monitoring the environmental impact of the oil spill, e.g., on wildlife and seafood toxicity.